hmrt23: overview of calculations performed hrmt23 internal review, 3/7/2014 f. carra, m. garlasché,...

46
HMRT23: Overview of calculations performed HRMT23 Internal Review, 3/7/2014 F. Carra, M. Garlasché, P. Gradassi, G. Maitrejean, A. Salgado Paz EN-MME-EDS

Upload: brent-mckinney

Post on 01-Jan-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

PowerPoint Presentation

HMRT23:Overview of calculations performedHRMT23 Internal Review, 3/7/2014F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado PazEN-MME-EDSOutlineF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. SalgadoCalculations of HRMT23 test bench componentsTCSG and TCSx jaws: physical quantities in HRMT23Lessons from HRMT14: CuCD vs. MoGrConclusions3/7/20142OutlineF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. SalgadoCalculations of HRMT23 test bench componentsTCSG and TCSx jaws: physical quantities in HRMT23Lessons from HRMT14: CuCD vs. MoGrConclusions3/7/20143HRMT23 test bench componentsTest bench support Static deformationF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/2014

4 tank supports (load = 1000 kg)3 sferax for the vertical movementDoes the plate flexion induce stress on the sferax?NO: Maximum horizontal displacement: 7 m (inside manufacturing tolerances)4Optical windows: atmospheric pressure3/7/2014F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. SalgadoExternal pressure: 1.5 barFixed supports on the contour

Maximum total displacement: 1.7 mMaximum stress intensity: 4.8 MPaWhen using fused silica: maximum admissible stress ~ 55MPa

HRMT23 test bench components5Optical windows: expected dose3/7/2014F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. SalgadoHRMT23 test bench componentsHRMT14 2E14 protonsHRMT23 6E14 protons

Dose on glasses HRMT23 = 3x(HRMT14) = 2 kGy x 3 = 6 kGyFactor of 5 introduced due to different geometry, uncertainties in the number of pulses, etc. dose expected on a glass during HRMT23 = 5 x 6 = 30 kGy

Glass specification: High residual transparency at doses > 30 kGyFlexural resistance > 15 MPa

6Vacuum tank3/7/2014F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. SalgadoHRMT23 test bench components7

Material: 304L v.p.Load: 1.5barMaximum stress: 84 MPaBuckling Factor: 90 !Beryllium window3/7/2014F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. SalgadoHRMT23 test bench components8Different beam size and window orientation consideredIn all cases a plastic deformation is observedUltimate strain ~ 0.05Tmelt = 1278CBeamMaximum eqv Strain (m/m)Max Temperature (C)4.9e13p; =0.3mm; angle: 00.0378576e13p; =0.3mm; angle: 00.0519574.9e13p; =0.25mm; angle: 00.08512054.9e13p; =0.25mm; angle: 450.0531048Maximum beam sigma allowed = 0.3 mm!OutlineF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. SalgadoCalculations of HRMT23 test bench componentsTCSG and TCSx jaws: physical quantities in HRMT23Lessons from HRMT14: CuCD vs. MoGrConclusions3/7/20149TCSG and TCSx impactSimulation model and parametersF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201410Energy450 GeVParticle typeprotonsBeam size (sigma, both planes)1 mmBeam divergencenoneImpact parameter5 sigmaBeam directionParallel to jaw axisNumber of protons6.40E+13Number of bunches288Impact duration7.2E-6 s

TCSxBeam

TCSGBeamTCSG and TCSx impactTemperature at the end of the depositionF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201411

TCSxTmax=1720CTmelt_MoGr > 2500 C

Tmax=740CTCSGTmelt_Gl ~ 1090 C Tmax,Gl=200CTCSG and TCSx impactShockwave propagationF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201412

TCSG and TCSx impactMaximum absolute values to be acquired on the active surfaceF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201413TCSGTCSxSpeed (m/s)6~ 10Strain (%)0.130.83Stress (MPa)116265TCSG and TCSx impactMaximum stressesF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201414sx,max = 56 MPa; sx,min = -125 MPasy,max = 265 MPa; sy,min = -100 MPasz,max = 38 MPa; sz,min = -146 MPaReference: MG3110PsRz,flex ~ 85 MPa; sRx,flex = ?sRz,comp, sRx,comp = ?

TCSxsx,max=56MPasx,min=-125MPasx,max = 18.5 MPa; sx,min = -67 MPasy,max = 116.6MPa; sy,min = -27.5 MPasz,max = 56.5 MPa; sz,min = -41.2 MPaReference: CFC (AC150k)sRz,flex ~ 120 MPa; sRx,flex = 10MPasRz,comp = 60MPa; sRx,comp = ?

TCSG

TCSG and TCSx impactMaximum strainsF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201415ex,max = 0.43%; ex,min = -0.83%ey,max = 0.47%; ey,min = -0.1%ez,max = 0.05%; ez,min = -0.11%Reference: MG3110PeRz,flex ~ 0.35% MPa; eRx,flex = ?eRz,comp, eRx,comp = ? TCSxex,max=0.43%ex,min=-0.83%ex,max = 0.35%; ex,min = -1.32%ey,max = 0.13%; ey,min = -0.10%ez,max = 0.05%; ez,min = -0.02%Reference: CFC (AC150k)eRz,flex = ?; eRx,flex = ?eRz,comp, eRx,comp = ?

TCSGex,max=0.35%ex,min=-1.32%TCSG and TCSx impactTCSG plastic deformationF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201416

pl = 0.18%pl = 0.12%TCSG and TCSx impactMaximum absolute values to be acquired on the active surfaceF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201417TCSGTCSxSpeed (m/s)6~ 10Strain (%)0.130.83Stress (MPa)116265TCSP Impact3/7/2014F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado18

OutlineF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. SalgadoCalculations of HRMT23 test bench componentsTCSG and TCSx jaws: physical quantities in HRMT23Lessons from HRMT14: CuCD vs. MoGrConclusions3/7/201419Aim

Copper-Diamond144 bunches Molybdenum-Graphite (3 grades) 144 bunches MoGRCF-3Implicit approachEvaluate thermal response of samples at impact during HMRT14Link to simulations folderF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201420Energy Deposition Results in: HRMT14 Samples; AdColMat #3, A. Manousos, V. Vlachoudis

time250ns72 bunches, 25ns bunch spacing72 bunches, 25ns bunch spacingMoGRCF3CuCDBeam CharacteristicsF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201421Material properties: CuCDCuCD Properties (g/cm3)5.4c (J/kg-K)k (W/m-K)490CTE (K-1)7.8e-6E (GPa)220v (-)0.22Development of Novel, Advanced; Doct. Thesis, N.MarianiLink to Material properties research

Plastic behaviour at high T:Case 1 (driven by Diamond):Brittle, E=const.=220GPa

Case 2 (driven by Cu):Plasticity starting from tensile limit value @ TAMB T (C)c2004006008001000450850

E=220GPaETAN=500MPa70 (-) (MPa)i.e. Studying the upper and lower boundariesF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201422Material properties: MoGRx,yz (g/cm3)3.65c (J/kg-K)k (W/m-K)CTE (K-1)3e-61e-5E (GPa)5512v (-)0.3 Development of Novel, Advanced; Doct. Thesis, N.MarianiLink to Material properties research

Kx,y (W/m-K)Kz (W/m-K)504002501005001000T (C)T (C)50010007525

T (C)5001000010001400600c (J/kg-K)F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201423MoGRCF-3

Results: Thermal

Tsample_MAX/TMELT = 778/2505=0.3[C][s]TMELTT sample 25001500500048121620beamF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201425Results: Structural1st_principal[MPa]

Energy deposition

92

9550095(s)beambeamF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado(Just..) below values for rupture (96MPa)3/7/201426

Results: Structural11896

TRESCA[MPa]11850100(s)Energy deposition

Volume for TRESCA> uts(=96MPa)beambeambeamF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201427CuCD

TMAX/TMELT =1.1T sample [C][s]Results: ThermalF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201429

~15mm~R1Symmetry surfaceMolten volumebeambeamInside sample = not detectable on imagesResults: ThermalF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201430Case 1 : material behaviour mostly driven by Diamond Brittle, E=const.=220GPa ** Lever rule would give tangent modulus =173GPa (i.e. Behaviour highly similar to that of a ideally elastic CuCD with E=T=220GPa)Results: Structural

Red means failure...

As sample is still standing, this means different material behaviour than brittle with 70MPa tensile strength at higher T, dF. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201431Results: StructuralCase 2 : @ impact, material properties driven by CuSubjective hypothesis: plasticity starting from tensile limit value @ TAMB (i.e. at 70MPa)

F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201432Results: StructuralCase 2 : @ impact, material properties driven by CuSubjective hypothesis: plasticity starting from tensile limit value @ TAMB (i.e. at 70MPa)

F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201433

Optical change on CuCD surface ~R2Explainable with surface phenomena due to thermal treatmentBlue surface - typical color for oxydation due to:High surface temperature (promotes oxydation)Presence of O particles due to bad vacuum (>1e-3mbar)Cleaned surface due to:At T>400C, oxide reduction via diffusion into bulkCopper oxide reduction through vacuum annealing Lee et al., Elsevier 2002F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201434

~R2Optical change on CuCD surface ~R3.5400CCONCLUSION:Visual change is not hint of structural phenomena (deformations)F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201435Conclusions3/7/2014F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado36Engineering calculations on the components under design for the new test bench dont highlight any issue Thermo-mechanical dynamic calculations were performed on CFC and MoGr jaws to evaluate amplitude and frequency of the phenomena to acquireThe calculated values are relatively low and well inside the measurement range of LDV and strain gauges: could we have the opposite problem, too low signals for the noise level? > see Michaels presentationThe same calculation done for TCSx MoGr should be repeated for CuCDDynamic simulations can also be used to predicted failure or survival of the jaws: ultimate strain and stress is going to be measured at the mechanical labGlidcop housing and cooling pipes show plastic strain around 0.1-0.2%!Marco analysed HRMT14 CuCD and MoGr, explaining the reasons of MoGr survival and CuCD change of surfaceAccording simulations, CuCD melted locally and internally failed: a detailed post-irradiation analysis is needed to confirm thatNext steps3/7/2014F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado37Contact Schott to evaluate a suitable rad-hard glassPerform FLUKA and ANSYS/AUTODYN simulations on the full TCSx collimator, with both MoGr and CuCD jawsThe last static step of the simulation will be completed in order to evaluate the residual strain on the housingEvaluate ultimate strength and strain of MoGr, CFC and CuCDImprove material models, taking into account pseudo-plasticity of graphite-based materialsThanks for your attention!Backup slides~R2TCSG Physical quantities~R3.5F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201440

Data: \\cern.ch\dfs\Users\f\fcarra\Public\Copy of TCSG-0 1ms-xyz-exeyez-uvw.xlsx3/7/2014F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado41

Both configuration meet the requirements but after further analyses the 45one was chosen. Minimum principal stress for both configurations~R2TCSx Physical quantities~R3.5F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201442

Data: \\cern.ch\dfs\Users\f\fcarra\Public\TCSx_PhysicalQuantities.xlsx~R2TCSx material properties~R3.5F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201443

Temperature (C)Young's Modulus X direction (Pa)Young's Modulus Y direction (Pa)Young's Modulus Z direction (Pa)Poisson's Ratio XYPoisson's Ratio YZPoisson's Ratio XZShear Modulus XY (Pa)Shear Modulus YZ (Pa)Shear Modulus XZ (Pa)1.2E+105.5E+105.5E+100.190.190.198E+092E+108E+09

Results: StructuralRadial displacement[mm]

beam

1e-21.3e-20(s)F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201444F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201445

F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201446

ConclusionsMoGR:temperatures below meltingmaxima stresses (1 below rupture) inside specimen degradation not visible from pics

CuCD:Temperatures well over melting (surface color benchmark)Structural: need of Post-mortem/ high T properties analysis

Next StepsMoGR: comparison with MG4110 & further upgradesFluka analysis neededstructural measurements ongoingCuCD:F. Carra, M. Garlasch, P. Gradassi, G. Maitrejean, A. Salgado3/7/201447