hotcarriereffectshot carrier effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 ·...

36
Hot Carrier Effects Hot Carrier Effects 충북대학교 전자정보대학 김영석 2 12 3 2012.3 1

Upload: others

Post on 01-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Hot Carrier EffectsHot Carrier Effects

충북대학교 전자정보대학 김영석

2 12 32012.3

1

Page 2: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Evolution of MOSFET technologyITRS predictions in 2009

2005, λ=90nm2011, λ=40nm, vdd=0.9V, tox,eff=1nm

2017 λ 162017, λ=16nm

2전자정보대학 김영석

Page 3: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Moor’s LawIC complexity roughly doubles every 2 years” Gordon Moore, 1965

Higher Density

But, Hot Carrier Effects

3전자정보대학 김영석

Page 4: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

ScalingDennard (IBM) in 1974

Constant Electric Field Scaling

4전자정보대학 김영석

Page 5: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

ScalingThreshold Voltage VTH

V

CQ

VVVox

depFFBoxsiFBTH

+

−++=Δ+Δ+=

)2(2

2

εφε

φφφ

VqNCQ

tCWqNQ

qNVW

SBFsubsidep

ox

oxoxdepsubdep

sub

SBFsidep

+=

==−+

=

/)2)((2

,,)2(2

φε

εφε

kV

tkkVqkN

VV

tC

TH

oxox

SBFsubsisiFBTH

oxoxox

=+

+Δ+≈/

)/2)((2:scalingafter

/

'

εφε

φ

ε

Drain Current

D l

kIkVkV

kLkWkCI D

THGSoxnD =−≈ 2' )//(//)(

21 μ

WLCCVC GSGS 2Delay

kkIkVkC

WLCCI

D

GSGS

oxGSD

GSGS

ττ

τ

==

≈=

/)/)(/(

3,

'

Power Consumption

' )/)(/( PkVkIP DD ==

5

2)/)(/(k

kVkIP DD

전자정보대학 김영석

Page 6: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

MOSFET ReviewCross-section

Depletion

0 < VGS < VTH

S bth h ld tSubthreshold current

Inversion

VGS >= VTHVGS > VTH

6전자정보대학 김영석

Page 7: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

MOSFET: ID @ InversionLinear Region

ID ~ VDS

Voltage controlled resistor (VGS)

Pi h ffPinch-off

VDS=VDSAT

Saturation RegionSaturation Region

VDS => Leff slowly

Vchannel=VDSAT=const

Pinch-off section absorbs (VDS-VDSAT), high-field region, electron velocity saturationvelocity saturation

Hot Carrier Injection

Large lateral electric field

Population of high-energy electrons

7전자정보대학 김영석

Page 8: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Scaling => 채널길이 감소Lateral E-field (drain) 증가 (>100kV/cm)=> Hot-Carrier 발생 (E>1.5eV)

Impact Ionization(I/I) or Avalanche Breakdown

Isub 증가 => 기판전압증가, Snapback 발생

I 증가 > O id T / VT 증가Ig 증가 => Oxide Trap/ VT 증가

Hot Carrier Effects(HCI)

8전자정보대학 김영석

Page 9: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Substrate Currents Mechanism

Electron Energy > 1.5eV

=> Impact Ionization

> El t H l i ti=> Electron-Hole pair generation

전자는 드레인 or 게이트로 이동

정공은 기판으로 이동 (Isub)정공은 기판으로 이동 (Isub)

Isub can be used to predict the device lifetime

9전자정보대학 김영석

Page 10: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Substrate Currents Difference between Electrons and Holes: pn μμ ⋅≈ 3

Electron-Hole pair generation by Electrons: Energy>1.5eV

Electron-Hole pair generation by Holes: Energy>2.4eV

p

10전자정보대학 김영석

Page 11: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Substrate Currents(Isub) 문제점Breakdown 발생: 정공 기판으로 이동 => 기판 전압 상승 => 소스-기판 순방향바이어스 => 소스에서 전자들이 기판으로 방출 (기생 npn BJT동작) => More I/I => Snapback Breakdown

CMOS Latch-Up 유발CMOS Latch Up 유발

Back Bias Generator 전압을 올림

드레인-기판 공핍영역에서 정공에 의한 Secondary Impact-Ionization 발생

A monitor to correate device degradation with lifetime

Device Degradation/Isub are driven by a common source: Emax

11전자정보대학 김영석

Page 12: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Hot-Carrier Injection into Gate Oxide 게이트 산화막으로 주입된 대부분의 전자들은 게이트 전극으로 이동 ( 약 fA - pA).

이중 1/1E6 정도의 전자들은 게이트 산화막에 trap됨

Negative Charge => VT 증가 => 전류감소

12전자정보대학 김영석

Page 13: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Nature of Gate Oxide DamageHCI increases with shrinking

L , xj , tox , Nsub => E(lateral), E(vertical) (significant)

HCI

2 D O id h t i I t f t ti2 Damages: Oxide charge trapping, Interface trap generation

Very localized

gm , VTH , IDgm , VTH , ID

2 Voltage Regions

VDS ~ 2VGS: Sat. region, Ech large, I/I, Max substrate current, Interface trap generation (no Oxide charge trapping)

VDS ~ VGS: Linear region, Ech small, no I/I, Hot electron injection into oxide, Oxide charge trapping (Less Interface trapinto oxide, Oxide charge trapping (Less Interface trap generation)

13전자정보대학 김영석

Page 14: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

MOSFET Degradation 3단계(1) Impact Ionization

E>1.5eV

Substrate Current 증가

(2) O id b i 넘기(2) Oxide barrier 넘기

E>3.2eV

Lucky electron modelLucky electron model

Gate Current 증가

(3) Oxide Interface Trap 생성

E>3.7eV

gm 감소(VTH 증가)

14

Page 15: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

(1) Impact IonizationChannel hot electron(CHE) injection

Impact Ionization(I/I) injection

(or Drain avalanche hot carrier(DAHC) injection)

15전자정보대학 김영석

Page 16: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Impact Ionization by Hot-ElectronsElectrons are accelerated by the E-field

Get sufficient energy to break the covalent bond

Impact-Ionization=Avalanche Breakdown

I b li bl d i t it f th t f h tIsub: a reliable and convenient monitor of the amount of hot-carrier degradation

16전자정보대학 김영석

Page 17: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Impact Ionization by Hot-Electrons

Isub ~ IDS * Pi

Pi = the probability of an electron travelling a sufficient distance to gain the kinetic energy or more without suffering a collision

E/Φ λiΦ

eVeP

i

Eqi

mi

5.1~energy ionizationimpact : where

/

Φ= Φ− λ

Substrate current

mi EqDSsub eICI λ/

1Φ−= DSsub 1

17전자정보대학 김영석

Page 18: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Fowler-Nordheim (FN) TunnelingPrimarily by Eox

Localized at the source (maximum Eox at the Source)

⎟⎟⎞

⎜⎜⎛ −

= CEJ βexp2

Nonsignificant (But Significant for very thin oxide)

⎟⎟⎠

⎜⎜⎝

=ox

oxT ECEJ exp

Nonsignificant (But Significant for very thin oxide)

18전자정보대학 김영석

Page 19: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Direct TunnelingDirect Tunneling occurs in thin oxide at low voltages

For tox<3nm, Direct Tunneling Current>Thermal generation Current

No Inversion layer in MOS-C

2 5 i th Li it?2.5nm is the Limit?

Also Shown are Interface-Trap Assisted Leakage Paths

19전자정보대학 김영석

Page 20: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

(2) Ig: Lucky Electron ModelP1(A to B): Channel Electrons gain kinetic energy from the lateral channel electric field

P2(B): The Momentum of the hot electron must be redirected toward the interface by a Quasi-Elastic Collisiontoward the interface by a Quasi Elastic Collision

No energy-robbing collision

Retain the kinetic energy

Ped(B to C): Travel without suffering further collisions

Poc(C): Oxide scattering factor

20전자정보대학 김영석

Page 21: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Lucky Electron ModelLucky Electron Model

eVeIIII

i

chsubchGi

5.1~energy thresholdionization:/~/ /

Φ

ΦΦ−

V2.3~energybarrier injection :Φ

21전자정보대학 김영석

Page 22: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

(3) Oxide DegradationOxide Degradation

Oxide Charge Trapping

Interface Charge Trapping => 치명적

Ch f D i h t i ti d t id dChange of Device characteristics due to oxide damage

gm decrease

VTH increaseVTH increase

Oxide trapped charge / Interface trapped charge : Important role in the device degradation due to HCI

22전자정보대학 김영석

Page 23: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Si/SiO2 Interface Charges① Mobile Ions

윈인: Na+, K+ ions

성질: 이동성이 좋음. 특히 BT(Bias-Temperature) Stressing시 Na+ 이온이 산화막에서 이동하여 VFB가 변화함이온이 산화막에서 이동하여 VFB가 변화함.

제거방법:

i) Phosphorus(PSG등) Stabilization => Na+가 PSG층으로 이동하여 Trap됨.p 등 가 층으로 이동하여 p됨

ii) Chlorine Neutralization => Na+가 Cl(HCl,Cl2)과 결합하여 NaCl 형성

=>Neutral

② Fixed Charge

윈인: 산화과정시 생기는 Excess Ionic Silicon으로 추정됨.

성질: Positive Si/SiO2 interface에 위치 Metal성질: Positive, Si/SiO2 interface에 위치,

(111)Wafer는 (100)보다 3:1정도로 QF 많음.

제거방법: Ar, N2 Annealing으로 2E11cm-2 정도로

Metal

Trapped Charge+++ K+, Na+

Mobile Ions

제거방법 으로 정도로

줄일 수 있음.SiO2----

Interface Traps

X X X X

Fixed Charge+ + + +

23

Si

전자정보대학 김영석

Page 24: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Si/SiO2 Interface Charges③ Interface Traps(Surface States)

윈인: Si/SiO2 Interface에서 Dangling Bond에 의해 Forbidden Band에생기는 Energy State

성질: Donorlike/Acceptor Trap 두종류 있음성질: Donorlike/Acceptor Trap 두종류 있음,

Si/SiO2 interface에 위치, VG의 함수

제거방법: PostMetallization or Hodrogen Ambient Annealing => 제거방법 g g

Hydrogen이 Dangling Bond와 결합하여 QIT 제거.

(DIT= 1010 states/cm2-eV)

④ Radiation Effects: x-rays, Energetic Electrons, Protons,Heavy Ionized Particles에 의해 QF/QIT 증가시킴

Metal

제일큼영향/

)(

ox

SIT

ox

MM

ox

FMSFB

CQC

QC

QCQV

Φ

−−−Φ=φγ

SiO2

Trapped Charge+++----

K+, Na+Mobile Ions

제일큼영향 /, oxFMS CQΦ

Si

Interface Traps

X X X X

Fixed Charge+ + + +

24전자정보대학 김영석

Page 25: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Fixed oxide chargeSi-SiO2 atomic model

Si dangling bond

Oxygen dangling bond

B th d li b d l t /h l TRAPBoth dangling bond : electron/hole TRAP

SiN : nitrogen dangling bond

25전자정보대학 김영석

Page 26: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Threshold Voltage Shift

0@FGpp VVQCVV + 0@

FGTHiTH

DSoxpp

FG

oxpp

ppCGFG

QVV

VVCC

QCC

VV

−=

==+

++

=

)22(2 0 FFSBTHdep

FFBTHi

oxppTHiTH

VVCQ

VV

CCVV

φφγφ −++=−+=

+

)(0 FFSBTHox

FFBTHi Cφφγφ

26전자정보대학 김영석

Page 27: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

CharacterizationVFG 영향

A region: Electrons(Ich) 증가 => I/I 증가

B region: Emax 감소 => I/I 감소

VD 영향VD 영향

VD 증가 => Emax 증가 => I/I 증가

Leff 영향Leff 영향

Leff 감소 Emax 증가 => I/I 증가

27전자정보대학 김영석

Page 28: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

CharacterizationISUB vs VD

VTH vs time

Lifetime vs ISUB

28전자정보대학 김영석

Page 29: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Device DegradationHCI

=> VTH 감소, 전류 IDS 감소, gm 감소

=> Circuit Speed 감소

> Ci it F il=> Circuit Failure

29전자정보대학 김영석

Page 30: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Device LifetimeIn General, Device Lifetime is defined by

%3

10

D

T

II

mVV

%3=Δ m

D

gg

I

mg

30전자정보대학 김영석

Page 31: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

Techniques to Reduce HCIReduce Maximum Electric Field (Emax)

Reduce VDD

Gate Oxide Engineering for higher reliability (e.g., oxynitrides)

St t t t th t th f EStructure to separate the current path from Emax

31전자정보대학 김영석

Page 32: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

LDD(Lightly Doped Drain)Hot Carrier Effect 방지를 위한 소자 구조

LDD(Lightly Doped Drain)

32전자정보대학 김영석

Page 33: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

SummarySubstrate Current by Impact Ionization

G t C t b L k El t

(1) /1

mi EqDSUB eICI λϕ−=

Gate Current by Lucky Electrons

(2) /2

mb EqDG eICI λϕ−=

(1)+(2)

(3))( / ibSUBG II ϕϕ∝ (3) )( ib

D

SUB

D

G

IIϕϕ∝

oxide barrier toenergy :2.3IonizationImpact create energy to :3.1

eVeV

b

i

==

ϕϕ

33전자정보대학 김영석

Page 34: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

SummaryDevice Lifetime by Interface Traps (IG, ISUB)

eIWC Eq

D

mit /5

(4)(1)

(4) =τ λϕ

II

IW SUB iit / (5) )(

(4)(1)

+

−τ ϕϕ

WII

II

SUB

D

DD

9.2

9.1

∝∴τSUB

TI t ftt73 V

34

TrapsInterfacecreateenergy to :7.3 eVit =ϕ

전자정보대학 김영석

Page 35: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

SummaryLifetime: Ex

AI

mWAIAI

SUB

SUBD

/103

60,10,10

129.2

64 ===

−− μ

years

mAWID

SUB

31sec101

/103

9

129.1

=×≈∴

×≈

τ

μ

Note that Li-Ion battery: 2 years, 400회

35전자정보대학 김영석

Page 36: HotCarrierEffectsHot Carrier Effectsbandi.chungbuk.ac.kr/~ysk/devnot11.pdf · 2011-04-09 · Moor’s Law IC complexity roughly doubles every 2 years” Gordon Moore, 1965 Higher

ReferencesHot Carrier Design Considerations for MOS Devices and Circuits, C. T. Wang, Van Nostrand Reinhold, 1992

Hot-Carrier Reliability of MOS VLSI Circuits, Y. Leblebici and S. M. Kang, Kluwer Academic Publishers, 1993Kang, Kluwer Academic Publishers, 1993

36전자정보대학 김영석