hour exam 2 review 9:00 exam is tomorrow (wednesday) at 7:00 pm

46
Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Upload: tamsyn-lawrence

Post on 21-Jan-2016

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Hour Exam 2 Review 9:00

Exam is Tomorrow (Wednesday) at 7:00 pm

Page 2: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Hour Exam 2

• Center of Mass

• Work Energy

• Impulse-Momentum

i

iicm m

mxX

PEKEWNC

PtF

Page 3: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Two ice-skaters of mass 70 kg and 50 kg, each having an initial velocity of 10 m/s in the directions shown, collide and fall and slide across the ice together. The ice surface is horizontal & frictionless. 1. What is the speed of the skaters after the collision? A) V = 0 m/sB) V = 1.7 m/sC) V = 2.7 m/sD) V = 10 m/sE) V = 20 m/s

2. What is the angle q relative to the x axis that the two skaters travel after the collision?  A) q = 41 degrees B) q = 28 degreesC) q = 25 degrees

Page 4: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A cart of mass M = 9 kg rolls without friction on a horizontal surface. It is attached through a freely pivoting initially-horizontal massless rod of length L to a ball of mass m = 3 kg. The system is initially at rest when the ball is released. The pendulum swings down and to the left, and at the bottom of its swing the ball is observed to have a velocity of 3.5 m/sec to the left.

3. Which of the following remain constant as the pendulum swings down? A) Horizontal component of the momentum of the ball B) Horizontal component of the momentum of the cart C) Horizontal component of the momentum of the ball + cart

Page 5: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A cart of mass M = 9 kg rolls without friction on a horizontal surface. It is attached through a freely pivoting initially-horizontal massless rod of length L to a ball of mass m = 3 kg. The system is initially at rest when the ball is released. The pendulum swings down and to the left, and at the bottom of its swing the ball is observed to have a velocity of 3.5 m/sec to the left.

4. What is the speed of the cart when the ball is at the bottom?  A) Vcart = 1.17 m/sB) Vcart = 1.75 m/sC) Vcart = 2.44 m/sD) Vcart = 2.91 m/sE) Vcart = 3.37 m/s

Page 6: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A cart of mass M = 9 kg rolls without friction on a horizontal surface. It is attached through a freely pivoting initially-horizontal massless rod of length L to a ball of mass m = 3 kg. The system is initially at rest when the ball is released. The pendulum swings down and to the left, and at the bottom of its swing the ball is observed to have a velocity of 3.5 m/sec to the left.

5. What is the length L of the pendulum? A) 0.59 m B) 0.83 m C) 1.18 m

Page 7: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A cart of mass M = 9 kg rolls without friction on a horizontal surface. It is attached through a freely pivoting initially-horizontal massless rod of length L to a ball of mass m = 3 kg. The system is initially at rest when the ball is released. The pendulum swings down and to the left, and at the bottom of its swing the ball is observed to have a velocity of 3.5 m/sec to the left.

6. How far to the right has the cart moved, when the ball is at the bottom? A) L/2 B) L/3C) L/4

Page 8: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

7. A comet of mass 109 kg is observed at a distance from the sun of 8 x 1011 m (mass of sun = 2 x 1030 kg) at a speed of 17000 m/s. Assuming no forces on it other than the sun's gravity, how fast will it be going when it is a distance of 2.25 x 1011 m from the sun? (The universal gravitational constant is G = 6.67x10-11 Nm2/kg2) A) 12,900 m/sB) 18,300 m/sC) 23,700 m/sD) 29,200 m/sE) 33,800 m/s

Page 9: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

8. Two fishermen, of masses 70 and 90 kg stand at opposite ends of their 20 meter boat. The boat (without fishermen) has a mass of 400 kg. There is no wind or current and the boat can move without friction on the water’s surface. The 90 kg fisherman walks to the left end of the boat. How far has the boat moved when the fisherman reaches the left end?

A) 5.8 m to the rightB) 3.2 m to the rightC) The boat does not moveD) 3.2 m to leftE) 5.8 m to left

Page 10: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

9. The centers of three spheres having masses 1 kg, 2 kg, and 3 kg are placed at the corners of an equilateral triangle whose sides are each 1 meter long, as shown below. What is the horizontal position of the center of mass? A) xcm = 0.50 mB) xcm = 0.58 mC) xcm = 0.76 m

x1 kg2 kg

3 kg

1 m

y

Page 11: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

An artillery shell of mass 20 kg is fired from a rail car which is initially at rest on a horizontal frictionless track. The combined mass of the car and cannon is 2000kg. As viewed by someone on the ground the shell moves with an initial speed of 300 m/s at an angle of 27 degrees above the horizontal and the rail car recoils to the right.

10. Relative to the ground, what is the speed of the rail car after the shell is fired? A) 1.36 m/s B) 2.67 m/s C) 3.00 m/s

Page 12: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

An artillery shell of mass 20 kg is fired from a rail car which is initially at rest on a horizontal frictionless track. The combined mass of the car and cannon is 2000kg. As viewed by someone on the ground the shell moves with an initial speed of 300 m/s at an angle of 27 degrees above the horizontal and the rail car recoils to the right.

11. If the shell was accelerated through the cannon for a time of 0.03 seconds, what was the average force on the shell during this time? A) 200 NB) 2,300 NC) 15,000 ND) 90,000 NE) 200,000 N

Page 13: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A block of mass m = 1.8 kg starts at rest on a rough inclined plane a height H = 8m above the ground. It slides down the plane, across a frictionless horizontal floor, and then around a frictionless loop-the-loop of radius R = 2.0 m. On the floor the speed of the block is observed to be 11 m/s.

12. What is the work done by friction on the block as it slides down the inclined plane? A) -49 JB) -28 JC) -78 JD) -23 JE) -32 J

Page 14: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A block of mass m = 1.8 kg starts at rest on a rough inclined plane a height H = 8m above the ground. It slides down the plane, across a frictionless horizontal floor, and then around a frictionless loop-the-loop of radius R = 2.0 m. On the floor the speed of the block is observed to be 11 m/s.

13. What is the magnitude of the normal force exerted on the block at the top of the loop? A) 0 NB) 5.1 NC) 9.8 ND) 17.6 NE) 20.6 N

Page 15: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

2.5 kg

h=1.5 m

d = 0.50 m

= 0.4

k=250 N/m

A 2.5 kg box is held released from rest 1.5 meters above the ground and slides down a frictionless ramp. It slides across a floor that is frictionless, except for a small section 0.5 meters wide that has a coefficient of kinetic friction of 0.4. At the left end, is a spring with spring constant 250 N/m. The box compresses the spring, and is accelerated back to the right.

14. What is the speed of the box at the bottom of the ramp? A) 5.4 m/sB) 3.7 m/sC) 2.8 m/s

Page 16: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

2.5 kg

h=1.5 m

d = 0.50 m

= 0.4

k=250 N/m

A 2.5 kg box is held released from rest 1.5 meters above the ground and slides down a frictionless ramp. It slides across a floor that is frictionless, except for a small section 0.5 meters wide that has a coefficient of kinetic friction of 0.4. At the left end, is a spring with spring constant 250 N/m. The box compresses the spring, and is accelerated back to the right.

15. What is the maximum distance the spring is compressed by the box? A) 0.50 mB) 0.66 m C) 0.83 mD) 0.94 mE) 1.21 m

Page 17: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

2.5 kg

h=1.5 m

d = 0.50 m

= 0.4

k=250 N/m

A 2.5 kg box is held released from rest 1.5 meters above the ground and slides down a frictionless ramp. It slides across a floor that is frictionless, except for a small section 0.5 meters wide that has a coefficient of kinetic friction of 0.4. At the left end, is a spring with spring constant 250 N/m. The box compresses the spring, and is accelerated back to the right.

16. What is the maximum height to which the box returns on the ramp? A) 1.1 mB) 1.3 m C) 1.5 m

Page 18: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

In case 1 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball bounces off the box and after the collision the box is moving to the right with V1 and the ball is moving to the left with speed vf.  In case 2 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball sticks to the box and after the collision the box (with the ball stuck to it) is moving to the right with speed V2. In both cases the box slides without friction. Assume all motion is horizontal.

17. In which case is the change in momentum of the ball the biggest? A) Case 1B) Case 2C) The change in momentum of the ball is the same in both cases.

Page 19: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

In case 1 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball bounces off the box and after the collision the box is moving to the right with V1 and the ball is moving to the left with speed vf.  In case 2 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball sticks to the box and after the collision the box (with the ball stuck to it) is moving to the right with speed V2. In both cases the box slides without friction. Assume all motion is horizontal.

18. Which of the following statements best describes V1 and V2?

A) V1 < V2

B) V1 = V2

C) V1 > V2

Page 20: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

In case 1 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball bounces off the box and after the collision the box is moving to the right with V1 and the ball is moving to the left with speed vf.  In case 2 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball sticks to the box and after the collision the box (with the ball stuck to it) is moving to the right with speed V2. In both cases the box slides without friction. Assume all motion is horizontal.

19. In case 2 it is observed that V2 = v0/3. What is the ratio of masses M/m? A) M/m = 1/2B) M/m = 3/4C) M/m = 4/3D) M/m = 3/2E) M/m = 2

Page 21: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

In case 1 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball bounces off the box and after the collision the box is moving to the right with V1 and the ball is moving to the left with speed vf.  In case 2 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball sticks to the box and after the collision the box (with the ball stuck to it) is moving to the right with speed V2. In both cases the box slides without friction. Assume all motion is horizontal.

20. In case 1 it is observed that vf = v0/2. What V1/v0? A) V1/v0 = 3M/2mB) V1/v0 = 2M/3mC) V1/v0 = 3m/2MD) V1/v0 = 2m/3ME) V1/v0 = m/2M

Page 22: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Two blocks of mass mA and mB are placed side by side on a frictionless horizontal table. At time t0 both blocks are at rest and a constant force of the same magnitude is applied to each of the blocks. Block A has a smaller mass than block B (mA < mB).

21. How do the momenta of the two blocks compare 5 seconds after t0? A) pA < pB

B) pA > pB

C) pA = pB

22. How do the kinetic energies of the two blocks compare 5 seconds after t0? A) KA < KB

B) KA > KB

C) KA = KB

Page 23: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Two blocks of mass mA and mB are placed side by side on a frictionless horizontal table. At time t0 both blocks are at rest and a constant force of the same magnitude is applied to each of the blocks. Block A has a smaller mass than block B (mA < mB).

23. After each block has traveled the distance of 1 m, which is correct? A) pA = pB

B) KA = KB

C) Both of the above

Page 24: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Hour Exam 2 Review 11:00

Exam is Tomorrow (Wednesday) at 7:00 pm

Page 25: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Hour Exam 2

• Center of Mass

• Work Energy

• Impulse-Momentum

i

iicm m

mxX

PEKEWNC

PtF

Page 26: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Two ice-skaters of mass 70 kg and 50 kg, each having an initial velocity of 10 m/s in the directions shown, collide and fall and slide across the ice together. The ice surface is horizontal & frictionless. 1. What is the speed of the skaters after the collision? A) V = 0 m/sB) V = 1.7 m/sC) V = 2.7 m/sD) V = 10 m/sE) V = 20 m/s

2. What is the angle q relative to the x axis that the two skaters travel after the collision?  A) q = 41 degrees B) q = 28 degreesC) q = 25 degrees

Page 27: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A cart of mass M = 9 kg rolls without friction on a horizontal surface. It is attached through a freely pivoting initially-horizontal massless rod of length L to a ball of mass m = 3 kg. The system is initially at rest when the ball is released. The pendulum swings down and to the left, and at the bottom of its swing the ball is observed to have a velocity of 3.5 m/sec to the left.

3. Which of the following remain constant as the pendulum swings down? A) Horizontal component of the momentum of the ball B) Horizontal component of the momentum of the cart C) Horizontal component of the momentum of the ball + cart

Page 28: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A cart of mass M = 9 kg rolls without friction on a horizontal surface. It is attached through a freely pivoting initially-horizontal massless rod of length L to a ball of mass m = 3 kg. The system is initially at rest when the ball is released. The pendulum swings down and to the left, and at the bottom of its swing the ball is observed to have a velocity of 3.5 m/sec to the left.

4. What is the speed of the cart when the ball is at the bottom?  A) Vcart = 1.17 m/sB) Vcart = 1.75 m/sC) Vcart = 2.44 m/sD) Vcart = 2.91 m/sE) Vcart = 3.37 m/s

Page 29: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A cart of mass M = 9 kg rolls without friction on a horizontal surface. It is attached through a freely pivoting initially-horizontal massless rod of length L to a ball of mass m = 3 kg. The system is initially at rest when the ball is released. The pendulum swings down and to the left, and at the bottom of its swing the ball is observed to have a velocity of 3.5 m/sec to the left.

5. What is the length L of the pendulum? A) 0.59 m B) 0.83 m C) 1.18 m

Page 30: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A cart of mass M = 9 kg rolls without friction on a horizontal surface. It is attached through a freely pivoting initially-horizontal massless rod of length L to a ball of mass m = 3 kg. The system is initially at rest when the ball is released. The pendulum swings down and to the left, and at the bottom of its swing the ball is observed to have a velocity of 3.5 m/sec to the left.

6. How far to the right has the cart moved, when the ball is at the bottom? A) L/2 B) L/3C) L/4

Page 31: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

7. A comet of mass 109 kg is observed at a distance from the sun of 8 x 1011 m (mass of sun = 2 x 1030 kg) at a speed of 17000 m/s. Assuming no forces on it other than the sun's gravity, how fast will it be going when it is a distance of 2.25 x 1011 m from the sun? (The universal gravitational constant is G = 6.67x10-11 Nm2/kg2) A) 12,900 m/sB) 18,300 m/sC) 23,700 m/sD) 29,200 m/sE) 33,800 m/s

Page 32: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

8. Two fishermen, of masses 70 and 90 kg stand at opposite ends of their 20 meter boat. The boat (without fishermen) has a mass of 400 kg. There is no wind or current and the boat can move without friction on the water’s surface. The 90 kg fisherman walks to the left end of the boat. How far has the boat moved when the fisherman reaches the left end?

A) 5.8 m to the rightB) 3.2 m to the rightC) The boat does not moveD) 3.2 m to leftE) 5.8 m to left

Page 33: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

9. The centers of three spheres having masses 1 kg, 2 kg, and 3 kg are placed at the corners of an equilateral triangle whose sides are each 1 meter long, as shown below. What is the horizontal position of the center of mass? A) xcm = 0.50 mB) xcm = 0.58 mC) xcm = 0.76 m

x1 kg2 kg

3 kg

1 m

y

Page 34: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

An artillery shell of mass 20 kg is fired from a rail car which is initially at rest on a horizontal frictionless track. The combined mass of the car and cannon is 2000kg. As viewed by someone on the ground the shell moves with an initial speed of 300 m/s at an angle of 27 degrees above the horizontal and the rail car recoils to the right.

10. Relative to the ground, what is the speed of the rail car after the shell is fired? A) 1.36 m/s B) 2.67 m/s C) 3.00 m/s

Page 35: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

An artillery shell of mass 20 kg is fired from a rail car which is initially at rest on a horizontal frictionless track. The combined mass of the car and cannon is 2000kg. As viewed by someone on the ground the shell moves with an initial speed of 300 m/s at an angle of 27 degrees above the horizontal and the rail car recoils to the right.

11. If the shell was accelerated through the cannon for a time of 0.03 seconds, what was the average force on the shell during this time? A) 200 NB) 2,300 NC) 15,000 ND) 90,000 NE) 200,000 N

Page 36: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A block of mass m = 1.8 kg starts at rest on a rough inclined plane a height H = 8m above the ground. It slides down the plane, across a frictionless horizontal floor, and then around a frictionless loop-the-loop of radius R = 2.0 m. On the floor the speed of the block is observed to be 11 m/s.

12. What is the work done by friction on the block as it slides down the inclined plane? A) -49 JB) -28 JC) -78 JD) -23 JE) -32 J

Page 37: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

A block of mass m = 1.8 kg starts at rest on a rough inclined plane a height H = 8m above the ground. It slides down the plane, across a frictionless horizontal floor, and then around a frictionless loop-the-loop of radius R = 2.0 m. On the floor the speed of the block is observed to be 11 m/s.

13. What is the magnitude of the normal force exerted on the block at the top of the loop? A) 0 NB) 5.1 NC) 9.8 ND) 17.6 NE) 20.6 N

Page 38: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

2.5 kg

h=1.5 m

d = 0.50 m

= 0.4

k=250 N/m

A 2.5 kg box is held released from rest 1.5 meters above the ground and slides down a frictionless ramp. It slides across a floor that is frictionless, except for a small section 0.5 meters wide that has a coefficient of kinetic friction of 0.4. At the left end, is a spring with spring constant 250 N/m. The box compresses the spring, and is accelerated back to the right.

14. What is the speed of the box at the bottom of the ramp? A) 5.4 m/sB) 3.7 m/sC) 2.8 m/s

Page 39: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

2.5 kg

h=1.5 m

d = 0.50 m

= 0.4

k=250 N/m

A 2.5 kg box is held released from rest 1.5 meters above the ground and slides down a frictionless ramp. It slides across a floor that is frictionless, except for a small section 0.5 meters wide that has a coefficient of kinetic friction of 0.4. At the left end, is a spring with spring constant 250 N/m. The box compresses the spring, and is accelerated back to the right.

15. What is the maximum distance the spring is compressed by the box? A) 0.50 mB) 0.66 m C) 0.83 mD) 0.94 mE) 1.21 m

Page 40: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

2.5 kg

h=1.5 m

d = 0.50 m

= 0.4

k=250 N/m

A 2.5 kg box is held released from rest 1.5 meters above the ground and slides down a frictionless ramp. It slides across a floor that is frictionless, except for a small section 0.5 meters wide that has a coefficient of kinetic friction of 0.4. At the left end, is a spring with spring constant 250 N/m. The box compresses the spring, and is accelerated back to the right.

16. What is the maximum height to which the box returns on the ramp? A) 1.1 mB) 1.3 m C) 1.5 m

Page 41: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

In case 1 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball bounces off the box and after the collision the box is moving to the right with V1 and the ball is moving to the left with speed vf.  In case 2 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball sticks to the box and after the collision the box (with the ball stuck to it) is moving to the right with speed V2. In both cases the box slides without friction. Assume all motion is horizontal.

17. In which case is the change in momentum of the ball the biggest? A) Case 1B) Case 2C) The change in momentum of the ball is the same in both cases.

Page 42: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

In case 1 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball bounces off the box and after the collision the box is moving to the right with V1 and the ball is moving to the left with speed vf.  In case 2 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball sticks to the box and after the collision the box (with the ball stuck to it) is moving to the right with speed V2. In both cases the box slides without friction. Assume all motion is horizontal.

18. Which of the following statements best describes V1 and V2?

A) V1 < V2

B) V1 = V2

C) V1 > V2

Page 43: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

In case 1 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball bounces off the box and after the collision the box is moving to the right with V1 and the ball is moving to the left with speed vf.  In case 2 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball sticks to the box and after the collision the box (with the ball stuck to it) is moving to the right with speed V2. In both cases the box slides without friction. Assume all motion is horizontal.

19. In case 2 it is observed that V2 = v0/3. What is the ratio of masses M/m? A) M/m = 1/2B) M/m = 3/4C) M/m = 4/3D) M/m = 3/2E) M/m = 2

Page 44: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

In case 1 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball bounces off the box and after the collision the box is moving to the right with V1 and the ball is moving to the left with speed vf.  In case 2 a ball of mass m is thrown horizontally with speed v0 at a stationary box of mass M. The ball sticks to the box and after the collision the box (with the ball stuck to it) is moving to the right with speed V2. In both cases the box slides without friction. Assume all motion is horizontal.

20. In case 1 it is observed that vf = v0/2. What V1/v0? A) V1/v0 = 3M/2mB) V1/v0 = 2M/3mC) V1/v0 = 3m/2MD) V1/v0 = 2m/3ME) V1/v0 = m/2M

Page 45: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Two blocks of mass mA and mB are placed side by side on a frictionless horizontal table. At time t0 both blocks are at rest and a constant force of the same magnitude is applied to each of the blocks. Block A has a smaller mass than block B (mA < mB).

21. How do the momenta of the two blocks compare 5 seconds after t0? A) pA < pB

B) pA > pB

C) pA = pB

22. How do the kinetic energies of the two blocks compare 5 seconds after t0? A) KA < KB

B) KA > KB

C) KA = KB

Page 46: Hour Exam 2 Review 9:00 Exam is Tomorrow (Wednesday) at 7:00 pm

Two blocks of mass mA and mB are placed side by side on a frictionless horizontal table. At time t0 both blocks are at rest and a constant force of the same magnitude is applied to each of the blocks. Block A has a smaller mass than block B (mA < mB).

23. After each block has traveled the distance of 1 m, which is correct? A) pA = pB

B) KA = KB

C) Both of the above