hst.187: physics of radiation oncology #5. intensity-modulated radiation therapy: imrt and impt part...

84
HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD [email protected] Alexei Trofimov, PhD [email protected] Dept of Radiation Oncology MGH March 6, 2007

Upload: kasey-balson

Post on 31-Mar-2015

218 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

HST.187: Physics of Radiation Oncology

#5. Intensity-modulated radiation therapy: IMRT and IMPT

Part 2: IMPT

Joao Seco, [email protected]

Alexei Trofimov, [email protected]

Dept of Radiation Oncology MGH

March 6, 2007

Page 2: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

IMRT Coll. Work GroupIJROBP 51:880 (2001)

IMRT is a treatment technique with multiple fields, where each field is designed to deliver a non-uniform dose distribution.The desired (uniform) dose distribution in the target volume is obtained after delivery of all treatment fields.

Flexible field definition, sharper dose gradients

Higher dose conformity

Improved sparing of healthy tissue

Page 3: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Protons vs. Photons

Ideal

Page 4: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Intensity Modulated Proton Therapy

IMPT = IMRT with protons

Page 5: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Intensity Modulated Proton Therapy

• Planning approaches

• Delivery options (inc. MGH plan)

• Overview of IMPT treatments / development

• Special considerations for IMPT

• IMPT vs. 3D-conformal proton vs. photon IMRT in the clinic

Page 6: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Proton depth-dose distribution: Bragg peakDepth = additional degree of freedom with protons

H.KooyBPTC

Page 7: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

A. Lomax: “Intensity modulation methods for proton RT”

Field incidence

Distal Edge Tracking

Field incidence

2D modulation

Field incidence

2.5 D modulation

Field incidence

3D modulation

Phys. Med. Biol. 44:185-206 (1999)

Page 8: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

IMPT – Example 1 (distal edge tracking)

Page 9: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

IMPT – Example 2 (3D modulation)

Page 10: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Treatment planning for IMPT: KonRad TPS (DKFZ)

- Bragg peaks of pencil beams are distributed throughout the planning volume

- Pencil beam weights are optimized for several beam directions simultaneously, using inverse planning techniques

- Output of optimization: beam weight maps for diff energies

Page 11: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Intensity Modulated Proton Therapy

• Planning approaches

• Delivery options (MGH plan, other sites)

• Overview of IMPT treatments / development

• Special considerations for IMPT

• IMPT vs. 3D-conformal proton vs. photon IMRT in the clinic

Page 12: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

IMRT delivery with multi-leaf collimators

Page 13: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

A proton pencil beam

Proton IMPT with Scanning

E.Pedroni (PSI)

Protons have charge can be focused, deflected (scanned)

magnetically!

Page 14: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

A “layer” is irradiated by scanning a pencil beams across the volume

Proton IMPT with Scanning

E.Pedroni (PSI)

Page 15: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Several layers are irradiated with beams of different energies

Proton IMPT with Scanning

E.Pedroni (PSI)

Page 16: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Complete treatment:a homogenous dose conformed distally andproximally

Proton IMPT with Scanning

E.Pedroni (PSI)

Page 17: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

: pencil beam scanning nozzle for MGH

• Continuous scanning. Modulation in current and speed.• Pencil beam spot width () at the isocenter: ~4-10 mm• Several identical paintings (frames) of the same target

slice (layer)• Max patient field (40x30) cm2

Beam monitor

Intensity Modulated

Beam Z

X

Y

Fast Slow

Scanning Magnets

Pair of Quads

Vacuum Chamber

Page 18: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Beam delivery: continuous magnetic scanning in 2D

Beam fluence variation along the scan path is achieved by simultaneously varying the beam current and scanning speed:

xvIdtdx

dtdn

dxdnx //)(

Actual scan is ~50 times faster (0.4 sec)

Page 19: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Scan functions:degeneracy of

the solution

Page 20: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Intensity Modulated Proton Therapy

• Planning approaches

• Delivery options (MGH plan, other sites)

• Special considerations for IMPT

• Overview of IMPT treatments / development

• IMPT vs. 3D-conformal proton vs. photon IMRT in the clinic

Page 21: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

The effect of delivery uncertainties in IMPT:fluctuations in the beam position during the scan

planned dose distr dose difference due to fluct’s

plandelivery

Page 22: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Beam size in IMPT

S Safai

Page 23: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Proton dose in the presence of range uncertainty

Page 24: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Proton dose in the presence of range uncertainty

(a dense target)

Lower protondose

Page 25: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

IMPT – DET (Distal Edge Tracking)

Tumor

T. Bortfeld

Page 26: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Distal Edge Tracking: Problem with range uncertainty

Tumor

Brainstem

T. Bortfeld

Page 27: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

In-vivo dosimetry / range verification with PET

K. Parodi (MGH)MGH Radiology

Page 28: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

IMPT in the presence of range uncertainties: DET vs. 2.5D

DETDET (+1 mm)DET (+3 mm)DET (+5 mm)

2.5D2.5D (+1 mm)2.5D (+3 mm)2.5D (+5 mm)

Page 29: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Robust IMPT optimization

• Phantom test case

• “Standard” optimization

• Robust optimization

J Unkelbach (MGH)

Page 30: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Degeneracy of IMRT solution: different modulation patterns may produce clinically “equivalent” dose distributions

Page 31: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Proton Treatment Field

Brass Collimator

M Bussiere, J Adams

Page 32: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Scanning with a range compensator

Page 33: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Scanning and IMPT

• Is scanning = intensity-modulation ?

Page 34: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

IMPT delivery: Spot scanning at PSI (Switzerland)

A Lomax Med Phys (2004)

Page 35: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

PSI gantryradmed.web.psi.ch/asm/gantry/intro/n_intro.html

• Gantry radius 2m • Rotation 185 deg• “Step-and-shoot” scanning:

200 MeV proton beam is stopped at regular intervals, no irradiation between “beam spots”

magnets

range shifter

beammonitor

sweeper

quad

Page 36: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

PSI ProSCAN

Page 37: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Scanning and IMPT

• Is scanning = intensity-modulation ?

• Is beam scanning = IMPT?

Page 38: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

1 field

SFUD – single field uniform dose

Dose conformation with IMPT

1 field

3 fields

3D IMPT3D-CPT

1 field

3 fields

A Lomax (PSI)

?? 2.5-D IMPT ??

Page 39: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Scanning and IMPT

• Is beam scanning = IMPT ?

• Is scanning = intensity-modulation ?

• Is intensity-modulation = IMPT ?

Page 40: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Spread-Out Bragg Peak (SOBP)

RM

Wheel rotates @ 10 / sec

Page 41: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Spread-Out Bragg Peak (SOBP)

RM

Wheel rotates @ 10 / sec

Page 42: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Spread-Out Bragg Peak (SOBP)

RM

Wheel rotates @ 10 / sec

Page 43: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Beam-current modulation: flat-top SOBP

Page 44: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Beam-current modulation: sharper fall-off

Page 45: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

IMPT fields for a prostate treatment

(a)

(b)

Double scattering “IMPT”

Page 46: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Intensity Modulated Proton Therapy

• Planning approaches

• Delivery options (MGH plan, other sites)

• Special considerations for IMPT

• Overview of IMPT treatments / development

• IMPT vs. 3D-conformal proton vs. photon IMRT in the clinic

Page 47: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Delivery of IMPT:Spot scanning at PSI (Switzerland)

• Since 1996: • Combination of magnetic, mechanical scan • Energy selection at the synchrotron + range shifter plates

A Lomax Med Phys (2003)

Page 48: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

GSI Darmstadt: scanned carbon beam

D Shardt (GSI)

© Physics World

Page 49: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

GSI patient case: Head+NeckCarbon Proton (IMPT)Plan: O. Jaeckel (GSI) Plan: A.Trofimov (MGH)

Page 50: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,
Page 51: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,
Page 52: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Depth scanning at GSI (270 MeV C-ions)

U.Weber et al. Phys.Med.Biol. 45 (2000) 3627-3641

• Weaknesses of lateral scanning: – complicated scanning

pattern – need to interrupt the beam

• Depth scanning: – Target volume is divided

into cylinders spaced at ~0.7 FWHM (or 4-5 mm)

– Cylinders are filled with SOBP (or arbitrarily shaped distribution)

Page 53: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Scanning directions • Fast scanning in depth (2 sec/cylinder)• Slower lateral scanning (sweeper magnet)• Yet slower azimuthal scanning (gantry rotation)

Page 54: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

GSI: IMPT with depth scanning

• Same dose conformity as with lateral scanning• A simpler, uninterrupted scanning pattern • Treatment time a factor of 4 longer than with 2D

raster scanning

Page 55: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Proton Therapy Center – MD Anderson CC, Houston

Passive Scattering Ports

Pencil Beam Scanning Port

Large Field Fixed Eye Port

Experimental Port

Accelerator System

PTC-H3 Rotating Gantries1 Fixed Port1 Eye Port1 Experimental Port

Hitachi, Ltd.

M. Bues (MDACC)

Page 56: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Basic Design Parameters for PBS at PTC-Houston

• Step and shoot delivery• Minimum range: 4 cm• Maximum range: 30 cm• Field size: 30 x 30 cm• Source-axis-distance: 250 cm• Spots size in air, at isocenter:

– 4.5 mm for range of 30 cm– 5 mm R=20 cm– 6.5 mm R=10 cm – 11 mm R=4 cm

• Varian Eclipse TPS

Beam3.2m

Scanning Magnets

Beam Profile Monitor

Helium Chamber

Position MonitorDose Monitor 1, 2

Isocenter

Hitachi, Ltd.

M. Bues (MDACC)

Page 57: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Intensity Modulated Proton Therapy

• Planning approaches

• Delivery options (MGH plan, other sites)

• Overview of IMPT treatments / development

• Special considerations for IMPT

• IMPT vs. 3D-conformal proton vs. photon IMRT in the clinic

Page 58: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Clinical relevance of intensity-modulated therapy (protons vs photons)

Co

nfo

rmal

ity

Integral dose

high

low high

3D CRT

IMXT3D PT

IMPT

J Loeffler, T Bortfeld

• Complex anatomies/geometries (e.g., head & neck) with multiple critical structures

• Cases where Tx can be simplified, made faster

• Cases where integral dose is limiting (e.g., pediatric tumors)

• Cases where it may be possible to reduce side-effects (improve patient’s quality of life)

Page 59: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Comparative treatment planning

3D-CPT IMPT IMXT

Dose [Gy/GyE]

Purpose: to identify sites, tumor geometries that would benefit the most from a certain treatment modality or technique

J AdamsA Chan (MGH)

Page 60: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Nasopharyngeal carcinomaClinical plan: composite proton+X-ray• BPTC: 12 proton fields

– CTV to 59.4 GyE (33 x 1.8 Gy) – GTV to 70.2 GyE (+ 6 x 1.8 Gy)

• MGH Linac: 4 fields (lower neck, nodes) to 60 Gy

Case 1

NN

G

G

J AdamsA Chan (MGH)

Page 61: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

IMXT plan

• For delivery on linac with 5-mm MLC – 6 MV photons – 7 coplanar beams

Case 2

Page 62: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

• Bragg peak placement in 3D

• Proton beam energies: 80-170 MeV

• 4 coplanar fields

Case 3

IMPT plan

Page 63: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Dose-volume histograms (DVH)

D50

D5D95

Page 64: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Nasopharyngeal carcinoma: dose to tumor 3D-CPT IMPT IMXTCase 2

• Comparable target coverage

Page 65: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

(Some) common complications in Head+Neck Tx

• Compromised vision – Optic nerves, chiasm (“tolerance”: 54 Gy), eye lens (<10 Gy)

• Compromised hearing – Cochlea (<60 Gy)

• Dysphagia / aspiration during swallowing– Salivary glands: e.g. parotid (mean <26 Gy)– Larynx, constrictors, supraglottic, base of tongue– Suprahyoid muscles: genio-, mylohyoid, digastric

• Xerostomia (dry mouth)– Salivary glands

• Difficulty chewing, trismus– Mastication muscles: temporalis, masseters, digastric

• Compromised speech ability– Vocal cords, arytenoids, salivary glands

Page 66: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Dose-response models:e.g. parotid gland

Saarilahti et al (Radiother Onc 2005)

Eisbruch et al (IJROBP 1999)

Roesink et al (IJROBP 2001)

Page 67: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Chao et al (IJROBP 2001)

Complications may arise from irradiation to doses well below the organ “tolerance”

Roesink et al. (IJROBP 2001)

Page 68: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Treatment planning for nasopharyngeal carcinoma

• Critical normal structures (always outlined): – brain stem, spinal cord, optic structures, parotid glands, cochlea

• ‘Extra’ structures were outlined on 3 data sets – esophagus, base of tongue, larynx – minor salivary, sublingual and submandibular glands – mastication and suprahyoid muscles

Page 69: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Nasopharyngeal carcinoma:sparing of normal structures

• Superior sparing with protons – Brainstem– Suprahyoid muscles – Sublingual, minor salivary glands

Page 70: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Nasopharyngeal carcinoma:sparing of normal structures (2)

• IMXT/IMPT better than 3D-CPT– Salivary glands– Supraglottic structures

Page 71: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

• IMPT may further improve sparing– Mastication muscles– Oral cavity, palate, base of tongue– Cochleae– Optic structures, temporal lobes

Nasopharyngeal carcinoma:sparing of normal structures (3)

Page 72: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

• IMPT may further improve sparing– Mastication muscles– Oral cavity, palate, base of tongue– Cochleae– Optic structures, temporal lobes

Nasopharyngeal carcinoma:sparing of normal structures (4)

Page 73: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Retroperitoneal sarcomaC. Chung, T.Delaney

• Radiation dose: • 50.4 Gy (E) in 1.8 Gy/fx to 100% of CTV and

›95% of PTV• Pre-op Boost of 9 Gy (total 59.4 Gy (E))• Post-op Boost of 16.2 Gy (total 66.6 Gy (E))

• Organ at Risk (OAR) constraints• Liver: 50% < 30 GyE• Small Bowel: 90% < 45 GyE• Stomach, Colon, Duodenum: max 50 GyE• Kidney: 50% < 20 GyE

Page 74: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

36 yo M with myxoid liposarcoma:Transverse

IMXT(photon IMRT)

3D CPT

IMPT

Page 75: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

36 yo M with myxoid liposarcoma: Sagittal

IMXT 3D CPT

IMPT

Page 76: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Boost

IMXT

IMPT

Page 77: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

PTV Conformity Index

• (CI)= V95% / PTV

Range (N=10) Mean

IMXT 1.19 – 1.50 1.35

3D CPT 1.37 – 2.34 1.78 (p=0.032)

IMPT 1.05 – 1.30 1.15 (p=0.005)

Page 78: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Dmean to OAR

Dmean to liver

(n=8)

Preop boost

(n=3)

IMXT 0.94 – 24.6 Gy, mean 11.8 Gy

12.0 – 24.6 Gy,

mean 16.7 Gy

3D CPT 0.01 – 20.9 Gy, mean 6.61 Gy (p=0.01)

_____

IMPT 0.99 – 18.6 Gy, mean 5.73 Gy (p=0.03)

2.8 – 18.6 Gy,

mean 9.2 Gy

Page 79: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Dmean to OAR (2)

Dmean to stomach

(n=8)

Preop boost

(n=3)

IMXT 4.03 – 44.2 Gy, mean 15.4 Gy

13.3 – 43.6 Gy,

mean 28.4 Gy

3D CPT 0 – 50.0 Gy, mean 11.8 Gy (p=NS)

_____

IMPT 0 – 36.5 Gy,

mean 7.85 Gy

(p=0.02)

3.5 – 35.2 Gy,

mean 16.8 Gy

Page 80: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

• Prostate carcinoma:

(GTV + 5mm) to 79.2 Gy

(CTV + 5mm) to 50.4 Gy

(a)

Dose [Gy]

(b)

Dose [CGE]

(c)

Dose [CGE]

3D CPT

IMRT

IMPT

Page 81: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Prostate: IMRT vs 3D-CPT vs IMPT

Page 82: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Burr Proton Therapy Center (2001-)Patient Population

• Brain 32%• Spine 23%• Prostate 12%• Skull Base 12%• Head & Neck 7%• Trunk/Extremity

Sarcomas 6%• Gastrointestinal 6% • Lung 1%

T. DeLaney, MD

Page 83: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

IMPT vs. photon IMRT • More tumor-conformal dose: reduction in dose to healthy

organs (including skin) (?) increased tumor control, reduced complications (acute and late).

Proton integral dose smaller (factor 1.5-3)• Proton dose conformality much better at low and medium

doses, but usually equivalent to IMRT in high-dose range• Treatment delivered with fewer fields (2-3 vs. 5-7);

Patient-specific devices/QA are not strictly required more treatments at lower cost

• Precision of delivery can be increased with robust planning methods, in-vivo range/dose verification

Page 84: HST.187: Physics of Radiation Oncology #5. Intensity-modulated radiation therapy: IMRT and IMPT Part 2: IMPT Joao Seco, PhD jseco@partners.org Alexei Trofimov,

Acknowledgements

T Bortfeld, PhD

GTY Chen, PhD

T DeLaney, MD

J Flanz, PhD

H Kooy, PhD

J Loeffler, MD

JA AdamsM BussiereS McDonald, MDH Paganetti, PhD

K Parodi, PhD

S Safai, PhD

H Shih, MD

J Unkelbach, PhD

Ion Beam Applications

M Bues, PhD