highvoltageengineering.pdf

46
CAS on Small Accelerators High Voltage Engineering Enrique Gaxiola Many thanks to the Electrical Power Systems Group, Eindhoven University of Technology, The Netherlands & CERN AB-BT Group colleagues Introductory examples Theoretical foundation and numerical field simulation methods Generation of high voltages Insulation and Breakdown Measurement techniques

Upload: bruno-lopes

Post on 04-Jan-2016

216 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: HighVoltageEngineering.pdf

CAS on Small Accelerators

High Voltage EngineeringEnrique Gaxiola

Many thanks to the Electrical Power Systems Group, Eindhoven University of Technology, The Netherlands& CERN AB-BT Group colleagues

Introductory examples

Theoretical foundation and numerical field simulation methods

Generation of high voltages

Insulation and Breakdown

Measurement techniques

Page 2: HighVoltageEngineering.pdf

CAS on Small Accelerators

Introduction E.Gaxiola:Studied Power EngineeringPh.D. on Dielectric Breakdown in Insulating Gases;

Non-Uniform Fields and Space Charge EffectsIndustry R&D on Plasma Physics / Gas DischargesCERN Accelerators & Beam, Beam Transfer,Kicker Innovations:• Electromagnetism• Beam impedance reduction• Vacuum high voltage breakdown in traveling wave

structures.• Pulsed power semiconductor applications

Page 3: HighVoltageEngineering.pdf

CAS on Small Accelerators

CERN Septa and Kicker examples

• Large Hadron Collider14 TeV

• Super Proton Synchrotron450 GeV

• Proton Synchrotron26 GeV

Septum: E ≤ 12 MV/m T = d.c.l= 0.8 – 15m

Kicker: V=80kVB = 0.1-0.3 T T = 10 ns - 200μsl=0.2 – 16m

RF cavities: High gradients, E ≤ 150MV/m

PS

LHC

SPS

PS ComplexPS

LHC

SPS

PS Complex

4 x MKQAV

4 x KKQAH

4 x MKI

30 x MKD

12 x MKBV

8 x MKBH

4 x MKI

4 x MKE

4 x MKP

MKQH

2 x MKDV

3 x MKDH

MKQV

5 x MKE

9 x KFA71

3 x KFA79

4 x KFA45

4 x KSW

4 x EK5 x BI.DIS

2 x TK

PS

LHC

SPS

PS ComplexPS

LHC

SPS

PS Complex

4 x MKQAV

4 x KKQAH

4 x MKI

30 x MKD

12 x MKBV

8 x MKBH

4 x MKI

4 x MKE

4 x MKP

MKQH

2 x MKDV

3 x MKDH

MKQV

5 x MKE

9 x KFA71

3 x KFA79

4 x KFA45

4 x KSW

4 x EK5 x BI.DIS

2 x TK 9 x KFA71

3 x KFA79

4 x KFA45

4 x KSW

4 x EK5 x BI.DIS

2 x TK

Reference [1]

Page 4: HighVoltageEngineering.pdf

CAS on Small Accelerators

PS septa SEH23

Voltage: 300 kV

SPS septa ZS

Page 5: HighVoltageEngineering.pdf

CAS on Small Accelerators

• SPS injection kicker magnets

30 kV

spacers

beam gap

magnets

ferrites

Page 6: HighVoltageEngineering.pdf

CAS on Small Accelerators

Courtesy: E2V Technologies

Magnets

• SPS extraction kickers

60 kV

72 kV30 kV

Power Semiconductor Diode stackThyratron gas discharge switches

GeneratorsPulse Forming Network

Page 7: HighVoltageEngineering.pdf

CAS on Small Accelerators

• Maxwell equations for calculatingElectromagnetic fields, voltages, currents– Analytical– Numerical

Page 8: HighVoltageEngineering.pdf

CAS on Small Accelerators

Breakdown

ElectricalFields,

GeometryMedium

Insulation andBreakdown

High fieldsField enhancement Field steering

Charges in fieldsIonisationBreakdown

GasLiquidsSolidsVacuum

Page 9: HighVoltageEngineering.pdf

CAS on Small Accelerators

-CSM (Charge Simulation Method): (Coulomb)

Electrode configuration is replaced by a set of discrete charges

- FDM (Finite Difference Method):

Laplace equation is discretised on a rectangular grid

- FEM (Finite Element Method): Vector Fields (Opera, Tosca), Ansys, Ansoft

Potential distribution corresponds with minimum electric field energy (w=½εE2)

- BEM (Boundary Element Method): IES (Electro, Oersted)

Potential and its derivative in normal direction on boundary are sufficient

NUMERICAL FIELD SIMULATION METHODS

Page 10: HighVoltageEngineering.pdf

CAS on Small Accelerators

Procedure FEM1. Generate mesh of triangles:

2. Calculate matrix coefficients:

3. Solve matrix equation:

4. Determine equipotential lines and/or field lines

[ ] ( )AS jiij αα ∇⋅∇=

[ ] 0=⎥⎦

⎤⎢⎣

p

fkpkf U

USS

Procedure BEM1. Generate elements along interfaces

2. Generate matrix coefficients:

3. Solve matrix equation:

4. Determine potential on abritary position:

∫∫ =∂

∂=

jj Siij

S

iij dsrGds

nrH ln,ln

( ) ∑∑==

=−n

jjij

n

jjijij QGUH

11

πδ

⎟⎟⎠

⎞⎜⎜⎝

⎛−

∂∂

= ∑ ∫∑ ∫==

n

j Sj

n

j Sj

jj

rdsQdsn

rUyxU11

00 lnln21),(π

Page 11: HighVoltageEngineering.pdf

CAS on Small Accelerators

Generation of High Voltages• AC Sources (50/60 Hz)

High voltage transformer (one coil; divided coils; cascade)Resonance source (series; parallel)

• DC SourcesRectifier circuits (single stage; cascade)Electrostatic generator (van de Graaff generator)

• Pulse sourcesPulse circuits (single stage; cascade; pulse transformer)Traveling wave generators (PFL; PFN; transmission line transformer)

Page 12: HighVoltageEngineering.pdf

CAS on Small Accelerators

Cascaded High voltage transformer

1: primary coil2: secondary coil3: tertiary coil

900 kV400 ACourtesy: Delft Univ.of Techn.

Page 13: HighVoltageEngineering.pdf

CAS on Small Accelerators

L R

C

Equivalent Circuit:

C

L

L

L

cap.deler

testν

Resonance Source

+ Waveform: almost perfect sinusoidal

+ Power: 1/Q of “normal” transformer

+ Short circuit: Q→0 results in V→0

- No resistive load2

002

0

)(1)(

ωωωωωωω−+

=Q

QH

CL

RQ

LC1and1

0 ==ω

900 kV100 mA

Courtesy: Eindhoven Univ.of Techn.

Page 14: HighVoltageEngineering.pdf

CAS on Small Accelerators

Cascaded Rectifier(Greinacher; Cockcroft - Walton)

max2nVVDC =Cn

Cn`

Dn

Dn`

C1

C1`

D1

D1`

C2

C2`

D2

D2`

Cn-1

Cn-1`

Dn-1

Dn-1`

stage 1

stage n

stage n-1

stage 2

nn`

22`

11`

amplitude: Vmax

VDC

Reduce δV (~n2) and ΔV (~n3) by:larger C’s (more energy in cascade)higher f (up to tens of kilohertz)

Voltage: 2 MV

Courtesy: Delft Univ.of Techn.

Page 15: HighVoltageEngineering.pdf

CAS on Small Accelerators

G

C2

R1

C1 R2

U(t)V0

Single-Stage Pulse Source

( )12 //0)( ττ tt eeVtU −− −=

if C1 >> C2 and R2 >> R1rise time: τ1=R1C2discharge time: τ2=R2C1

spark gaps

02

2

=++ bUdt

dUadt

Ud

2211212211

1;111CRCR

bCRCRCR

a =++=

t

U

“LC”-oscillations

τ1 (front)τ2 (discharge)

Standard lightning surge pulse: 1.2 / 50 μs

60 kV1 kA

Courtesy: Eindhoven Univ.of Techn.

Page 16: HighVoltageEngineering.pdf

CAS on Small Accelerators

Cascade Pulse Source(Marx Generator)

DCpulse VnV ⋅=

C``

R2`

R`

C1`

R2`

R2`

R2`

C1`

C1`

C1`

R`

R`

R`

stage 1

stage 2

stage 3

stage n

VDC

G1

G2

G3

Gn

B1

A1

B2

A2

B3

A3

Bn

An

C`

Vpulse

Total discharge capacity: 1/C1=∑1/C1’Front resistance: R1=R1”+∑R1’Discharge resistance: R2=∑R2’

R1: front resistor

R2: discharge resistor

R1`

R2`

R`

R1``

C1`

R1`

R1`

R1`

R2`

R2`

R2`

C1`

C1`

C1`

R`

R`

R`

VDC

900 kV100 mA

Courtesy: Kema, The Netherlands

Page 17: HighVoltageEngineering.pdf

CAS on Small Accelerators

GC2

R1

C1R2

U2

U1

resistivity neglected

I1

I2

dtdtU 1

1 )( Φ=

dtdtU 2

2 )( Φ=

Pulse Source with Transformer

0:secondary

0:primary

221

2

222

2

22

122

2

121

2

11

=+−

=+−

Idt

IdMCdt

IdCL

Idt

IdMCdt

IdCL

011121

2222211

2

12

2

1

222

111 =−⎟⎠⎞

⎜⎝⎛ −⎟⎠⎞

⎜⎝⎛ −⇒⎟⎟

⎞⎜⎜⎝

⎛=⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛−

−CCMCLCL

ii

ii

CLMCMCCL

ωωω

)//(111

11,

)(11

'212211

22'2112211

1CCLCLCLkCCLCLCL eq

=+−

≈+

=+

≈ ωω

slow oscillation fast oscillation

Eigen frequencies from characteristic equation:

Approximation: transformer almost ideal: k=M/√(L1L2)→1

Voltage: 300 kV

Page 18: HighVoltageEngineering.pdf

CAS on Small Accelerators

charge cable load cableS

R

VDC

Z

Pulse Forming Line / Network

Transmission Line Transformer

S

ZVDC cables

parallel cables in series

amplitude: ½VDC

duration: 2L/v

Courtesy: Eindhoven Univ.of Techn.150 kV1 kA

80 kV, 10 kA, T=20ns - 10μs

Page 19: HighVoltageEngineering.pdf

CAS on Small Accelerators

Insulation and Breakdown• In Gases Ionisation and Avalanche Formation

Townsend and Streamer BreakdownPaschen Law: Gas TypeBreakdown Along InsulatorInhomogeneous Fields, Pulsed Voltages, Corona

• Insulating Liquids

• Solid InsulationBreakdown types, Surface tracking, Partial discharges, Polarisation, tan δ

• Vacuum InsulationApplications, Breakdown, Cathode Triple-Point, Insulator Surface Charging, Conditioning

Page 20: HighVoltageEngineering.pdf

CAS on Small Accelerators800kV South Africa

400kV400kV Geertruidenberg,The Netherlands

Page 21: HighVoltageEngineering.pdf

CAS on Small Accelerators

Townsend’s 1st ionisation coefficient αOne electron creates α new electrons per unit length

A + e → A+ + 2e

ne(x=d) = n0eαd

α/p = f (E/P)

1st free electron• Cosmic radiation• Shortwave UV• Radio active isotopes

Free path, effective cross-section

In air:≈ 2.5 x 1019 molecules/cm3

≈ 1000 ions/cm3

≈ 10 electrons/cm3

Page 22: HighVoltageEngineering.pdf

E

1st

electron

New 1st

electronSecondary γ

Photon or ion

Avalanche-----+

+

+

++

• Electro-negative gassesAttachment η of electrons to ions

electrons: ne(x=d) = n0e(α -η)d

negative ions:]1[n)( )(o

−−

== −−

dedxn ηα

ηαη

α-η vs. E/p1.) air2.) SF6

Reference [3]Townsend’s 2nd ionisation coefficient γone ion or photon creates γ new electronsat cathode ne = γn0(eαd-1)

Breakdown if: # secondary electrons ≥ n0αd ≥ ln(1/γ + 1)

steep function of E/p eαd very steep (E/p)critical and Vdwell defined γ of weak influence

Avalanche ≠ Breakdown;creation of secondaries

Page 23: HighVoltageEngineering.pdf

CAS on Small Accelerators

Paschen law / breakdown field

1: SF62: air3: H24: Ne

• Townsend breakdown criterion αd = K:with A=σI/kT

B=ViσI/kT

Ed and Vd depend only on p*d p: pressure d: gap length

ln(Apd/K)B

pEd =

ln(Apd/K)BpdVd =

Typically practicallyEbd= 10 kV/cmat 1 bar in air

Reference [2] Vbd,Paschen min, air ≈ 300 V

• Small p*d, d<< λ: few collisions, high field required for ionisation• Large p*d, d>> λ: collision dominated, small energy build-up, high Vd

Page 24: HighVoltageEngineering.pdf

CAS on Small Accelerators

Streamer breakdownE0

E0

E0 + Eρ

Space charge field Eρ≈ E0• Field enhancement

extra ionising collisions (α↑)• High excitation ⇒ UV photonswhen 1 electron grows into ca. 108

then Eρ large enough for streamer breakdown (ne ≈ 2·108 in avalanche head)

Result:• Secondary avalanches, directional effect (channel formation)• Grows out into a breakdown within 1 gap crossing (anode and/or cathode directed)

Characteristic:• Very fast • Independent of electrodes (no need for electrode surface secondaries)• Important at large distances (lightning)

Page 25: HighVoltageEngineering.pdf

CAS on Small Accelerators

Townsend, unless:

• Strong non-uniform field(small electrodes, few secondary electrons)

• Pulsed voltages– Townsend slow, ion drift, subsequent gap transitions– Streamer fast, photons, 1 gap transition

• High pressure– Less diffusion

Eρ high– photons absorbed

in front of cathode– positive ions

slower

• Townsend: αd ≥ ln(1/γ + 1) ≈ 7...9(γ ≈ 10-4...10-3)

• Streamer: αd ≥ 18...20

Laser-induced streamer breakdown in air.

Courtesy: Eindhoven Univ.of Techn.

Page 26: HighVoltageEngineering.pdf

CAS on Small Accelerators

Breakdown along insulator • Surface charge• (Non-regular) surface conduction• Particles / contaminations on surface• Non-regularities (scratches, ridges)

⇒Field enhancement⇒ Increased breakdown probability

Prebreakdown along insulatior in air.Courtesy: Eindhoven Univ.of Techn.

Reference [2]

Page 27: HighVoltageEngineering.pdf

CAS on Small Accelerators

Breakdown at pulse voltages;time-lag

ts, wait for first elektrontf, breakdown formation• Townsend or Streamer

Short pulses, high breakdown voltage

Reference [2]

Page 28: HighVoltageEngineering.pdf

CAS on Small Accelerators

Non-uniform fields; Corona

Breakdown conditions:• Global Full breakdown• Local Streamer breakdown

Partial discharge

Non-uniform field:• Discharge starts in high field

region• ....and “extinguishes” in low

field region

Reference [2]

Page 29: HighVoltageEngineering.pdf

CAS on Small Accelerators

Corona- Power loss; EM noise- Chemical corrosion+ Useful applications

10 ns

20 ns

30 ns

40 ns

Transmission line transformerCourtesy: Eindhoven Univ.of Techn.

Pulsed corona discharges:• Fast, short duration HV pulses• Many streamers, high density• Generation of electrons, radicals,

excited molecules, UV• E.g. Flue gas cleaning

Page 30: HighVoltageEngineering.pdf

Solid insulationBreakdown field strength:• Very clean (lab): high• Practical: lower due to imperfections

– Voids– Absorbed water– Contaminations– Structural deformations

Requirements:• Mechanical strength• Contact with electrodes and

semiconducting layers• Resistant to high T, UV, dirt,

contamination, rain, ice, desert sand

Problems:• Surface tracking• Partial discharges

– In voids(in material or at electrodes, often created at production).

AnorganicNatural

Synthetic

Quartz,mica,glasPorcelain

Al2O

3

Disc insulatorFeedthrough

Spacer

Paper + OilCable

Capacitor

SyntheticOrganic

Polymerisation

PolyetheleneHD,LD,XL – PE

TeflonPolystyrene, PVC,

polypropene,etc

Spec. properties:

Moisture contenthigh T

lossesbonding

EpoxyHardener

FillerMoulding in mold

Types of solidinsulation materials

Page 31: HighVoltageEngineering.pdf

CAS on Small Accelerators

Surface trackingRemedies:• Geometry• Creeping distance (IEC-norm)• Surface treatment (emaillate, coating)• Washing

Page 32: HighVoltageEngineering.pdf

Vacuum insulation

Applications:• Vacuum circuit breaker• Cathode Ray Tubes / accelerators• Elektron microscope• X-ray tube• Transceiver tube

What is vacuum?• “Pressure at which no collisions

for Brownian “temperature”movements of electrons”

• λ >> characteristic distances• E.g. p = 10-6 bar, λ = 400 m

Advantages:• “Self healing”• No dielectric losses• High breakdown fieldstrength• Non flammable• Non toxic, non contaminating

Disadvantages:• Requires hermetic containment

and mechanical support• Quality determind by:

– electrodes and insulators– Material choice, machining– Contaminations, conditioning

Page 33: HighVoltageEngineering.pdf

CAS on Small Accelerators

Characteristics of vacuum breakdownNo 1st electron from “gas”• Cathode emission

– primary: photoemission, thermic emission, field emission, Schottky-emission

– secondary: e.g. e- bombarded anode → +ion collides at cathode → e-

No breakdown medium• No multiplication through collision ionisation• Medium in which the breakdown occurs has to be created

(“evaporated” from electrodes, insulators)

Important: prevent field emission• Keep field at cathode and “cathode triple point” as low as

possible• Insulator surface charging, conditioning

Page 34: HighVoltageEngineering.pdf

CAS on Small Accelerators

14

01

ConditioningInsulator surfacecharging

Breakdown vs.field cathode-triple-point

# Conditioning breakdowns neededto reach 50kV hold voltage

Courtesy: ESTEC / ESA

Ref [12]

Conditioningeffect lostwhen chargecompensated

Page 35: HighVoltageEngineering.pdf

Insulating liquids

• Transformers• Cables• Capacitors• Bushings

Requirements:• Pure, dry and free of gases• εr (high for C’s, low for trafo)

(demi water εr,d.c. = 80)• Stable (T), non-flammable,

non toxic (pcb’s), ageing, viscosity

Courtesy: Sandia labs, U.S.A.

• No interface problems

• Combined cooling/insulation

• “Cheap” (no mould)• Liquid tight housing

Applications:

Page 36: HighVoltageEngineering.pdf

CAS on Small Accelerators

Breakdown fieldstrength:• Very clean (lab): high 1 - 4 MV/cm (In practice much lower)• Important at production:outgassing, filtering, drying• Mineral oil (“old” time application, cheap, flammable)• Synthetic oil (purer, specifically made, more expensive)

– Silicon oil (very stable up to high T, non-toxic, expensive)• Liquid H2, N2, Ar, He (supra-conductors)• Demi-water (incidental applications, pulsed power)• Limitation Vbd:

– Inclusions: Partial discharges Oil decomposition → Breakdown– Growth (pressure increase) – “extension” in field direction”

• Particles drift to region with highest E → bridge formation → breakdown

+

-

+

-

+

-

Page 37: HighVoltageEngineering.pdf

Transformer:• Mineral oil: Insulation and cooling

• Paper: Barrier for charge carriers and chain formation– Mechanical strength

• Ageing– Thermical and electrical (partial discharges)– Lifetime: 30 years, strongly dependent on temperature, short-circuits, over-

loading , over-voltages– Breakage of oil moleculs, Creation of gasses, Concentration of various gas

components indication for exceeded temperature (as specified in IEC599)

• Lifetime– Time in which paper looses 50 % of its mechanical strenght– Strongly dependent on:

• Moisture (from 0.2 % to 2 % accelerated ageing factor 20)• Oxygen (presence accelerates ageing by a factor 2)

Page 38: HighVoltageEngineering.pdf

CAS on Small Accelerators

Partial discharges• UV, fast electrons, ions, heat• Deterioration void:

– Oxidation, degradation through ion-impact– “Pitting”, followed by treeing

• Eventually breakdown

Acceptable lifetime? Preferably no partial discharges.

• High sensitivity measurements on often large objects

• Qapp ≠ Qreal, still useful, because measure for dissipated energy, thereby for induced damage

• relative measurement

Measurement techniques

AC voltage phase resolveddischarge pattern detection Type of defect

Page 39: HighVoltageEngineering.pdf

Partial discharges

Cc

ab

c

Rdamp

ACsource

Test object

Zm, often RLC

• Qapp gives it (Qapp = ∫ itdt)• Cc gives it if Cc>>Cobject

• Calibration through injecting known charge

• Measure with resonant RLC circuit:– Excitation by short pulse it– No 50 Hz problem– V = q/C exp(-αt) { cosβt - α/β sinβt }

α=1/(2RC) β=[1/(LC) - α2]-1/2

it

V

ab

c

V

ab

c

a >> b << c

V- δV

ab

c

V-ΔV

ΔV

Qtot = Q Qtot = Q - cΔV

V-δV

0

Before After

High sensitivity measurement because b/c << 1

Before: Q = aV + b (V - ΔV) + c ΔVAfter: Q - c ΔV = (a + b)(V - δV)

So: c ΔV = a δV + b (δV - ΔV) + c ΔVδV = ΔV b/(a+b) ≈ ΔV b/a

Apparent charge:Ctot δV = (a + bc/(b+c)) δV

≈ (a+b) δV ≈ aδV

insul

voidr

real

app

dd

cb

VcVb

VcVa

QQ .εδ

≈=ΔΔ

=

Page 40: HighVoltageEngineering.pdf

i

test object

R3C4R4

CHV

Shielding

i

jωCV

1/R.V

δ

Loss angle, tan(δ)Sources:• Conduction σ (for DC or LF)• Partial discharges• Polarisation

Schering bridge:• i=0, RC=R4C4• Gives: tan(δ)

– parallel: 1/ωRC– serie: ωRC

Tan δ:• “Bulk” parameter• No difference between phases

PD:• Detection of weakest spot• Largest activity and asymmetry

in “blue” phase (ridge discharges)

Page 41: HighVoltageEngineering.pdf

CAS on Small Accelerators

SummarySeen many basic high voltage engineering technology aspects here:– High voltage generation– Field calculations– Discharge phenomena

The above to be applied in your practical accelerator environments as needed:– Vacuum feed through: Triple points– Breakdown field strength in air 10kV/cm– Challenging calculations for real practical geometries.

Page 42: HighVoltageEngineering.pdf

CAS on Small Accelerators

[1] M.Benedikt, P.Collier, V.Mertens, J.Poole, K.Schindl (Eds.), ”LHC Design Report”, Vol. III, The LHC Injector Chain CERN-2004-003, 15 December 2004.

[2] E. Kuffel, W.S. Zaengl, J. Kuffel: “High Voltage Engineering: Fundamentals”, second edition, Butterworth-Heinemann, 2000.

[3] A.J. Schwab, “Hochspannungsmesstechnik”, Zweite Auflage, Springer, 1981.[4] L.L. Alston: “High-Voltage Technology”, Oxford University Press, 1968.[5] K.J. Binns, P.J. Lawrenson, C.W. Trowbridge: “The Analytical and Numerical Solution of Electric and

Magnetic Fields”, Wiley, 1992.[6] R.P. Feynman, R.B. Leighton, M. Sands: “The Feynman Lectures on Physics”, Addison-Wesley Publishing

Company, 1977.[7] E. Kreyszig: “Advanced Engineering Mathematics”, Wiley, 1979.[8] L.V. Bewley: “Two-dimensional Fields in Electrical Engineering”, Dover, 1963.[9] Energy Information Administration: http://www.eia.doe.gov.[10] R.F. Harrington, “Field Computation by Moment Methods”, The Macmillan Company, New York, 1968,

pp.1 -35.[11] P.P. Silvester, R.L. Ferrari: “Finite Elements for Electrical Engineers”, Cambridge University Press, 1983.[12] J. Wetzer et al., “Final Report of the Study on Optimization of Insulators for Bridged Vacuum Gaps”,

EHC/PW/PW/RAP93027, Rider to ESTEC Contract 7186/87/NL/JG(SC), 1993.

References

Page 43: HighVoltageEngineering.pdf

CAS on Small Accelerators

Maxwell equations in integral form Electrostatic

.omslQdVdAD ==⋅ ∫∫∫∫∫ ρ .omslQdAD =⋅∫∫ (1)

dtd

dABdtddlE omsl .φ

−=⋅−=⋅ ∫∫∫ 0=⋅∫ dlE (2)

Magnetostatic

0=⋅∫∫ dAB 0=⋅∫∫ dAB (3)

∫∫∫ ⋅∂∂

+=⋅ dAtDJdlH )( .omslIdlH =⋅∫ (4)

Maxwell equations in differential form Electrostatic No space charge

ρ=⋅∇ D ρ=⋅∇ D 0=⋅∇ D (5)

tBE∂∂

−=×∇ 0=×∇ E 0=×∇ E (6)

Magnetostatic In area without source

0=⋅∇ B 0=⋅∇ B 0=⋅∇ B (7)

tDJH∂∂

+=×∇ JH =×∇ 0=×∇ H (8)

Appendix I

Page 44: HighVoltageEngineering.pdf

CAS on Small Accelerators

Finite Element Method (FEM)Field energy minimal inside each closed region G:

Assume U satisfies Laplace equation, but U' does not, then

WU' - WU ≥ 0:

dVUdVEWGG

221

2

21 ∇== ∫∫ εε

( ) 0'' 22122

21

' ≥−∇∇==∇−∇=− ∫∫∫∫∫∫GG

UU dVUUdVUUWW εε L

Field energy for one element (2-dim)

Potential is linear inside element:

on corners:

Potential can be written as: Field energy in element (e):

α’s are linear in x and y ⇒∇α is constant: Sij=(∇αi·∇αj) A(e)

( )⎟⎟⎟

⎜⎜⎜

⎛=++=

cba

yxycxbaU 1

⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

⎛=

⎟⎟⎟

⎜⎜⎜

cba

yxyxyx

UUU

33

22

11

3

2

1

111

( ) ∑=

=⎟⎟⎟

⎜⎜⎜

⎟⎟⎟

⎜⎜⎜

⎛=

3

13

2

11

33

22

11

),(111

1i

ii yxUUUU

yxyxyx

yxU α [ ] ( )∫∫ ∇⋅∇== dxdyUW jie

ijTe ααε )((e)

21)( SwithUS

e2

x

y

3

1

Appendix III

Page 45: HighVoltageEngineering.pdf

CAS on Small Accelerators

Total field energy of n elementsAll elements together:

free: potential values to be determined

prescribed: potential according to boundary conditions

Partial derivatives of W to Uk are zero for 1≤k≤m (m equations):

( ) ( )ibed prescrfree

UUUUUUU pfnmmT ≡= + LL 11

[ ] [ ] ⎥⎦

⎤⎢⎣

⎡⎥⎦

⎤⎢⎣

⎡==

p

f

ppfp

pfffTp

Tf

T

UU

SSSS

UUUSUW''

''''2

121 εε

[ ] 00 =⎥⎦

⎤⎢⎣

⎡⇒=

∂∂

p

fkpkf

k UU

SSUW

Boundary Element Method (BEM)Boundaries uniquely prescribe potential distribution

P0=(x0,y0) inside Γ:

Problem: u(x,y) and q(x,y) not both known at the same time

0:equation Laplace =Δu

(Neumann)),(:border

)(Dirichlet),(:border

2

1

nuyxq

yxu

∂∂

≡Γ

Γ

∫Γ

⎟⎠⎞

⎜⎝⎛ −

∂∂

= dsryxqn

ryxuyxu ln),(ln),(21),( 00 π

(x0,y0)

(x,y)

r

(0,0)

n

Pc P

20

20 )()( yyxxr −+−=

Page 46: HighVoltageEngineering.pdf

CAS on Small Accelerators

Green II (2-dim):

Choose v(x,y)=ln(1/r) Δv(x,y)=0 for P≠P0(x0,y0)

Exclude region σ around P0 by means of circle c

( ) ( )∫ ∫∫ Δ−Δ=⋅∇−∇ dxdyuvvudsnuvvu ˆ

0)lnln()lnln( 1111

=Δ−Δ=∂∂

−∂

∂∫∫∫−Ω

−−

−−

dxdyurrudsnur

nru

c σ

0lnlnlnln 11

=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

−∂

∂+⎟

⎠⎞

⎜⎝⎛

∂∂

−∂∂

− ∫∫ −−

Γ

dsnur

nruds

nur

nru

c

),(2ln10

lim00

2

0

yxudnuu πϑεε

εε

π

=⎟⎠⎞

⎜⎝⎛

∂∂

+↓ ∫

Pi=(xi,yi) on border Γ:

Discretisation:

In matrix notation:

Generates missing information

∫Γ

−∂∂

= dsryxqn

ryxuyxu ii )ln),(ln),((1),(π

∑ ∫∑ ∫==

−∂

∂=

n

j Sijj

n

j S

ijjii

jj

dsrQdsnr

UyxU11

lnln

),(π

( ) ∑∑==

=−n

jjij

n

jjijij QGUH

11πδ

Hij

Gij

n Selement

node

jj+1

12