highlights from ation r the science and practice ad series · 2020-02-20 · ser restoration reader...

97
Society for Ecological Restoration International SER RESTORATION READER Series Editor: James Aronson Associate Editor: Donald A. Falk Editorial Board: Margaret A. Palmer, Richard J. Hobbs Published by Island Press Highlights from The Science and Practice of Ecological Restoration Series

Upload: others

Post on 04-Jun-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

Society for Ecological Restoration International SER REStoRation REadER

Series Editor: James AronsonAssociate Editor: Donald A. Falk

Editorial Board: Margaret A. Palmer, Richard J. HobbsPublished by Island Press

Highlights from The Science and Practice of Ecological Restoration

Series

Page 2: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

� SER Restoration Reader

intRoduction

The SER Restoration Reader

It’s now or never.

Asecosystems,species,andecologicalcommunitiescontinuetosufferacceleratingdecline,damage,anddegradationasaresultofhumanactivities—andpeoplesufferfromlossofecosystemservicesandotherimpactsofclimatechange—restorationisbecomingacriticalcomponentofnatureconservation,ecosystemmanagement, and sustainable local economic development. Restoration ecologists and practitioners aretacklingdifficultproblemsaroundtheglobe,workingtorepairriversdamagedbydamsanddiversionsandhabitatdestruction,restorehealthyforestecosystemsintropicalandotherregions,andrepairgrasslands,saltmarshes,andcoralreefswhoseecologicalinteractionshavebeenseverelydisruptedbyovergrazingorhumanactivity.Moreover,inrichandpoorcountriesalike,restorationisincreasinglybeingattemptedatalllevels,fromlocal,community-basedprojectstonationalandinternationalstrategiesforsustainability.Incomingdecades,restorationasatool,communitybuilder,andphilosophywillcontinuetogainimportance.

Why “The Science and Practice of Ecological Restoration” Book Series?

Inresponsetotheurgentneedforreliableinformationandprovocativediscussiononrestorationissues,theSocietyforEcologicalRestorationInternationalandIslandPresscreatedabookseries,“TheScienceandPracticeofEcologicalRestoration.”Astheseriesnamesuggests,ouraimistocreateaninternationalforumdevotedtoadvancingrestorationscienceandpractice,aswellaspromotingtheirintegrationwiththecon-servationsciences.Theseriesofferspracticalknowledge,field-testedsolutions,inspiration,andscientificinsight from experienced practitioners and scientists that will help ecological restoration to become thepowerfulhealingtoolandintegrativesciencethattheworldsoclearlyneeds.Astheseriesgrows,wewillcontinuetoprovidethewiderangeofinformationandreportsthatpeopleworkingonrestorationprojectsneed—fromscientifictheorytopracticalhands-onadvicetonewideas.

Here Is Your Free Sampler of the Series

We’vecreatedthisfreeRestorationReadersothatyoucanseethebreadthanddepthoftheseries.Theworkofecologicalrestorationismultidisciplinaryandmultifaceted—andtheseriesreflectsthesequalities.WehavecompiledthisReaderofexcerptsfromthecurrentvolumessothatyoucanseewhichbookswillmeetyourneeds.Wehopethatrestorationists,researchecologists,environmentalists,naturalareamanagers,landandwaterresourcepolicymakers,communityleaders,environmentalphilosophers,andotherswillfindrealvalueanduseinthisReader.

Please share this Reader with your colleagues and friends.

Page 3: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�SER Restoration Reader

intRoduction

The SER Restoration Reader

How To Use This Reader

We’vemadethisPDFeasytonavigate.Itstableofcontentshaslinkstoexcerptsfromeachbookanditscompletetableofcontents.Youcan

ClickthebookimageortitleintheSER Restoration Reader’stableofcontentstojumptothatbook’sexcerpt.Click fromoneexcerpt toanother inanyorderusing theReader’s contentsas thenavigationtool.ClickonthelinksatthebeginningofeachbookexcerpttogototheIslandPressWebsiteformoreinformationortobuythebook.

Clickononeofthequicklinksontheupperrightpageofeachbookexcerpttobuythebook,jumptothatbook’scontents,orjumpbacktotheSER Restoration Reader’stableofcontents.UsetheBookmarksfeatureinAdobeReadertojumpbetweenexcerptsandtheSER Restoration Reader’scontents.ToaccessBookmarksinAcrobatReader,chooseView>NavigationPanels>Bookmarks.

Help Us Spread the Word

PleasesharethisReaderwithyourcolleaguesandfriends.Youcanforwardthisdocumentasane-mail attachment and/or pass on this link—http://www.islandpress.org/readers—where a freedownloadisavailable.

Webelievethatecologicalrestorationwillbecome,asnotedbiologistandconservationistEdwardO. Wilson has predicted, one of the keystones of ecology and environmental protection for thetwenty-firstcentury.Wehopeyouagree,andthatyou’llsharethisReaderwithyourfriendsandcolleagues.

Stay in Touch with Island Press—Let’s Work Together for Change

WhenyouvisitourWebsite—www.islandpress.org—youcan signuponoure-mail list so thatyou’llreceivenewsandinformationaboutnewbooksintheseriesandotherrestorationdevelop-ments.JusttypeinyouremailaddressintheMailingListareaattheupperrightandclick“join.”

Wewelcomeyourfeedback.Youcancontactusanytimeateditors@islandpress.org.Aspartofthegrowingworldwiderestorationcommunity,wewanttosupportyourgoodworkwithbooksontop-icsthatwillhelpyouachieveyourgoals.

ß

ß

ß

ß

ß

Page 4: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

� SER Restoration Reader

contEntS

Ecological Restoration: Principles, Values, and Structure of an Emerging Profession 8

By Andre F. Clewell and James Aronson

Excerpt taken from “Project Roles and Contexts,” by Andre F. Clewell and James Aronson

Restoring Natural Capital: Science, Business, and Practice 20

Edited by James Aronson, Suzanne J. Milton, and James N. Blignaut

Excerpt taken from “Mainstreaming the Restoration of Natural Capital: A Conceptual and Operational Framework,” by Richard M. Cowling, Shirley M. Pierce, and Ayanda M. Sigwela

Foundations of Restoration Ecology 15

Edited by Donald A. Falk, Margaret A. Palmer, and Joy B. Zedler

Excerpt taken from “The Dynamic Nature of Ecological Systems: Multiple States and Restoration Trajectories,” by Katharine N. Suding and Katherine L. Gross

Foundation Volumes

Page 5: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�SER Restoration Reader

Large-Scale Ecosystem Restoration: Five Case Studies from the United States 34

Edited by Mary Doyle and Cynthia A. Drew

Excerpt taken from “Navigating the Shoals: Costs and Benefits of Platte River Ecosystem Management,” by Stephen Polasky

contEntS

Old Fields: Dynamics and Restoration of Abandoned Farmland 38

Edited by Viki A. Cramer and Richard J. Hobbs

Excerpt taken from “Old Field Vegetation Succession in the Neotropics,” by Karen D. Holl

River Futures: An Integrative Scientific Approach to River Repair 27

Edited by Gary J. Brierley and Kirstie A. Fryirs

Excerpt taken from “Social and Biophysical Connectivity of River Systems” by Mick Hillman, Gary J. Brierley, and Kirstie A. Fryirs

A Guide for Desert and Dryland Restoration: New Hope for Arid Lands 43

By David A. Bainbridge

Excerpt taken from “Desertification: Crisis and Opportunity,” by David A. Bainbridge

Restoration of Damaged Ecosystems

Page 6: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

� SER Restoration Reader

The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59

Edited by Stephen Packard and Cornelia F. Mutel

Excerpt taken from “Orchards of Oak and a Sea of Grass,” by Virginia M. Kline

Great Basin Riparian Ecosystems: Ecology, Management, and Restoration 65

Edited by Jeanne C. Chambers and Jerry R. Miller

Excerpt taken from “Process-Based Approaches for Managing and Restoring Riparian Ecosystems,” by Jeanne C. Chambers, Jerry R. Miller, Dru Germanoski, and Dave A. Weixelman

contEntSEcological Restoration of Southwestern Ponderosa Pine Forests 70

Edited by Peter Friederici

Excerpt taken from “Ecological Restoration as Thinking Like a Forest,” by Max Oelschlaeger

Restoring the Pacific Northwest: The Art and Science of Ecological Restoration in Cascadia 50

Edited by Dean Apostol and Marcia Sinclair

Excerpt taken from “Traditional Ecology Knowledge and Restoration Practice,” by René Senos, Frank K. Lake, Nancy Turner, and Dennis Martinez

Restoration of Damaged Ecosystems

Page 7: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�SER Restoration Reader

Ex Situ Plant Conservation: Supporting Species Survival in the Wild 88

Edited by Edward O. Guerrant Jr., Kayri Havens, and Mike Maunder

Excerpt taken from “Population Responses to Novel Environments: Implications for Ex Situ Plant Conservation,” by Brian C. Husband and Lesley G. Campbell

Wildlife Restoration: Techniques for Habitat Analysis and Animal Monitoring 93

By Michael L. Morrison

Excerpt taken from “Populations,” by Michael L. Morrison

Assembly Rules and Restoration Ecology: Bridging the Gap between Theory and Practice 77

Edited by Vicky M. Temperton, Richard J. Hobbs, Tim Nuttle, and Stefan Halle

Excerpt taken from “Ecological Filters, Thresholds, and Gradients in Resistance to Ecosystem Reassembly,” by Richard J. Hobbs and David A. Norton

The Historical Ecology Handbook: A Restorationist’s Guide to Reference Ecosystems 83

Edited by Dave Egan and Evelyn A. Howell

Excerpt taken from “Using Dendrochronology to Reconstruct the History of Forest and Woodland Ecosystems,” by Kurt F. Kipfmueller and Thomas W. Swetnam

Valuable Tools and References

contEntS

Page 8: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

Contents

Dedication ixPreface xiIntroduction 1

PART I. Introduction and Essential Background 5

Chapter 1.EssenceofRestoration �

Virtual Field Trip 1.RestoringDesertifiedVegetationinAustralia 1�David Tongway and John Ludwig

Chapter 2. EcologicalImpairmentandRecovery 19

Virtual Field Trip 2.RestoringCulturalLandscapesinCentralChile ��Carlos Ovalle and James Aronson

Chapter 3. CulturalEcosystems,Fire,andAlternativeStates �8

PART II. Elements of Restoration Projects 53

Chapter 4.EcologicalAttributesofRestoredEcosystems ��

Virtual Field Trip 3.RestoringWetPrairieinMississippi,USA �0George Ramseur Jr. and Andre F. Clewell

Ecological RestorationPrinciples, Values, and Structure of an Emerging Profession

AndreF.ClewellandJamesAronson

Cloth,$�0.00,ISBN9�8-1-�9���-1�8-�

Paper,$�0.00,ISBN9�8-1-�9���-1�9-�

�00�.���pages.�x10

Figures,appendix,glossary,index

Ecological REStoRation

Page 9: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

9Chapter 10 : Project Roles and Contexts

Quick Links: SER Restoration Reader TOC▶Ecological Restoration TOC▶Buy Ecological Restoration▶

Chapter 5.referenceModelsandDevelopmentalTrajectories ��

Chapter 6.ProjectPlanningandEvaluation 88

PART III. Values That Restoration Addresses 97

Virtual Field Trip 4.RestoringaCommunalSavannainSouthAfrica 99James Blignaut and Rudi van Aarde

Chapter 7.ValuesandEcologicalRestoration 10�

Virtual Field Trip 5.RestoringForestsandPeople’sWell-BeinginSouthernIndia 11�Narayanan Krishnakumar and T. S. Srinivasa Murthy

Chapter 8.AFour-QuadrantModelforHolisticEcologicalRestoration 11�

PART IV. Structure of an Emerging Profession 123

Virtual Field Trip 6.RestoringDrainedPeatlandsforSustainableUseinGermany 1��Achim Schäfer and Wendelin Wichtmann

Chapter 9.RelationshipofRestorationtoRelatedFields 1�0

Virtual Field Trip 7.RestoringDoglegBranchinFlorida,USA 1�1Andre F. Clewell

Chapter 10.ProjectRolesandContexts 1��

Virtual Field Trip 8.SettingUpaLong-TermRestorationEcologyResearchSiteinSouthernFrance 1�8James Aronson and Edouard Le Floc’h

Chapter 11.RecognizingtheProfessionandtheProfessional 1��

PART V. Holistic Ecological Restoration 167

Chapter 12.TheConceptofHolisticEcologicalRestoration:ASynthesis 1�9

Appendix:GuidelinesforDevelopingandManagingEcologicalRestorationProjects 1��Andre F. Clewell, John Rieger, and John Munro

Glossary 191

References 199

AbouttheAuthorsandCollaborators �09

Index �11

Page 10: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

10 Ecological Restoration

SER Restoration Reader

From chapter 10, “Project Roles and Contexts”

In this chapter we describe ecological restorationprojects from the perspective of their organizationandstructure.Webeginwith therolesvariousper-sonnel play in the development and execution of aproject.Thenweprovideanoutlineofprojectcon-textsorcircumstancesinwhichprojectsareconduct-ed.Thevariouscontextshavedifferentstrengthsandweaknesses,whichweidentify.Wenotehowprojectstendtochangeovertimefrombeingexploratoryandexperimentalatfirsttorefinedandstandardizedlat-er.Thisinformationwillletstudentsandentry-levelpersonnelknowwhattheycanexpectandwheretheymaywanttoconcentratetheirtalentsastheircareersbegin.Asthechapterprogresses,wewillpresentma-terialofbroaderinterest.

Project Roles

Whosponsorsrestorationprojects?Whoadministersthem?Whomakesdecisions,andwhocarriesthemout? Every ecological restoration project requirespersonneltofulfillcertainroles,beginningwiththeprojectsponsorandcontinuingwiththerestorationpractitioner,projectdirector,restorationplanner,andprojectmanager.Insmalloruncomplicatedprojects,the same person may assume two or more of theseroles.Organizationchartsmay identifyprojectper-sonnelwithothertitles;however,eachoftheserolesisfilledbysomeone,regardlessofhisorhertitle.Everyproject has at least one practitioner and sometimes

many.Largersponsoringorganizationsmayaddoth-erlevelstotheorganizationaltableforaproject,suchasanadministratortowhomtheprojectmanagerre-ports.Projectorganizationbecomesevenmorecom-plexascontractorsandsubcontractorsareincluded,withtheirownhierarchiesofpersonnelanddepart-ments with project responsibility. We ignore thesecomplexities and describe the basic project roles inthissection.

Sponsor

Theorganizationorentitythatundertakesanecolog-icalrestorationprojectandassumestheresponsibil-ity for itsaccomplishment is its sponsor.Asponsormaybeagovernmentagencyora transnationalor-ganization; a for-profit firm or corporation; a non-government organization (NGO); a philanthropicfoundation;aschool,university,orresearchinstitute;a public museum, arboretum, or zoological park; aprofessional association; a branch of the military; amonasteryorotherreligiousorder;atribalcouncilofelders;awomen’sself-helpgroup,whicharebecomingincreasinglycommoninIndiaandLatinAmerica;an-otherkindofcommunity-basedorganization(CBO);oranindividuallandownerormanager.Thesponsorapprovestherestorationproject,providesorattractsfunding, assembles personnel who will accomplishtheproject,providesanadministrativestructure,andprovidesoversighttoensureitssatisfactorycomple-tion.Theprojectmaybeaccomplishedinhouseus-ing the sponsor’s own employees or members, orsomeorallof theworkcanbedelegatedtooutsideindividuals,consultingfirms,orotherorganizationsundercontract,purchaseorder,orsomeotheragree-menttoprovideservices.Laborcanbeprovidedbypaid personnel or by volunteers who work withoutmonetary compensation. To a restoration practitio-nerwhoiscontracted,thesponsorisusuallyknownsimplyastheclient.

Practitioner

Arestorationpractitioner issomeonewhopersonallyconductsor supervises ecological restoration in thefieldatprojectsites.Specifically,practitionersengagein project implementation and aftercare. In manyprojects,practitionersadditionallyinventoryaproj-

About This Excerpt

The field of ecological restoration is a rapidlygrowing discipline that encompasses a widerange of activities and brings together prac-titioners and theoreticians from a variety ofbackgrounds and perspectives. In Ecological Restoration,AndreClewellandJamesAronsonofferalong-awaitedguidetothepracticeofthisambitious and promising new discipline. Thisexcerptexaminestheroles,contexts,andinsti-tutionalstructureofprojectwork.

Page 11: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

11Chapter 10 : Project Roles and Contexts

Quick Links: SER Restoration Reader TOC▶Ecological Restoration TOC▶Buy Ecological Restoration▶

ectsitebeforetheinitiationofrestorationactivities,select and inventory reference sites, prepare projectplans, conduct or supervise site preparation activi-ties, and monitor project sites that have undergonerestoration.Inotherprojects,sponsorsdelegatetheseresponsibilities to others. A practitioner can be anemployeeofanorganizationthatisconductingeco-logical restoration, or a consultant, contractor, sub-contractor,orvolunteerwhoisengagedbythatorga-nization.Apractitionermayalsobetheownerofthepropertythatisundergoingrestoration.Arestorationprojectmaybeaccomplishedbyasinglepractitioner,or two or more practitioners who work collectivelyonallaspectsorseparatelyondifferentaspectsofaproject. The chief practitioner, if one is appointed,supervisesotherpractitionersandisresponsiblefortheoverallconductofon-siterestorationactivities.Apractitioner may assume broad responsibilities andauthorityforconductingrestorationormayserveasatechnicianwhoperformsspecifictasksassignedbyasupervisor.

Project Director

Theprojectdirectoristhepersonwhohasacompre-hensivevisionfortheproject,includingitstechnical,social, economic, strategic, political, historical, andotherculturalaspectsand implications.Theprojectdirector is superior in rank to the project managerandisresponsiblefortheoveralltechnicaldirectionand leadership of a project. The project director iscritically involved with the conception of a projectand the development of project plans. The projectdirectorformulatesorapprovesprojectgoalsandob-jectivesandselectsorapprovesreferencemodelsandstrategiesforaccomplishingrestoration.Theprojectdirectorreceivesbriefingsfromtheprojectmanagerand evaluates project monitoring reports and othertechnical documents that may be produced. Theproject director ensures that executive officers, ac-countants,legalcounsel,andotheradministrativeof-ficersofthesponsoringorganizationunderstandtheprojectandcarryouttheirrespectiveresponsibilities.Theprojectdirectorrepresentstheprojectbeforetheboardofdirectors,philanthropicfoundations,publicofficials,stakeholders,andthegeneralpublicordel-egatesthesedutiestoothers.

Restoration Planner

Therestorationplanner(oraplanningstaff)preparesproject plans, including maps, drawings, and writ-ten instructions as needed. Ideally, the practitionercontributes substantially to the planning process orevenservesastheplanner,ascommonlyhappensonsmallerprojectsthatdonotentailmanygovernmentpermitsoroutsidecontractors.Thedegreeofdetailin project plans may vary widely between projects,dependingonprojectsizeandcomplexityandontherequirementsof thesponsoringorganization.Muchdetailmayberequiredbygovernmentagencieswhoseapproval is needed before project implementation.Projectplanstypicallyareappendedtopermitsandarecarriedoutasapermitcondition.Detailedplansarealsousefulforpreparingcontractstipulationsthataretobefollowedbythefirmthatprovidespractitio-nerservicestothesponsoringorganization.Penaltiesthataffectmonetarycompensationareprescribedifcontractorsfailtocomplywithcontractstipulations.Insuchinstances,theplanningfunctionmayincludelegalaswellastechnicalcapacity.

Project Manager

Inmostprojects,restorationpractitionersaresuper-visedandreporttoasuperiorwhoiseithertheproj-ect manager or someone who fulfills that role. Theproject manager is responsible for ensuring that agiven restoration project is conducted satisfactorilyonbehalfof thesponsoringorganization.Theproj-ectmanageradministersday-to-dayoperationssuchas scheduling personnel, arranging for deliveries ofplantingstocksandequipment,ensuringadherencetocontractstipulations,andapprovingexpenditures.Sometimes thepractitionerdoesmostof thiswork,and the project manager ensures that it is accom-plished.Anotherfirmororganizationthathasbeenengaged to provide restoration services under con-tractsometimesappointitsownprojectmanager.Insuchinstances,thetwoprojectmanagersmaycom-municate with each other, and practitioners receivedirections primarily from the project manager intheirownfirm.Satisfactory restoration projects require that thepractitionerandtheprojectmanagerremaininclosecommunication,moresothaninconstructionproj-

Page 12: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

1� Ecological Restoration

SER Restoration Reader

ects,wheretaskswithmorepredictableoutcomesareconducted.Thesuccessofmanyrestorationprojectsdepends on manipulating living organisms of dif-ferentkinds,andthechancesforsurprisearemuchgreater.Thepractitionermustreacttounanticipatedsituations to ensure the success of the project. Theproject manager is obliged to ensure adherence toschedules,budgets,andcontractstipulations,whichmay not allow for contingencies. In such instances,the practitioners should educate project managersand provide succinct information and persuasivelogicthatthemanagerscanuseeffectivelywhenin-teractingwithpeopleathigheradministrativelevels.Wecannotoverstatetheimportanceofrespectfulandcordial relations between practitioner and projectmanager,particularly inecological restorationproj-ectsoflongduration.

Project Contexts

Thecontextofarestorationprojectconsistsofthecir-cumstancesunderwhichitisconducted.Theadmin-istrativestructureofaprojectisthemostimportantaspectofcontext.Otherfactorscontributingtoitaretheavailabilityoffunding,labor,equipment,andma-terialssuchasplantingstocks.Projectsiteaccessibil-ityandseasonalconstraints(e.g.,inclementweather)canalsoinfluencethecontext,ascanregulatoryandlegalconstraints.Weemphasizeadministrativestruc-tureintheensuingdiscussion.Thewaysinwhichdifferentprojectsareadministeredvary widely. Project administration determines thedegreeofresponsibilitythattherestorationpractitio-ner isgiven, theamountofauthority that theprac-titionerisallotted,andultimatelytheflexibilitythattherestorationpractitionercanapplytosolveprob-lemsthatarise.TheNorthBranchPrairieprojectandthe Dogleg Branch project illustrate two extremesin project administration and context. The NorthBranchPrairieprojectwasdescribedinMiracle Un-der the Oaks byWilliamStevens(199�)andcritiquedbyPeterFriederici(�00�).TheDoglegBranchproj-ectisdescribedinVirtualFieldTrip�.The North Branch Prairie project was initiated in19��byStevePackardandasmallgroupofenviron-mental activists near Chicago, Illinois. Packard ap-proachedapublicofficialintheCookCountyForestPreserveDistrictandaskedwhethertheycouldvol-

unteertocleanuptrash,cutsomebrush,scattersomeseeds,andgenerallyrefurbishdegradedprairiesthatthedistrictowned.Districtpersonnelhadwantedtobeginsuchworkthemselvesbutwerehamperedbyalackoffunds,andtheyacceptedPackard’soffer.Theworkbeganandsoonattractedothervolunteers.TheideaofrestoringChicago’sformerecosystemsspreadlikeaprairiewildfire.Soon,hundredsofcitizenswerespendingtheirfreetimeworkingalongsidePackard,essentiallywithoutplansoradministrativestructure.By 199�, more than �,000 volunteers had restoredmorethan�,�00hectaresofdegradedprairieandas-sociatedoaksavannainanamazingdisplayofaltru-ism.Compare the North Branch Prairie story to that ofthe restoration of forested wetlands in the headwa-tersofDoglegBranchonsurface-minedandphysi-callyreclaimedlandinFlorida,describedintheVir-tualFieldTrip�.Thatprojectrequiredtwoyearsofworksimplytoobtaintherequiredgovernmentper-mits. Permits were eventually issued after the min-ing company had conducted a four-year pilot proj-ecttodemonstratethatnativetreescouldbegrownandatwo-yearecologicalinventoryoflocalforestedwetlandsthatservedasreferencesites(Clewelletal.198�).Professionalswhowereinvolvedintheprojectincludedminingengineers,mineplanners,environ-mentalconsultants,nativenurseries,projectmanag-ers,heavyequipmentcontractors,attorneys, topof-ficials in state government, and large support staffsthatproducedmanyreamsofpaperwork.Theprojectwasaverycostlyandwell-orchestratedproductioninwhichtheactualrestorationworkattheprojectsireseemedlikeanafterthought.ThecontrastbetweentheNorthBranchPrairieandDogleg Branch projects could scarcely have beengreater. They demonstrate extreme examples of thecontextsinwhichrestorationpractitionersfindthem-selvesworking.Thereisnopreferredwaytoorganize,plan, and implement restoration projects. The par-ticularcircumstancesforaprojectdetermineitscon-text. The underlying difference between the NorthBranchPrairieandDoglegBranchprojectswasthattheformerwasanelectiveproject,whereasthelatterprojectrequiredpriorgovernmentapproval.Let’s look at these two projects from the perspec-tiveoftherestorationpractitioner.AtNorthBranch

Page 13: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

1�Chapter 10 : Project Roles and Contexts

Quick Links: SER Restoration Reader TOC▶Ecological Restoration TOC▶Buy Ecological Restoration▶

Prairie, almost everyone involved was a restorationpractitioner.StevePackardassumedtheroleofproj-ectdirector,andheandseveralothersassumedthecollectiveroleofprojectmanageraswell.TheCookCounty Forest Preserve District was nominally thesponsor,anditspersonnelprovidedskeletaladminis-tration.Packardreferredtoexistingecologicallitera-ture,ageneralknowledgeofthefewremnantpatchesofprairieandoaksavanna,andthespecieslistofanearlynaturalistasreferencesandasanindicationofhistoric trajectory. They essentially developed proj-ect plans as they worked on site. Their administra-tivemodewascollegial.Inotherwords,Packardandtheotherpractitionerswhoworkedmostcloselywithhimmadeprojectdecisionsbyconsensus.Theyas-sumed almost total responsibility for all restorationwork. The Cook County Forest Preserve Districtretained basic authority for the project because theprojecttookplaceonlandsundertheirjurisdiction.Districtpersonnelestablishedtheboundsforprojectwork to ensure that it was legal and complied withthedistrict’soverallmission.Otherwise,Packardandhis cadre assumed authority for project operations.Inthiscontext,thepractitionersenjoyedbroadflex-ibilitytoconducttheprojectastheysawfit(Packard1988,199�).The North Branch Prairie project was a grassroots,bottom-upendeavorthatwasnotmandatedbyapub-licagency.Instead,theCookCountyForestPreserveDistrictbenefited fromthebroadpublic supportofhundredsofcitizenswhovolunteeredtheirfreetimeas restoration practitioners. This was a marvelousexampleofpeopletakingcollectiveresponsibilityfortheirownconcerns inamanner thatnicely reflectsthe four-quadrant model of ecological restoration(see Chapter 8). Ecological values were fulfilled di-rectly by the restoration. The motivation for manyvolunteers was the fulfillment of individual valuessuchasreconnectingwithnatureandrespondingtoenvironmentalcrises,asdescribedinChapter�.Pub-liccelebrationsattherestoredprairieweredescribedbyHolland(199�)andareamongtheevidenceofthefulfillment of cultural values. The restored prairiesandoaksavannasrepresentnaturalcapitalandpro-videsocioeconomicservices.Ingreatcontrast,theDoglegBranchprojectwascon-ductedbyonlyafewrestorationpractitioners,prin-cipallyAndreClewellandseveralcolleagues.Because

of thesafetyand liability issues,novolunteerswereinvitedorallowedontheproperty.Theminingcom-pany was the sponsor, and its employees assumedthe other roles of project administration, director,andprojectmanager.Mostwereengineers.Detailedprojectplanswerepreparedbythecompany,whichincorporated specific conditions that were requiredbypermitfromtheStateofFlorida.Theseconditions,inturn,werebasedinpartonarestorationplanwrit-tenbyClewellthatidentifiedrestorationgoals,objec-tives,performancestandards,andthereferencemod-el. The latter was embodied in the aforementioneddocument that described historic conditions andcontemporarychangesinthehistorictrajectorythatwereattributabletolanduse(mainlyfiresuppressionthatallowedbroadleavedforesttypicalofrivervalleystoreplaceuplandpinesavannas).Muchoftheproj-ectworkwasconductedbyearthmovingfirms,treeplantingcrews,andothersubcontractorshiredbytheminingcompany.Theroleoftherestorationpracti-tionerwaslargelytoserveasaliaisonwithforemenofsubcontractingcompanies,totestnewrestorationmethodssuchasinterplantingundergrowthspecies,to monitor forest development, and to suggest im-provementstotherestorationprocessforapprovalbyminemanagers.TheDoglegBranchprojectwasrequiredbytheStateofFlorida(primarily;othergovernmententitieswerealso involved) and was administered from the topdownbytheminingcompany.Stakeholder involve-ment was limited to formal hearings that were re-quiredby law, inwhichcitizenscouldexpress theirinterests.Commentswerelargelylimitedtolocalres-identswhowereconcernedaboutminingoperationsnear their properties and environmental organiza-tionsthatweregenerallyopposedtosurfacemining.Theintentoftheprojectwastorepairenvironmen-taldamagethatwasanunavoidableresultofminingratherthantocausenetecologicalimprovements.Nofulfillment of the personal, cultural, and socioeco-nomic values described in Chapter � was intended.Inotherwords,thiswasacompensatorymitigationproject.After thisandotherrestorationprojectsonmine land were complete, the land was donated totheStateofFloridaandbecametheAlafiaRiverStatePark, which was a cultural improvement. However,negotiationsforthedonationofthelandwereiniti-atedafterDoglegBranchwasnearlyrestored,andthe

Page 14: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

1� Ecological Restoration

SER Restoration Reader

restorationsitehasnotyetbeenopenedforpublicac-cess.DoglegBranchrestorationisnarrowlyfocusedas a flatland project in terms of the four-quadrantmodelinChapter8inthatitsatisfiesecologicalandsocioeconomic elements that are expressed in statepolicy that presumably represents the sentiment oftheelectorate.However, a number of restoration techniques weretested during the course of Dogleg Branch restora-tion,someforthefirsttime.Theresultsweremadeavailable for use by restoration practitioners whotouredthesite,attendedconferenceswheretheproj-ectwasdescribed,andreadpublicdescriptions(e.g.,ClewellandLea1990;Clewelletal.�000).Evenmoreimportantly, the Dogleg Branch restoration project,and several others that were initiated at the time(Clewell 1999), demonstrated that complex forestandstreamrestorationcouldbeconductedon landthathadbeenliterallyturnedupsidedownbymin-ing. In this regard, the Dogleg Branch restorationprojectchanged theperceptionsofpeoplewhohadnotpreviouslyrealizedthepotentialofecologicalres-toration.Thisandsimilar restorationworkhashadthesalubriouseffectofhasteningtheeraofecologicalrestorationandprovidingjobsformanypractitionersinFloridaandelsewhere.However,ithasalsogivenregulatedinterestsarationaleforconvincinggovern-mentagenciestoissuepermitsfordevelopmentthatwill cause environmental damage with the promisethat the damage will be compensated by ecologicalrestoration as a form of mitigation. This strategycouldbejustifiedifregulatedinterestswererequiredtosuccessfullyrestoremorethantheydamaged,butthiseventualityawaitsdocumentationasanormallyoccurringoutcome.Wehopethatrestorationpracti-tionerswillbemorethanbattlefieldphysiciansintheenvironmentalwars.

Excerpted from Ecological Restoration by Andre F. Clewell and James Aronson. Copyright © 2007 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Page 15: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

foundationS of REStoRation Ecology

Foundations of Restoration Ecology

EditedbyDonaldA.Falk,MargaretA.Palmer,andJoyB.Zedler

ForewordbyRichardJ.Hobbs

Cloth,$99.9�,ISBN1-�9���-01�-9

Paper,$�9.9�,ISBN1-�9���-01�-�

�00�.�8�pages.�x10

Tables,figures,index

Contents

Foreword ixRichard J. Hobbs

Acknowledgments xi

Chapter 1.EcologicalTheoryandRestorationEcology 1Margaret A. Palmer, Donald A. Falk, and Joy B. Zedler

PART I. Ecological Theory and the Restoration of Populations and Communities 11

Chapter 2.PopulationandEcologicalGeneticsinRestorationEcology 1�Donald A. Falk, Christopher M. Richards, Arlee M. Montalvo, and Eric E. Knapp

Chapter 3.EcophysiologicalConstraintsonPlantResponsesinaRestorationSetting ��James R. Ehleringer and Darren R. Sandquist

Chapter 4.ImplicationsofPopulationDynamicandMetapopulationTheoryforRestoration �9Joyce Maschinski

Chapter 5.RestoringEcologicalCommunities:FromTheorytoPractice 88Holly L. Menninger and Margaret A. Palmer

Chapter 6.EvolutionaryRestorationEcology 11�Craig A. Stockwell, Michael T. Kinnison, and Andrew P. Hendry

Page 16: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

1� Foundations of Restoration Ecology

SER Restoration Reader

PART II. Restoring Ecological Function 139

Chapter 7.TopographicHeterogeneityTheoryandEcologicalRestoration 1��Daniel Larkin, Gabrielle Vivian-Smith, and Joy B. Zedler

Chapter 8.Food-WebApproachesinRestorationEcology 1��M. Jake Vander Zanden, Julian D. Olden, and Claudio Gratton

Chapter 9.TheDynamicNatureofEcologicalSystems:MultipleStatesandRestorationTrajectories 190Katharine N. Suding and Katherine L. Gross

Chapter 10.BiodiversityandEcosystemFunctioninginRestoredEcosystems:ExtractingPrinciplesforaSyntheticPerspective �10Shahid Naeem

Chapter 11.AModelingFrameworkforRestorationEcology ��8Dean L. Urban

PART III. Restoration Ecology in Context 257

Chapter 12.UsingEcologicalTheorytoManageorRestoreEcosystemsAffectedbyInvasivePlantSpecies ��0Carla M. D’Antonio and Jeanne C. Chambers

Chapter 13.StatisticalIssuesandStudyDesigninEcologicalRestorations:LessonsLearnedfromMarineReserves �80Craig W. Osenberg, Benjamin M. Bolker, Jada-Simone S. White, Colette M. St. Mary, and Jeffrey S. Shima

Chapter 14.EcologicalRestorationfromaMacroscopicPerspective �0�Brian A. Maurer

Chapter 15.ClimateChangeandPaleoecology:NewContextsforRestorationEcology �1�Constance I. Millar and Linda B. Brubaker

Chapter 16. IntegratingRestorationEcologyandEcologicalTheory:ASynthesis ��1Donald A. Falk, Margaret A. Palmer, and Joy B. Zedler

AbouttheEditors ���

AbouttheContributors ��9

Index ���

Page 17: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

1�Chapter 9 : The Dynamic Nature of Ecological Systems

Quick Links: SER Restoration Reader TOC▶Foundations of Restoration Ecology TOC▶Buy Foundations of Restoration Ecology▶

About This Excerpt

“Restorationisthekeystonestrategyforconserv-ingbiodiversity,andecologyhasmatured intoa central discipline of the biological sciences.This important work shows that their synergyoffersnewhopeforthefutureoflifeonEarth.”—EdwardO.Wilson,UniversityResearchPro-fessorEmeritus,HarvardUniversity

Linking theoretical models of ecosystem andcommunitychangewithrestorationecologyhasthepotentialtoadvanceboththepracticeofres-torationandourunderstandingofthedynam-ics of degraded systems. In the chapter fromwhichthisexcerpt isdrawn,KatharineSudingandKatherineGrossconsiderecological theo-ries that address questions about how systemschangeandmayreducetheriskofunpredictedchangeinrestorationprojects.

From chapter 9, “The Dynamic Nature of Ecological Systems: Multiple States and Restoration Trajectories,” by Katharine N. Suding and Katherine L. Gross

One feature of ecological systems is that they areever-changing and dynamic. As ancient Greek phi-losopherHeraclitusclaimed,“Youcanneverstepinthesamerivertwice.”Moreover,ratesanddirectionsofchangeinsystemsareshapedincreasinglybyhu-manactivities.Theseeffectscanbeintentionalortheconsequencesofengineeringofthesystemsandsur-rounding landscapes to provide specific services tohumans.Thedynamicsofanecologicalsystem,par-ticularlyofasystemslatedforrestoration,isafunc-tion of many factors, some deterministic and somestochastic, working at several temporal and spatialscales.Inconsideringhowsystemschangeinrestoration,weaddressseveralquestions:

Whattypesof trajectoriescharacterizetherecov-eryofdegradedecosystems?Isthepathwaytore-coverysimilartothepathwaytodegradation?

1.

Canwepredicttheendstatesofrestorationpath-ways?Aretheysimilartostatespriortodegrada-tion?How will dynamics that occur on very differentscales of space and time relate to one another?Whatshouldbethescaleoffocus?Howmuchinherentvariabilitydoesanecologicalsystemrequireforadequaterecoveryandadaptivecapacityforchangeinthefuture?

In thischapter,weconsiderecological theories thathelpaddressthesequestionsandmayreducetheriskof unpredicted or undesired change in restorationprojects.Whiletheorycanhelpguiderestorationef-forts,itdoesnotprovidesimpleoruniversalanswersforthechallengesthatconfrontrestoration.Restora-tioneffortsthatdocumentspeciesturnoverandenvi-ronmentalattributesovertimecanhelptestandrefineecological theory related to community dynamics.Linksbetweenrestorationandcommunitydynamicsadvanceboththepracticeofrestorationandtheoriesofecologicaldynamics.Wesurveytheprogressandthefurtherpotentialofthisconnection.

Major Theories and Connection to Restoration

Over the last one hundred years, extensive workhas documented how communities and ecosystemschangeinresponsetodisturbance.Despitetheexten-sivedocumentationofpatterns(Figure9.1),ageneralconceptual framework concerning the controls onspecies turnoverandecosystemdevelopment isstilldebated. Several contrasting views concerning themechanismsandpredictivenatureofthesedynamicspersisttoday.Inthischapter,wewillfocusonthreeviews: equilibrium, multiple equilibrium, and non-equilibrium.Wediscusseachoftheseandrelatethemtotheconceptoffastandslowprocesses(sensuRin-aldiandScheffer�000)asawaytoevaluatemecha-nismsofrecovery.

Single Equilibrium Endpoint

Equilibriumsystemsareassumed to return to theirpredisturbance state or trajectory following distur-bance (Table 9.1). This theory predicts a classicalsuccessionaltrajectory:steady,directionalchangeincompositiontoasingleequilibriumpoint(Clements

�.

�.

�.

Page 18: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

18 Foundations of Restoration Ecology

SER Restoration Reader

191�;Odum19�9)(Figure9.�a).Recoveryinanequi-libriumframeworkisapredictableconsequenceofin-teractionsamongspecieswithdifferentlifehistoriesandthedevelopmentofecosystemfunctions.Stronginternalregulationoccursthroughnegativefeedbackmechanisms, including competition and herbivore/predator interactions, as well as climate-ecosystemcouplings and life-history tradeoffs. Many of thesemechanisms are considered aspects of communityassemblyrules(WeiherandKeddy1999;BoothandSwanton�00�),althoughassemblyrulesdonotnec-essarilyassumesingleequilibriumdynamics.

Insomecases,communitydevelopmentcanproceed“spontaneously,” with little or no intervention, toreachdesirabletargetstates(Prachetal.�001;Khateretal.�00�;NovakandPrach�00�).MitschandWil-son (199�)argue thatnaturehas a “self-design”ca-pacityasspeciesassemblethemselves.However,theextent to which this capacity can be expressed in arecoverywilldependonhowdegradedandisolatedithasbecomepriortorestorationefforts(BakkerandBerendse�001).Somerestorationeffortsaredesignedtoacceleratenaturalsuccessionsothattheecosystemdevelopsalongthesametrajectoryasitwouldintheabsenceofinterventionbutreachesthegoalendpointsooner. For instance, restoring a severely degradedriverbacktoitsmorenaturalflowregimeviadamre-movalcanenhancerecoveryofthesurroundingplantcommunities(Roodetal.�00�;LytleandPoff�00�).Similarly,prescribedburningofdegradedgrasslandscanpromoterestorationofnativeplantassemblages,particularlyifthefiremanagementregimeisappliedaccordingtohistoricalpatterns(Baeretal.�00�;Co-pelandetal.�00�).Thus, restorationofsomecom-munities can take a single equilibrium approach tospurrecoveryalongasuccessionaltrajectory.

Excerpted from Foundations of Restoration Ecology edited by Donald A. Falk, Margaret Palmer, and Joy B. Zedler. Copyright © 2006 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permis-sion in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Figure 9.1: Dynamics of species replacement have been predicted to take many different forms. Four general patterns of trajectories, each with two starting points (assemblages A and B) are shown here: (1) Convergent trajectories where initial variability eventually converges to similar species composition, often termed the (D) equilibrium “climax” community. (2) Initially divergent trajectories that eventually converge to one equilibrium state. (3) Divergent trajectories that never converge and never reach a permanent state. (4) Divergent trajectories that go to two different stable states (C and D) and, in the case of C, experience an abrupt shift to a third state.

Page 19: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

19Chapter 9 : The Dynamic Nature of Ecological Systems

Quick Links: SER Restoration Reader TOC▶Foundations of Restoration Ecology TOC▶Buy Foundations of Restoration Ecology▶

Table 9.1: General theories that attempt to predict how the composition and function of systems change over time and/or behave following a disturbance.

Equilibrium Multiple Equilibrium Non-equilibrium

Assumptions Climax equilibrium, unidirectional, continuous

Equilibrium, multidirectional, discontinuous

Persistent non-equilibrium, nondirec-tional, discontinuous

Permanent states One (climax) More than one None

Trajectories Convergent Regime shifts, collapses Divergent, arrested, cyclic

PredictabilityHigh; based on species attributes

Moderate; possible but difficult Low; chance and legacies important

Important factorsSpecies interactions, ecosystem development

Initial conditions, positive feedbacks, landscape position

Chance dispersal, stochastic events

Figure 9.2: Examples of dynamics predicted by single equilibrium, per-sistent non-equilibrium, and multiple equilibrium theories (A–C). For each, the left frame shows predicted combinations of “fast” and “slow” variables; arrows indicate direction of change if not at equilibrium. The right frame shows a stylized example from the ecological literature that is consistent with the ecological predictions. In A, changes in the slow and fast variables are linear and unidirectional. Insect species diversity increase linearly in a Minnesota old-field with years since abandon-ment. Increases in aboveground productivity with time is likely the slow variable that drives the change in insect diversity (Siemann et al. 1999). In B, a persistent non-equilibrium exists with no predictable trajectory. Total stem length of cordgrass (Spartina foliosa) shows high interannual variability and no directional trends in time since restora-tion in San Diego Bay, CA (Zedler and Callaway 1999). In C, at a single level of the slow variable there are two possible equilibrial states. Ex-amples of a pattern predicted by this dynamic, shown in Figure 9.1(4), are strong threshold effects as the slow variable changes. For instance, in a fragmented Eucalyptus forest in Australia, the probability that a gecko species (Oedura retiulcata) persists decreases dramatically if the forest remnant contains less than 400 trees (Sarre et al. 1995).

Page 20: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

REStoRing natuRal capital

Restoring Natural CapitalScience, Business, and Practice

EditedbyJamesAronson,SuzanneJ.Milton,andJamesN.Blignaut

ForewordbyPeterRaven

Cloth,$90.00,ISBN1-�9���-0��-�

Paper,$��.00,ISBN1-�9���-0��-0

�00�.�00pages.�x10

Tables,figures,index

Contents

Foreword xiPeter Raven

Preface xiii James Aronson, Suzanne J. Milton, and James N. Blignaut

PART I. Restoring Natural Capital: The Conceptual Landscape 1

IntroductionJames N. Blignaut, James Aronson, and Suzanne J. Milton

Chapter 1.RestoringNaturalCapital:DefinitionandRationale �James Aronson, Suzanne J. Milton, and James N. Blignaut

Chapter 2.RestoringNaturalCapital:AReflectiononEthics 9James N. Blignaut, James Aronson, Paddy Woodworth, Sean Archer, Narayan Desai, and Andre F. Clewell

Chapter 3.RestoringNaturalCapital:AnEcologicalEconomicsAssessment 1�Joshua Farley and Erica J. Brown Gaddis

Chapter 4.RestoringNaturalCapital:AMainstreamEconomicPerspective �8Eugenio Figueroa B.

Page 21: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�1Chapter 34 : Mainstreaming the Restoration of Natural Capital

Quick Links: SER Restoration Reader TOC▶Restoring Natural Capital TOC▶Buy Restoring Natural Capital▶

Chapter 5.AssessingandRestoringNaturalCapitalAcrossScales:LessonsfromtheMillenniumEcosystemAssessment ��Richard B. Norgaard, Phoebe Barnard, and Patrick Lavelle

Chapter 6.AssessingtheLossofNaturalCapital:ABiodiversityIntactnessIndex ��Reinette Biggs and Robert J. Scholes

PART II. Restoring Natural Capital: Experiences and Lessons 55

IntroductionSuzanne J. Milton, James Aronson, and James N. Blignaut

TARGETS

Chapter 7.SettingAppropriateRestorationTargetsforChangedEcosystemsintheSemiaridKaroo,SouthAfrica ��W. Richard J. Dean and Chris J. Roche

Chapter 8.TargetingSustainableOptionsforRestoringNaturalCapitalinMadagascar ��Louise Holloway

Chapter 9.LandscapeFunctionasaTargetforRestoringNaturalCapitalinSemiaridAustralia ��David Tongway and John Ludwig

Chapter 10.GeneticIntegrityasaTargetforNaturalCapitalRestoration:WeighingtheCostsandBenefits 8�Cathy Waters, Andrew G. Young, and Jim Crosthwaite

APPROACHES

Chapter 11.RestoringandMaintainingNaturalCapitalinthePacificNorthwest,USA 9�Andrew Carey

Chapter 12.RestoringNaturalCapitalReconnectsPeopletoTheirNaturalHeritage:TiritiriMatangiIsland,NewZealand 10�John Craig and Éva-Terézia Vesely

Chapter 13.RestoringForageGrasstoSupportthePastoralEconomyofAridPatagonia 11�Martín R. Aguiar and Marcela E. Román

Chapter 14.ACommunityApproachtoRestoreNaturalCapital:TheWildwoodProject,Scotland 1��William McGhee

Chapter 15.AnAdaptiveComanagementApproachtoRestoreNaturalCapitalinCommunalAreasofSouthAfrica 1�9Christo Fabricius and Georgina Cundill

Chapter 16.ParticipatoryUseofTraditionalEcologicalKnowledgeforRestoringNaturalCapitalinAgroecosystemsofRuralIndia 1��P. S. Ramakrishnan

Page 22: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Restoring Natural Capital

SER Restoration Reader

Chapter 17.OvercomingObstaclestoRestoreNaturalCapital:Large-ScaleRestorationontheSacramentoRiver 1��Suzanne M. Langridge, Mark Buckley, and Karen D. Holl

Chapter 18.AnApproachtoQuantifytheEconomicValueofRestoringNaturalCapital:ACasefromSouthAfrica 1��James N. Blignaut and Christina E. Loxton

ECONOMIC OPPORTUNITIES: CASE STUDIES

Chapter 19.CapturingtheEconomicBenefitsfromRestoringNaturalCapitalinTransformedTropicalForests 1��Kirsten Schuyt, Stephanie Mansourian, Gabriella Roscher, and Gerard Rambeloarisoa

Chapter 20.RestoringNaturalForeststoMakeMedicinalBarkHarvestingSustainableinSouthAfrica 1�0Coert J. Geldenhuys

Chapter 21.AssessingCosts,Benefits,andFeasibilityofRestoringNaturalCapitalinSubtropicalThicketinSouthAfrica 1�9Anthony J. Mills, Jane K. Turpie, Richard M. Cowling, Christo Marais, Graham I. H. Kerley, Richard G. Lechmere-Oertel, Ayanda M. Sigwela, and Mike Powell

Chapter 22.CostsandBenefitsofRestoringNaturalCapitalFollowingAlienPlantInvasionsinFynbosEcosystemsinSouthAfrica 188Patricia M. Holmes, David M. Richardson, and Christo Marais

Chapter 23.ReturnofNatural,Social,andFinancialCapitaltotheHoleLeftbyMining 198J. Deon van Eeden, Roy A. Lubke, and Pippa Haarhoff

Chapter 24.ProtectingandRestoringNaturalCapitalinNewYorkCity’sWatershedstoSafeguardWater �08Christopher Elliman and Nathan Berry

Chapter 25.MakingtheRestorationofNaturalCapitalProfitableonPrivateLand:KoaForestryonHawaiiIsland �1�Liba Pejchar, Joshua H. Goldstein, and Gretchen C. Daily

PART III. Restoring Natural Capital: Tactics and Strategies 225

IntroductionJames Aronson, Suzanne J. Milton, and James N. Blignaut

VALUATION

Chapter 26.ValuingNaturalCapitalandtheCostsandBenefitsofRestoration ���William E. Rees, Joshua Farley, Éva-Terézia Vesely, and Rudolf de Groot

Page 23: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 34 : Mainstreaming the Restoration of Natural Capital

Quick Links: SER Restoration Reader TOC▶Restoring Natural Capital TOC▶Buy Restoring Natural Capital▶

Chapter 27.ADecision-AnalysisFrameworkforProposalEvaluationofNaturalCapitalRestoration ���Mike. D. Young, Stefan Hajkowicz, Erica J. Brown Gaddis, and Rudolf de Groot

LOCAL AND LANDSCAPE LEVELS

Chapter 28. OvercomingPhysicalandBiologicalObstaclestoRestoreNaturalCapital ��9Karen D. Holl, Liba Pejchar, and Steve G. Whisenant

Chapter 29.OvercomingSocioeconomicObstaclestoRestoreNaturalCapital ���Christo Marais, Paddy Woodworth, Martin de Wit, John Craig, Karen D. Holl, and Jennifer Gouza

GLOBAL LEVEL

Chapter 30.OvercomingObstaclesataGlobalScaletoRestoreNaturalCapital ���Robert J. Scholes, Reinette Biggs, Erica J. Brown Gaddis, and Karen D. Holl

Chapter 31.ManagingOurGlobalFootprintThroughRestorationofNaturalCapitalataGlobalScale ���Joshua Farley, Erica J. Brown Gaddis, William E. Rees, and Katrina Van Dis

POLICIES AND INSTITUTIONS

Chapter 32.MakingRestorationWork:FinancialMechanisms �8�Rudolf de Groot, Martin de Wit, Erica J. Brown Gaddis, Carolyn Kousky, William McGhee, and Mike D. Young

Chapter 33.MakingRestorationWork:NonmonetaryMechanisms �9�William McGhee, John Craig, Rudolf de Groot, James S. Miller, and Keith Bowers

PART IV. Synthesis 303

IntroductionSuzanne J. Milton, James Aronson, and James N. Blignaut

Chapter 34.MainstreamingtheRestorationofNaturalCapital:AConceptualandOperationalFramework �0�Richard M. Cowling, Shirley M. Pierce, and Ayanda M. Sigwela

Chapter 35.RestoringTowardaBetterFuture �1�Suzanne J. Milton, James Aronson, and James N. Blignaut

Glossary �19

References ��9

Editors ���

Contributors ���

Index ���

Page 24: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Restoring Natural Capital

SER Restoration Reader

From chapter 34, “Mainstreaming the Restoration of Natural Capital: A Conceptual and Operational Framework,” by Richard M. Cowling, Shirley M. Pierce, and Ayanda M. Sigwela

Protected areas alone will never achieve all of thegoalsand targets required toensure thepersistenceoftheworld’snaturalcapital(e.g.,Rosenzweig�00�)and the delivery of services that intact ecosystemssupply (Kremen and Ostfeld �00�). Consequently,the burden of conserving (and restoring) naturalcapitalwillhave to fall increasinglyonsectorssuchas agriculture, transport, forestry, mining, and ur-bandevelopment(e.g.,HuttonandLeader-Williams�00�).Themainstreamingofbiodiversityconcernsisonestrategyusedbytheconservationcommunitytorespondtothechallengeofensuringthepersistenceofnaturalcapitalandecosystemservices inutilizedlandscapes(Pierceetal.�00�;PetersenandHuntley�00�a).Inessence,mainstreamingmaybedefinedastheprocessofcreatingawarenessofthevalueofnatu-ralcapitalinsectorsthatcurrentlyignoreordiscountit,totheextentthattheywillincorporateconserva-tionactionsintotheirroutineactivities.Akeyconservationactioninproductionlandscapesistherestorationofdegradedortransformednaturalcapital,ashasbeenpointedoutinmanyofthechap-tersinthisbook.Ouraimhereistoprovideacon-

ceptualandoperationalframeworkformainstream-ing the restoration of natural capital in productionlandscapes.

What Is Mainstreaming?

Although mainstreaming is a relative newcomer tothe biodiversity and natural capital lexicon, it is animportantone,sincemainstreamingisacomponentoftheinstitutionsandstrategiesofsomemajorglobalbiodiversity initiatives. For example, the concept isembedded in several articles of the Convention onBiologicalDiversity(ratified199�).Italsounderpinsthe ecosystem service approach of the Millennium Ecosystem Assessment (MA) and is the explicit ob-jectiveoftheStrategicPriority�oftheGlobalEnvi-ronmentalFacility’sGEF-�(�00�)ProgramofWork:“Mainstreaming biodiversity in production land-scapesandsectors—tointegratebiodiversityconser-vation into agriculture, forestry, fisheries, tourism,andotherproductionsectorsinordertosecurena-tional and global environmental benefits” (Petersenand Huntley �00�b). Undoubtedly mainstreaminginitiatives will attract considerable resources fromfundingagenciesoverthenextdecade.AccordingtoPetersenandHuntley(�00�b)theob-jectiveofmainstreaming is “to internalize thegoalsof biodiversity conservation and sustainable use ofbiologicalresourcesintoeconomicsectorsanddevel-opmentmodels,policiesandprograms,andthereforeintoallhumanbehavior.”Cowlingetal.(�00�)iden-tifiedthefollowinglistofdesiredoutcomesofmain-streaming:

The incorporation of biodiversity considerationsintopoliciesgoverningsectoralactivitiesThe simultaneousachievementofgains inbiodi-versity and in the economic sector (the win-winscenario)Sectoralactivitybeingrecognizedasbasedon,ordependenton,thesustainableuseofbiodiversitySituationswheresectoralactivitiesresultinoverallreversalofbiodiversitylosses

Viewed as a process, mainstreaming is a means tospreadtheresponsibilityandbenefitsofconservingbiodiversityandrestoringnaturalcapitalacrossadi-verserangeofsectors.Thisrequirestheidentification

ß

ß

ß

ß

About This Excerpt

Howcanenvironmentaldegradationbestopp-ed?Howcan itbereversed?Andhowcanthedamage already done be repaired? Restoring Natural Capitalbringstogethersocialandnatu-ralscientistsfromthedevelopedanddevelopingworldstoconsiderthesequestionsandexaminespecificstrategiesforrestoringecosystemgoodsandservicesinnaturalandsocioecologicalsys-tems.Thisexcerptfromthefinalsectionofthebookfocusesontheimportanceofmainstream-ingtherestorationofnaturalcapital,highlight-ingthefactthatrestorationisbecominganes-sentialintervention.

Page 25: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 34 : Mainstreaming the Restoration of Natural Capital

Quick Links: SER Restoration Reader TOC▶Restoring Natural Capital TOC▶Buy Restoring Natural Capital▶

ofscenariosthatprovidebenefitsforboththenaturalcapitalandthetargetedsector,andtheimplementa-tionofactions(forexample, thecreationof institu-tions, including incentives) that enable responsiblebodiestoaccomplishthesescenarios.Mainstreaming interventions may happen at allscalesoforganizationandgeography, fromencour-aging backyard conservation of natural capital in aneighborhood to the impact of a multilateral envi-ronmentalagreementontheglobalocean-transportsystem.Furthermore,awiderangeofactorswillbearthecostsandenjoythebenefits,materialandspiri-tual, associated with mainstreaming, and these willaccrueovershortandlongtimescales(PetersenandHuntley�00�b).There are very few documented cases of effectivemainstreaming.Pierceetal.(�00�)provideexamplesfromSouthAfrica,andPetersonandHuntley(�00�a)from elsewhere in the world. Others, although notexplicitlyconceptualizedassuch,appearinDailyandEllison (�00�), Swingland (�00�), and Rosenzweig(�00�). Pierce et al. (�00�) provide a case illustrat-inghowconservationprioritiescanbemainstreamedintoland-useplanningthroughinterpretationofsci-entificproductsintouser-friendly,user-usefulmapsandguidelines.Inaddition,Knightetal.(�00�)de-scribe how mainstreaming can be integrated into aframeworkforimplementingactionsaimedatsecur-ingconservationpriorities.Thelattertwoareexam-plesofconservationactions thatenableor facilitatetherestorationofnaturalcapitalbyidentifyingresto-rationpriorities.

Conceptual Framework for Mainstreaming the Restoration of Natural Capital

Aconceptualframeworkforrestorationboilsdowntoidentifyingamodelofthedesiredlandscape;inotherwords,whatmixoflandusesandeconomicflowsarerequiredtomeettheneedsofdifferentstakeholders(SalafskyandWollenberg�000)?Restorationimple-mentedinanadhocmannerislikelytofailinachiev-ingdesirableoutcomes(HobbsandNorton199�;seealso chapter �), as has been shown for the ad hocimplementationofotherconservationactions, suchas the location of protected areas (Pressey 199�).Therefore, prior to restoration intervention, stake-holders need to identify an appropriate landscape

modelcharacterizedby requirements for sustainingbiologicalpatternsandprocesses,andforsupportinghuman needs. Effective restoration requires explicitgoalsandtargets(e.g.,HobbsandNorton199�)iden-tifiedinawaythatisconsistentwithaspecificland-scapemodel.Forthemainstreamingofrestorationtohappen,thelandscapemodelmustfacilitatetheidentificationofplausible and compelling win-win scenarios. Thus,farmers must be convinced that the direct and op-portunitycostsofrestoringnative,naturalcapitalontheirfarmswillbeoutweighedbythebenefitsofsuchrestoration, for example, in enhanced productionthrough improved pollination services or reducedsoil erosion (e.g., Kremen and Ostfeld �00�). Simi-larly, restoration interventions aimed at achievingnature conservation goals should be guided by theachievementofexplicitanddefensibletargetsforbio-diversityfeatures,whicharesetintheprocessofsys-tematicconservationplanning(Presseyetal.�00�).While there has been much written on conceptualframeworks, goals, and targets for restoration (e.g.,HobbsandNorton199�), theobvious linkbetweenrestorationandthesystematic,target-driven,conser-vationplanningoflandscapes(MargulesandPressey�000) has only recently been made (e.g., Pressey etal.�00�;CrossmanandBryan�00�).Systematiccon-servation assessments identify those areas of trans-formedordegradednaturalcapitalthatarerequiredtoachievetargetsfortheconservationofbothbiodi-versitypatterns(e.g., species, landclasses)andpro-cesses (e.g., migration corridors). These areas thenbecomedefensibleprioritiesforrestoration,asillus-tratedbyCrossmanandBryan(�00�)foragriculturallandscapesinAustralia.A similar systematic approach is required for therestoration of natural capital for ecosystem servicedelivery(e.g.,KremenandOstfeld�00�;Pierceetal.�00�).Afewconservationassessmentshavetargetedand incorporated the spatial components of eco-system services (e.g., Rouget, Cowling, et al. �00�).However,agreatdealmoreresearchisneededbeforewe can make significant progress in the restorationofnatural capital: (1) thenatural capital—both in-tactanddegraded—inaparticularplanningdomainneeds to be identified and mapped in consultationwiththosestakeholderswhoaredirectbeneficiaries

Page 26: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Restoring Natural Capital

SER Restoration Reader

of the services it delivers; (�) the benefits derivedfromthese servicesand their flows to specificben-eficiariesneedtobequantifiedanddisplayedinwaysthataremeaningfultostakeholders;(�)targetsneedtobesetforeachcomponentoftheregion’snaturalcapital in a way that is consistent with a landscapemodel(forexample,acertainnumberofhectaresofhealthy watershed are required to ensure a sustain-ablewatersupplyoveraspecifiedperiod);(�)targetshortfalls should be identified as priorities for res-toration; and (�) mechanisms should be sought tomainstreamtherestorationoftheseareasintothosesectorsthatbenefitfromtheservicesprovidedbythenaturalcapital.The major advantage of systematic restoration toachievethegoalsforaspecificlandscapemodelisthatitistargetdrivenand,therefore,defensible,efficient,andeffective(CrossmanandBryan�00�).Theseat-tributesarelikelytogreatlyfacilitatemainstreaming,especiallywhentheactorsarecash-strappedgovern-mentagenciesorprofit-motivatedcorporations.An Operational Framework for Mainstreaming theRestorationofNaturalCapitalCowlingetal.(�00�)developedanoperationalframe-work for mainstreaming biodiversity, informed byelevenSouthAfricancasestudiespresentedinPierceetal.(�00�).Theframeworkissufficientlybroadtoaccommodate restoration interventions; along with

theestablishmentofprotectedareasandeffectivesoiland water conservation, restoration is another toolforconservingbiodiversity.Theframeworkcompris-esfourmajorcomponents:

Prerequisites essential for mainstreaming to takeplaceStimuli, external and internal to the sector, thatcatalyzeawarenessoftheneedformainstreamingMechanisms that initiate, enable, or drive main-streamingOutcomesthataremeasurableindicatorsoftheef-fectivenessofmainstreaming

In the framework, the mainstreaming process wasdescribed as follows: “Given that certain prerequi-sitesareinplace,asetofspecificstimulicancatalyseactivitieswhichthenleadtotheidentificationofap-propriatemechanisms,withthenetresultthateffec-tive mainstreaming, as measured by outcomes, willhappen”(Cowlingetal.�00�).

Excerpted from Restoring Natural Capital edited by James Aronson, Suzanne J. Milton, and James N. Blignaut. Copyright © 2007 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permis-sion in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

1.

2.

3.

4.

Page 27: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

RivER futuRES

River FuturesAn Integrative Scientific Approach to River Repair

EditedbyGaryJ.BrierleyandKirstieA.Fryirs

Cloth,$80.00,ISBN9�8-1-�9���-11�-8

Paper,$�0.00,ISBN9�8-1-�9���-11�-�

�008.���pages.8x10

Contents

Preface xiii

PART I. The Emerging Process of River Repair 1

Chapter 1.MovesTowardanEraofRiverRepair �Gary J. Brierley and Kirstie A. Fryirs

TheEmergingProcessofRiverRepair �TheEmergenceofIntegrativeRiverScience 8FramingOurGoalsintheProcessofRiverRepair 11StructureoftheBook 1�

Chapter 2. VisionGeneration:WhatDoWeSeektoAchieveinRiverRehabilitation? 1�Darren Ryder, Gary J. Brierley, Richard Hobbs, Garreth Kyle, and Michelle Leishman

UsingaGuidingImagetoSetRehabilitationGoals 1�ScientificConsiderationsinVisionGeneration 18AssessingRehabilitationSuccess 18SocioeconomicConsiderations:AnInclusiveApproachtoVisionGeneration �0

Page 28: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�8 River Futures

SER Restoration Reader

IncorporatingaGuidingImageintoSuccessfulRiverRehabilitationPractice ��Conclusion ��

Chapter 3.TurbulenceandTrainWrecks:UsingKnowledgeStrategiestotheEnhanceApplicationofIntegrativeRiverSciencetoEffectiveRiverManagement �8Andrew Boulton, Hervé Piégay, and Mark D. Sanders

SourcesofTurbulence �8ReducingTurbulencewithSharedBeliefs:TenetsandCommitments �9SeekingSolvableProblems:ComparativeAnalysisofKnowledgeStructures �1FourLogicalStepstoEvaluateKnowledgeStructures ��StrategiesforConstructingSolvableProblems:DifficultiesandPotentialSolutions ��Conclusion ��

PART II. An Integrative Scientific Perspective to Guide the Process of River Repair 41

Chapter 4.TheSpatialOrganizationofRiverSystems �� Carola Cullum, Gary J. Brierley, and Martin Thoms

PerspectivesontheSpatialOrganizationofRiverSystems ��AnIntegratedPerspective:AnalyzingRiverSystemsasSpatiallyNestedHierarchies ��ChallengesinDeterminingScalesandPatchBoundaries ��BioticImplicationsoftheSpatialArrangementofGeomorphicProcessDomains �8ManagementImplications �9Conclusion �1

Chapter 5.WorkingwithChange:TheImportanceofEvolutionaryPerspectivesinFramingtheTrajectoryofRiverAdjustment �� Gary J. Brierley, Kirstie A. Fryirs, Andrew Boulton, and Carola Cullum

ContemporaryRiverDynamicsinTheirEvolutionaryContext ��ScalesandFormsofGeomorphicAdjustment �9LinkagesbetweenAbioticandBioticAdjustmentsalongRivers �1ConceptualizingRiverEvolutionandRecoveryasaBasisforManagementPlanningandAction ��ExamplesofRiverTrajectories ��Place-BasedConceptualModeling ��Conclusion 81

Chapter 6.EcologicalFunctioninRivers:InsightsfromCrossdisciplinaryScience 8� Sarah Mika, Andrew Boulton, Darren Ryder, and Daniel Keating

InteractionsbetweenStructureandFunction 8�InteractionsbetweenStructureandFunctioninSpaceandTime 8�ConnectivitywithinRiverineEcosystems 90ExamplesofCrossdisciplinaryResearchonEcologicalFunction 9�Conclusion 9�

Chapter 7.PrinciplesofRiverConditionAssessment 100 Kirstie A. Fryirs, Angela Arthington, and James Grove

Page 29: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�9Chapter 8 : Social and Biophysical Connectivity of River Systems

Quick Links: SER Restoration Reader TOC▶River Futures TOC▶Buy River Futures▶

PurposesofRiverConditionAssessments 101EcosystemIntegrityasaBasisforAssessingBiophysicalRiverCondition 101IntegratingAbioticandBioticFactorsinAssessmentsofRiverCondition 10�WhatIsNaturalorExpected?DefiningReferenceConditions 10�IndicatorsThatProvideaReliableandRelevantMeasureoftheBiophysicalConditionofRivers 108ConsiderationsintheDesignandApplicationofIntegrativeFrameworksforAssessingBiophysicalCondition 110IntegratingToolsforAssessingRiverCondition 111Conclusion 118

Chapter 8.SocialandBiophysicalConnectivityofRiverSystems 1�� Mick Hillman, Gary J. Brierley, and Kirstie A. Fryirs

ConnectivityandRiverHealth 1��Forms,Patterns,andChangestoPhysical(Dis)Connectivity 1��Social(Dis)Connectivity 1�9ContrastingSub-CatchmentsfromtheHunterValley,NewSouthWales 1��InterbasinTransfers:TheSnowyHydroScheme 1��(Dis)Connectivity:ThemesforIntegrativeRiverManagement 1�8Synthesis:Sustainability,Health,Justice,andPolicyinAddressing(Dis)Connectivity 1�0Conclusion 1��

PART III. International Rerspectives on the Process of River Repair 147

Chapter 9.TheAustralianRiverManagementExperience 1�9 Kirstie A. Fryirs, Bruce Chessman, Mick Hillman, David Outhet, and Alexandra Spink

SettingtheScene:TheAustralianLandscapeandHistoricalSetting 1�9BiophysicalThemesinAustralianRiverManagementPractice:WhatIsAchievable? 1��TheOrganizationalContextofAustralianRiverManagementPractice:TheCapacitytoDoSomething 1��SocialThemesinAustralianRiverManagementPractice:CommunityWilltoDoSomething 1��IntegrationandFutureChallenges 1��Conclusion 1�9

Chapter 10.RiverManagementintheUnitedStates 1�� Ellen Wohl, Margaret Palmer, and G. Mathias Kondolf

HowHealthyAreRiversintheUnitedStates? 1��PolicyandLegalFramework 1��ContemporaryPressuresandConstraintsonWaterResources 1��LikelyFutureInfluencesonRiverManagement 180StrategiesforRiverProtectionandRehabilitation 180ExamplesofRiverRehabilitation 18�Conclusion 19�

Page 30: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�0 River Futures

SER Restoration Reader

Chapter 11.IntegrativeRiverScienceandRehabilitation:EuropeanExperiences �0� Hervé Piégay, Larissa A. Naylor, Gertrud Haidvogl, Jochem Kail, Laurent Schmitt, and Laurent Bourdin

TheEmergenceofIntegrativeRiverScienceinEuropeanCountries �0�IntegrativeSciencesinPioneerRehabilitationPrograms �0�ChallengesApproachingImplementationoftheEuropeanWaterFrameworkDirective �1�Conclusion �19

Chapter 12.TheLightandDarkofSabo-DammedStreamsinSteeplandSettingsinJapan ��� Tomomi Marutani, Shun-ichi Kikuchi, Seiji Yanai, and Kaori Kochi

WhyHaveWeDevelopedtheSaboDamCountry? ���DiscontinuityofGeoecologicalInteractionsalongRiverCourses ���ManagementofDammedStreams ���Conclusion ���

Chapter 13.ApplicationofIntegrativeScienceintheManagementofSouthAfricanRivers ��9 Kate M. Rowntree and Leanne du Preez

SouthAfricanWaterLegislation,Agenda�1,andSouthAfricanRiverManagement ��0TheReserveasanExampleofSouthAfricanManagementFrameworks ��1FutureFluvialGeomorphologies ���IntegrativeScienceandtheFutureofSouthAfricanRiverManagement ��0Conclusion ���

PART IV. Managing the Process of River Repair 257

Chapter 14.RestoringUncertainty:TranslatingScienceintoManagementPractice ��9 Mick Hillman and Gary J. Brierley

SourcesofUncertaintyintheManagementofRiverSystems ���TheAssessmentofConditioninRiverManagement:CharacteristicsandUncertainty ���UncertaintyandSustainability ��8LivingwithUncertaintyintheEraofRiverRepair ��0Conclusion ��0

Chapter 15.RiverFutures ��� Gary J. Brierley, Kirstie A. Fryirs, and Mick Hillman

TheEmergingProcessofRiverRepair ���UsingCoherentScientificInformationtoGuidetheProcessofRiverRepair ���ManagingtheProcessofRiverRepair ��8Conclusion �8�

About the Contributors �8�

Index �99

Page 31: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�1Chapter 8 : Social and Biophysical Connectivity of River Systems

Quick Links: SER Restoration Reader TOC▶River Futures TOC▶Buy River Futures▶

From chapter 8, “Social and Biophysical Connec-tivity of River Systems,” by Mick Hillman, Gary J. Brierley, and Kirstie A. Fryirs

Place is the location . . . where the social and the natural meet. — Dirlik 2001, 18

Successfulintegrativerivermanagementrequiresanunderstandingofthelinksbetweennaturalandcul-turallandscapes,ensuringthatinstitutionalandcom-munityvaluesaremeaningfully incorporatedintheprocess of environmental repair (Harris �00�). Co-herentapproaches to theassessmentof riverhealthintegrate biophysical and social dimensions of en-vironmentalcondition,buildingon therelationshipbetween healthy rivers as products of, and in turnpromoting, healthy societies. Understanding andworkingwiththeconceptofconnectivityacrossboththebiophysicalandsocialdimensionsisacorecom-ponent of this relationship. A connected approachtointegrativerivermanagementaimsforadialoguebetween scientific understanding and communityvalues.Applying thisprinciple thereforemeansun-derstanding both catchment-scale biophysical link-agesandcommunityperceptionsofwhatconstitutesa“healthyriver.”Suchunderstandingsarespecifictotimeandplace,militatingagainst theapplicationofgenericmodelsandassumptions.

Contemporary perceptions of river health are con-tingentuponpresentandpastconnectionsbetweenpeople and their river. They encompass a range ofpotentialusesandvalues.However,inthelargebodyofliteratureinfluencedbyEurocentricideasofland-scape,healthyriversareoftenromanticizedassingle,continuous, constantly flowing channels (Kondolf�00�). Postcolonial societies have afforded rivers alimited range of uses, and systems are expressed ashealthyonlyifconditionssuitablefortheseusesaremaintained.Disconnectioninariversystem,wheth-er it is thepresenceof isolatedpools inriverchan-nelsorephemeraltributaries,hasbeenportrayedasanundesirableandunsustainablestate(Kondolfetal.�00�).Thiscontrastswiththerecognitionofvariableandchangingformsofconnectionanddisconnectionin many indigenous cultures (Smolyak �001; James�00�).Recognitionofthevariableandchangingpat-ternsofconnectivityacrosstimeandspace,andbe-tween social and biophysical dimensions, is a corecomponentofintegrativerivermanagement.Whether appraised in biophysical or social terms,landscapes, ecosystems, and communities can berelativelyconnectedordisconnected.Forriverman-agementtobesuccessfulandrelevantitisimportantto recognize thatbiophysicaldisconnectionmaybenaturalandhealthyatagiventimeandplace.Forthisreasonweusetheterm(dis)connectivitytorefertodynamicpatternsofconnectionanddisconnection.Forexample,disconnectedandisolatedpartsofriv-er systems may shelter distinct genetic populationsof speciesandunique floristicand faunalattributes(Sheldonetal.�00�;Bunnetal.�00�).Likewise,hu-man(dis)connectivitywithrivershasoftenbeenme-diatedbyculturalfactors,particularlyinindigenoussocietiesthroughtaboos,totems,andsacredsitesthatare the result of co-evolution with landscapes overmanygenerations(Rose1999;Townsendetal.�00�).However,inmorerecenthistory,biophysicaldiscon-nection has often been imposed through the con-structionofbarriers,whilesocialdisconnectionhasresulted fromappropriationandenclosureof ripar-ianlandorinresponsetorapidlydevelopingpercep-tionsby local communitiesof the river aspolluted,unhealthy,orasbringerofdamagingfloods.Presentday disconnection is often the legacy of an earlierfocus on narrow and exclusive uses of the river forirrigation, discharge of effluent, or navigation. This

About This Excerpt

River Futures provides a holistic overview ofconsiderationsthatunderpintheuseofscienceinrivermanagement,emphasizingcross-disci-plinaryunderstanding.Thisexcerptfromchap-ter8introducesthenotionof“connectivity”asan integrating theme, relating biophysical no-tions of landscape and ecosystem connectivity(or disconnectivity) to social relationships toplace.

Page 32: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� River Futures

SER Restoration Reader

typeofdisconnectionisreferredtobyWard(�001)as“geo-environmentaldisconnection,”theproductoftechnocentriceffortstoforgelandscapesforagricul-ture, industry,andrecreation.Conversely,biophysi-cal and social connections may have been imposedthrough the development of irrigation systems insemi-aridlandscapes.

In this chapter, we argue that imposed, arbitrary(dis)connectivitybasedonanarrowlydefinedorex-clusiveuseofwaterisunhealthyinrivermanagementand is ultimately unsustainable and unjust. Such(dis)connectivityreducescommunityunderstandingof,andconcernfor,ourrivers,whileallowingdomi-nantandenvironmentallydamagingusesandprac-ticestocontinue.Italsopromotesfeelingsofinequity,distributing costs and benefits through top-downdecisionsordecrees.Ontheotherhand,broadandholistic(dis)connectivityinitsmanyformsstronglyimplies the convergence of social and biophysicalperspectives and acknowledgment of a wider rangeofvaluesasavitalstepintheprocessofriverrepair.Transdisciplinary work on links between ecologicalandcommunityhealthandwell-beingindicatesthatthehealthyappreciationoftheinherentdiversityandvariabilityofriversystemsisanintegralpartofheal-ingour relationship to thenaturalworld (Costanzaand Mageau 1999; Connor et al. �00�). Based ontheseguidingprinciples,thischapterusesatransdis-ciplinaryandplace-basedanalysisofbiophysicalandsocial(dis)connectivityto:

Examinethebroadlinksbetweenconnectivityandriverhealth.

Describe the biophysical and social forms andchanging patterns of connection and disconnec-tionwithinariversystemandbetweenpeopleandthatsystem.

Analyze key themes in the interrelationship be-tween the biophysical and social dimensions of(dis)connectivitythroughcaseexamples.

Highlightimplicationsofthesethemesinthede-velopment of just and sustainable approaches tothemanagementofhealthyrivers.

1.

�.

�.

�.

Connectivity and River Health

Theviewofriverhealthoutlinedinchapter�focusesonexternal,biophysical,andverifiableindicatorsofrivercondition.Oftensuchindicatorsarespecifictoparticulardisciplinesandscales.However,giventhatrivers epitomize the links between landscapes andecosystems (Jungwirth et al. �00�), a practical un-derstandingofbiophysicallinkagesiscrucialinpro-ducing the “mature knowledge” that is increasinglyrequiredforeffective integratedecosystemmanage-ment(Lake�001;Dunn�00�).Thisisinitselfama-jorchallenge,sincecomplexindicatorsofrivercondi-tion,suchasconnectivityitself,haveproveddifficulttoquantifybothforconceptualreasonsandbecauseofscientificconcernovervaliddescriptorsandrigorofresultantdata(Dunn�00�).Acomplementarybutdistinctviewofriverhealthisonebasedontheideaofsocialconnection,inwhichhealth is about people developing, maintaining, orlosinginteractionwiththeriver.Integraltothinkingabout the way people connect and disconnect withriversisthebroadgeographicalnotionofplaceasso-cially constructed (Massey �00�), and of a sense ofplaceas individually interpreted rather thanhavingoneparticular“essence.”Thenotionof“place-identi-ty”hasbeenusedtodescribethissocialdimensionofconnection:“itcanbesaidtorepresentthephysicalsettings’importanceforaperson’sidentity.Researchinplace-identitysuggeststhatanindividualhasmorecomplex relations to the environment than simplylivinginit”(Wester-Herber�00�,111).Connectionthroughplace-identityisfundamentaltocommunity engagement in river management pro-grammes,fosteringasenseofcommitment,buildingsocialcapital,andallowinglocalknowledgearoleinplanning(Hillmanetal.�00�;ThompsonandPep-perdine�00�).Place-identityalsohighlightstheneedtothinkofhealthintermsofbothbiophysicalindica-torsandhuman-nature relationships (Brierleyetal.�00�b).However,theestablishmentofplace-identityisanecessaryprerequisiteratherthananinherentlysufficientconditionforriverhealth—thereisnorea-sontoarguethatsomegooduse-valuescreateplace-identity and others do not. Our point here is thatwithoutsuchconnection,therelationshipsthatsus-tain integrativerivermanagementcannotbe forgedandthatnarrowandexclusivevalueswillprevail.

Page 33: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 8 : Social and Biophysical Connectivity of River Systems

Quick Links: SER Restoration Reader TOC▶River Futures TOC▶Buy River Futures▶

Thenexusbetweenbiophysicalandcommunityhealthin major river rehabilitation strategies has been ex-pressedinpracticeinseveralforms.Forinstance,theLoireVivante (LivingLoire)programaims to “leadpeople back to the river,” while the Mersey BasinCampaignincludesinitsvisionthegoalofincreasingthevaluingoftheriverbyitscommunity.TheDutchpolicyof“SpacefortheRiver”aimstomaintainfloodprotectioninthefaceofincreaseddesigndischarges,whileatthesametimeconservinglandscape,ecolog-ical,andhistoricalfeatures(CalsandvanDrimmelen�000).TheVictorianRiverHealthStrategyincludestheobjectiveof“maintainingtherivers’placeinourcollectivehistory”withtheoverallaimthat“ourcom-munitieswillbeconfidentandcapable,appreciating

thevaluesoftheirrivers,understandingtheirdepen-dencyonhealthyriversandactivelyparticipatingindecision-making”(VictorianGovernment�00�,�).The next sections develop a conceptual frame-work for exploring forms of biophysical and social(dis)connectivity in river systems, providing a lensonthisintegrativeapproachandonacondition-con-nectionnotionofhealth.

Excerpted from River Futures: An Integrative Scientific Approach to Riv-er Repair edited by Gary J. Brierley and Kirstie A. Fryirs. Copyright © 2008 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Page 34: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

laRgE-ScalE EcoSyStEm REStoRation

Large-Scale Ecosystem RestorationFive Case Studies from the United States

EditedbyMaryDoyleandCynthiaA.Drew

Cloth,$�0.00,ISBN9�8-1-�9���-0��-1

Paper,$��.00,ISBN9�8-1-�9���-0��-8

�008.���pages.�x9

Maps,figures,index

Contents

Introduction: TheWatershed-Wide,Science-BasedApproachtoEcosystemRestoration xi Mary Doyle

PART I. The Everglades 1

Chapter 1.TheChallengesofRestoringtheEvergladesEcosystem �Terrence “Rock” Salt, Stuart Langton, and Mary Doyle

Chapter 2.EvergladesEcology:TheImpactsofAlteredHydrology ��Thomas L. Crisman

Chapter 3.RiversofPlansfortheRiverofGrass:ThePoliticalEconomyofEvergladesRestoration ��Stephen Polasky

PART II. The Platte River 55

Chapter 4.NegotiatingforEndangeredandThreatenedSpeciesHabitatinthePlatteRiverBasin �9 David M. Freeman

Chapter 5.PlatteRiverBasinEcology:AThree-DimensionalApproachtoAdaptiveManagement 89Thomas L. Crisman

Chapter 6.NavigatingtheShoals:CostsandBenefitsofPlatteRiverEcosystemManagement 100Stephen Polasky

Page 35: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 6: Navigating the Shoals: Costs and Benefits of Platte River Ecosystem Management

Quick Links: SER Restoration Reader TOC▶Large-Scale Ecosystem Restoration TOC▶Buy Large-Scale Ecosystem Restoration▶

PART III. The California Bay-Delta 109

Chapter 7.California’sDelta:TheChallengesofCollaboration 11�David Nawi and Alf W. Brandt

Chapter 8.TheEcologyofBay-DeltaRestoration:AnImpossibleDream? 1��Thomas L. Crisman

Chapter 9.WaterFights:TheEconomicsofAllocatingScarceWaterandBay-DeltaRestoration 1�0Stephen Polasky

PART IV. The Chesapeake Bay 171

Chapter 10.TheCultureofCollaborationintheChesapeakeBayProgram 1��Mary Doyle and Fernando Miralles-Wilhelm

Chapter 11.AnEcologicalPerspectiveonManagementoftheChesapeakeBay �0�Thomas L. Crisman

Chapter 12.MurkyWatersandMurkyPolicies:CostsandBenefitsofRestoringChesapeakeBay �1� Stephen Polasky

PART V. The Upper Mississippi River 225

Chapter 13.TheUpperMississippiRiverandtheArmyCorpsofEngineers’NewRole:WillCongressFundEcosystemRestoration? ��9Cynthia A. Drew

Chapter 14.UpperMississippiRestorationEcology:PuttingTheoryintoPractice ��9Thomas L. Crisman

Chapter 15.ComparingApplesandOranges?CostsandBenefitsofUpperMississippiRiverSystemRestoration ��9Stephen Polasky

Conclusion:AssessingEcosystemRestorationProjects �91Mary Doyle

AbouttheAuthors �01

AbbreviationsandAcronyms �0�

Page 36: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Large-Scale Ecosystem Restoration

SER Restoration Reader

From chapter 6, “Navigating the Shoals: Costs and Benefits of Platte River Ecosystem Management,” by Stephen Polasky

ThepresettlementPlatteRiverwasawide,shallow,muddy,slow-movingriverwithcomplex,braidedchannels.Earlyattemptstousetherivertotransportfursandothergoodsmet with frustration and failure, as boats frequently ranagroundandhadtobedraggedovernumeroussandbars.Nineteenth-century humorist Artemus Ward describedthePlatteas“amilewideandaninchdeep”andsaidthatit would be a considerable river if turned on edge (Wil-loughby�00�).AttemptingtonavigateasuccessfulplanforecosystemmanagementonthePlatteisevenmoredifficultthanattemptingtonavigateafullyloadedboatontheriveritself. Like the Platte’s physical description, negotiationstoreachagreementonhowtomanagewaterflowsinthePlatteRiverarewide-ranging;oftenslowmoving;involvecomplex,interconnectedsetsofinterestgroups;andhaveanunclear(muddy)resolution.WhilethePlatteRiverhasnotprovedtobeimportantfortransportation,itisvitallyimportantinotherways.ThePlatteflowsthroughoneofthemostaridregionsofthecountry,fromcentralandeast-ernColoradoandWyomingthroughwesternandcentralNebraska,beforeemptyingintotheMissouriRiverattherelatively wetter, eastern end of Nebraska. In dry years,thePlatteistheonlysignificantsourceofsurfacewaterinmuchofitsdrainagebasin:“ThePlatteRiverisaconsis-tent sourceof relativelywell-wateredhabitat . . .with itswatersourceindistantmountainswatershedsthatarenotsubjecttodroughtcyclesassevereasthoseoftheNorth-ernPlains”(NRC�00�,8).Assuch,waterfromthePlatteRiverandthehabitatalongtheriverisinhighdemandby

peopleandotherspecies.Whattheriver isgoodforandhowitshouldbemanageddependonone’spointofview.TherearenumerouscomplexinterestgroupswithastakeinwatershedmanagementalongthePlatte; it isusefultocategorize theminto threemaingroups: (1)urbanwaterusers,(�)agriculturalwaterusers,and(�)environmentalinterests. The first two groups have primary interests inwaterusesthatrequirewithdrawalofwaterfromtheriver,whiletheenvironmentalinterestsseektomaintainnaturalflowregimesandhabitatalongtherivernecessarytosup-port species, especially three federally listed endangeredspecies: whooping crane, interior least tern, and pallidsturgeonandonethreatenedspecies:pipingplover.

Urban and Agricultural Water Use

WithinthePlatteRiverBasinalongtheFrontRangeoftheRockyMountainsarerapidlygrowingmetropolitanareasfromDenvertoCheyenne.Theareaisattractivebecauseof its sunny weather and the nearby mountains’ beautyand recreationalopportunities. InColorado, thepopula-tionlivingintheSouthPlatteBasinincreasedby��per-cent between 1990 and �00�, from �.� million to over �million(ThorvaldsonandPritchett�00�).Rapidpopula-tion growth is expected to continue. Population withintheSouthPlatteBasininColoradoisexpectedtogrowbyalmost � million people (a ��-percent increase) between�000 and �0�0 (DiNatale et al. �00�). More people willmean more water demands for residential, commercial,andindustrialuses.TotalwaterdemandintheSouthPlatteBasininColoradoisexpectedtoincreaseby��0,000acre-feetperyear,roughlya�0-percentincreasefrom�000to�0�0(DiNataleetal.�00�).

While urban water uses are growing rapidly, agricultureremainsthedominantwateruserinthePlatteRiverBasin.WateristhelimitingfactorforagriculturalproductioninmuchofthewesternUnitedStates,certainlythecaseinthePlatteRiverBasin.Rainfallinmuchofthebasinaveragesbetween 10 and �0 inches per year, too little to supportagricultural production without irrigation. (“Dryland”agriculture,whichdoesnotrequireirrigation,ispracticedbutrequiresfallowyearsbetweencropproductionyears.)OnlynearthemouthofthePlatteineasternNebraskaisrainfallsufficienttosupportannualcropproductionwith-outsignificantirrigation.

In the western states as a whole, agriculture accountedforover��percentofallsurfacewaterdiversionsin1990(CBO199�).Duringthesameyear,municipalandindus-

About This Excerpt

Representing a variety of geographic regionsand project structures, the case studies in thisvolumeshed lighton thecentral controversiesfacedbylarge-scaleecosystemrestorationfrompolitical,ecological,andeconomicperspectives.Inthisexcerptfromchapter�,StephenPolaskyintroduces the complex interest groups with astakeinwatershedmanagementalongthePlatteRiver.

Page 37: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 6: Navigating the Shoals: Costs and Benefits of Platte River Ecosystem Management

Quick Links: SER Restoration Reader TOC▶Large-Scale Ecosystem Restoration TOC▶Buy Large-Scale Ecosystem Restoration▶

trialusesaccountedforroughly10percentoftotalsurfacediversions(CBO199�).IntheSouthPlatteBasininColo-rado,agriculturaldiversionsarecurrently�.�timesthoseof municipal and industrial uses (DiNatale et al. �00�).Approximately�millionacresoflandareirrigatedinthePlatteRiverBasin(NRC�00�).Whileagricultureusesthelion’sshareofthebasin’swater,theeconomiccontributionoftheagriculturalsectortotheoveralleconomyissmall.Agriculture contributed less than 1 percent of the totalvalueofannualrevenuesfromagriculturalproductsintheSouthPlatteBasininColorado(ThorvaldsonandPritchett�00�).Agricultureconstitutesahigherpercentageof theeconomyinNebraska,�.�percentoftotalgrossstateprod-uctin�00�(BEA�00�),becauseagriculturalproductionislargerandtherestoftheeconomyissmaller.

WaterforagriculturaluseinthePlatteRiverBasinislikelytodeclineover timebecauseagriculturecannotcompeteeconomicallyorpoliticallywithwaterdemandforurbanuses,andoverallwaterdiversionswillbelimitedbyenvi-ronmentalconcerns.IntheSouthPlatteBasininColorado,irrigatedacresareexpectedtofallbybetween1��,000to���,000acresfrom�000to�0�0(DiNataleetal.�00�).

AswellnotedbyDavidFreeman(seeChapter�,thisvol-ume), though diverting water from agriculture to otherhigher valued uses is supported by economic logic, thedryingofagriculturewillhavenegativeconsequencesforsmall townsandruralareasdependentuponagriculture.ManysmallcommunitiesintheGreatPlainshavesufferedfrom declining populations and stagnant economies fordecades.Lossofwaterforirrigationwillhastenthedecline

and literally drain much of the remaining vitality fromthesecommunities.

Therecentsurgeofinterestintheproductionofrenewableenergyfrombiomasscrops(biofuels)mightkeepagricul-tureafloat intheregion.Theincreaseddemandforcornfrom ethanol production helped push corn prices fromaround$�perbushelinearly�00�tonearly$�perbushelin early �00� before prices fell back slightly (ERS �00�).Theincreaseddemandandhigherpriceforcornmakeitsproductionmoreprofitableandwateruseforagriculturemorevaluable.Callsforevenhigherproductionofbiofu-els inthefuturecouldresult infurtherincreases inagri-culturalprices.IntheStateoftheUnionAddressin�00�,PresidentGeorgeBushcalledforincreasingrenewableandalternative fuelproduction to��billiongallonsby�01�.Bywayofcontrast,ethanolproduction in�00�was�.8�billiongallons(RFA�00�.EthanolproductioninthePlatteRiverBasin,however,willlikelybelimitedbywateravail-ability.Inadditiontowaterusedforirrigationofcornandothercrops,waterforethanolproductionamountedto�.�gallons of water per gallon of ethanol produced in �00�(IATP�00�).

Excerpted from Large-Scale Ecosystem Restoration: Five Case Studies from the United States edited by Mary Doyle and Cynthia A. Drew. Copyright © 2008 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Page 38: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

old fiEldS

Old FieldsDynamics and Restoration of Abandoned Farmland

EditedbyVikiA.CramerandRichardJ.Hobbs

Cloth,$80.00,ISBN9�8-1-�9���-0��-9

Paper,$�0.00,ISBN9�8-1-�9���-0��-�

�00�.���pages.�x9

Tables,figures,manuscriptcasestudies,index

Contents

Acknowledgments ix

Chapter 1. WhyOldFields?SocioeconomicandEcologicalCausesandConsequencesofLandAbandonment 1Richard J. Hobbs and Viki A. Cramer

PART I. Old Fields and the Development of Ecological Concepts 15

Chapter 2.OldFieldSuccession:DevelopmentofConcepts 1�Richard J. Hobbs and Lawrence R. Walker

Chapter 3.OldFieldsasComplexSystems:NewConceptsforDescribingtheDynamicsofAbandonedFarmland �1Viki A. Cramer

PART II. Case Studies from Around the World 47

Chapter 4.ImplicationsofLandUseHistoryforNaturalForestRegenerationandRestorationStrategiesinPuertoRico �1Jess K. Zimmerman, T. Mitchell Aide, and Ariel E. Lugo

Page 39: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�9Chapter 6: Old Field Vegetation Succession in the Neotropics

Quick Links: SER Restoration Reader TOC▶Old Fields TOC▶Buy Old Fields▶

Chapter 5.ProcessesAffectingSuccessioninOldFieldsofBrazilianAmazonia ��Gislene Ganade

Chapter 6.OldFieldVegetationSuccessionintheNeotropics 9�Karen D. Holl

Chapter 7.PatternsandProcessesofOldFieldReforestationinAustralianRainForestLandscapes 119Peter D. Erskine, Carla P. Catterall, David Lamb, and John Kanowski

Chapter 8.SuccessiononthePiedmontofNewJerseyandItsImplicationsforEcologicalRestoration 1��Scott J. Meiners, Mary L. Cadenasso, and Steward T. A. Pickett

Chapter 9.SuccessionandRestorationinMichiganOldFieldCommunities 1��Katherine L. Gross and Sarah M. Emery

Chapter 10.OldFieldSuccessioninCentralEurope:LocalandRegionalPatterns 180Karel Prach, Jan Lepsˇ, and Marcel Rejmánek

Chapter 11.DynamicsandRestorationofAbandonedFarmlandandOtherOldFieldsinSouthernFrance �0�Pascal Marty, James Aronson, and Jacques Lepart

Chapter 12.LandAbandonmentandOldFieldDynamicsinGreece ���Vasilios P. Papanastasis

Chapter 13.OldFieldDynamicsontheDrySideoftheMediterraneanBasin:PatternsandProcessesinSemiaridSoutheastSpain ���Andreu Bonet and Juli G. Pausas

Chapter 14.RestorationofOldFieldsinRenosterveld:ACaseStudyinaMediterranean-typeShrublandofSouthAfrica ���Cornelia B. Krug and Rainer M. Krug

Chapter 15. ProspectsfortheRecoveryofNativeVegetationinWesternAustralianOldFields �8�Viki A. Cramer, Rachel J. Standish, and Richard J. Hobbs

PART III. Synthesis: Old Field Dynamics and Restoration 307

Chapter 16.OldFieldDynamics:RegionalandLocalDifferences,andLessonsforEcologyandRestoration �09Richard J. Hobbs and Viki A. Cramer

AbouttheEditors �19

AbouttheContributors ��1

Page 40: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�0 Old Fields

SER Restoration Reader

From chapter 6, “Old Field Vegetation Succession in the Neotropics,” by Karen D. Holl

Factors Affecting Forest Succession in Old Fields

It isnecessaryto identifyfactorsthataffecttherateanddirectionofsuccessionatarangeofspatialscalesinordertodeveloprestorationstrategiestoaccelerateorredirectsuccessionaltrajectories.Icategorizethefactors affecting forest succession into three broadcategories(Figure�.�):theunderlyingabioticgradi-ents(rainfall,temperature,andsoil),thecompositionofsurroundinglandusemosaic,andthetypeandin-tensityofpastlanduse.Idiscussindetailhoweachofthesegeneralfactorsaffectstherateanddirectionoftropicaloldfieldsuccession.

Underlying Abiotic Gradients

Much of the difference in the rate and direction ofsuccessioninneotropicaloldfieldscanbeexplainedbyanthropogenic factors, suchassurrounding landuseandlandusehistory(discussedlater),butthesefactorsareoverlainonanumberofabioticgradients,primarilyrainfall,temperature,andsoiltype,whichstronglyinfluenceforestrecovery.Tropicalforestsfallalongarainfallgradientrangingfromupto�–8mofrainfallevenlydistributedthroughouttheyearinthewettestsitesto<1.�mofrainfallwith>�monthsofdryseason in thedriest sites.Theamountandsea-sonalityofrainfallareprimaryevolutionarydriversfortropicalforestplants,andtheyprofoundlyinflu-enceoldfieldsuccession.Anumberoftropicalplantlife-historytraitsthatvaryacross the rainfall gradient strongly affect recovery.First,driertropicalforestshaveahigherpercentageof wind-dispersed seeds (Ewel 19��; Janzen �00�;Vieira and Scariot �00�). For example, in a reviewofstudiesacrossaprecipitationgradient,VieraandScariot(�00�)report�0%–��%wind-dispersedspe-ciesintropicaldryforestand<1�%wind-dispersedspeciesintropicalmoistorwetforest.Dryforestre-covery may therefore be less dispersal limited thanmoist tropical forests (Janzen �00�). Second, al-though resprouting after disturbance is a commonplantadaptationthroughoutthetropics,resproutingismorecommonintropicaldryforests,wherewaterlimitation favorsan increasedenergy investment inroots(Ewel19��;VeskandWestoby�00�;VieiraandScariot�00�).Third,seedlingmortalityduetodesic-cationismuchhigherindryforestsandvariesagreat

deal interannually, dependingon rainfall fluctuations (VieiraandScariot�00�),whichmakesestablishment from seed lesspredictable. Likewise, seedlinggrowth may be slower due tolackofwater.Thereissomeevi-dence that dry forests may bemoreresilientbecauseoflowerstructural complexity, greaterwind dispersal, and more fre-quentresprouting;nonetheless,it is impossible to generalizeabouttherateofrecoveryofallforests across a rainfall gradi-

About This Excerpt

Landthathasbeentransformedbyagricultureis being abandoned in all sorts of ecosystemsaround the world as economics and lifestyleschange. In Old Fields, leading experts synthe-sizepastandcurrentworkontheseabandonedlands, providing an up-to-date perspective ontheir ecological dynamics. In chapter �, fromwhichthisexcerptisdrawn,KarenD.Hollre-viewsongoingdebatesinthesuccessionallitera-ture,andevaluatesthreeinterrelatedquestionsinthecontextoftropicaloldfields.

Figure 6.2: Factors affecting (boxes) different modes of regeneration (ellipses) of tropical old fields.

Page 41: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�1Chapter 6: Old Field Vegetation Succession in the Neotropics

Quick Links: SER Restoration Reader TOC▶Old Fields TOC▶Buy Old Fields▶

ent,giventhemanyotherfactorsthatmayinfluencetherateofrecovery.Asecondunderlying,large-scale,climaticgradientistemperature.Temperature,however,isgenerallycon-sideredalessimportantdrivingfactorintropicalfor-estscomparedtorainfall.Themaineffectoftempera-tureonrecoveryisinhigherelevationsystemssuchascloudforests,wheretheslowgrowthrateoftreescan increase the time of recovery (Ewel 1980). Ad-ditionally,Zarinetal.(�001)foundthatgrowingsea-sondegrees(growingseasonlength×growingseasontemperature)wasa significantpredictorofbiomassacrossnumerousoldfieldsintheBrazilianAmazon,anareaoflittletopographicvariation,suggestingthattemperatures may be an important predictor of re-coveryatlargerscales.Afinalimportantabioticgradientissoiltype.Muchofthetropicsarecoveredbyoxisolsandultisols,whichhave low nutrient levels and high acidity. Some ar-eashavemorefertile,volcanicsoils,suchasandisolsandinceptisols,althoughthesesoilscommonlyhavelowavailablephosphorus.Someauthors(Moranetal.�000;Zarinetal.�001)havenotedthatoverlargespa-tialscales,differencesinsoiltextureandfertilitymorestronglyaffecttherecoveryofbiomassthanpreviouslanduse(discussedlater).Forexample,Moranetal.(�000)studiedforestrecoveryacrossarangeoflanduses (pasture, swidden, mechanized agriculture) atfivelocationsinColombiaandBrazil.Hefoundthatinterregionalvariationsinbiomassandstandheightwere best explained by soil fertility, whereas withinsinglelocationspreviouslanduseexplainedmostofthevariation.Soilpatterningatsmallerscalescanalsoaffectspeciesdistributions.Forexample,HerreraandFinegan(199�)foundthatthedifferentabundancesoftwocommontreespecies,Vochysia ferrugineaandCordia alliodora, reflected differences in exchange-ableacidity,slope,andmagnesium.

Surrounding Landscape Mosaic

Gradientsofclimateandsoilprovidea templateonwhichvariousanthropogenicfactorsacttoinfluenceneotropicalforestrecovery.Aprimaryanthropogen-icfactoraffectingsuccessionintropicaloldfieldsisthemosaicofsurroundinglandcovertypes,suchasremnantforest,complexagroforests,shiftingcultiva-tion, pasture, or intensive agriculture (reviewed in

GuariguataandOstertag�001;Holl�00�;Chazdon�00�, �00�). Although swidden agriculture (shift-ingcultivation)isimportantalongsomeagriculturalfrontiers(FineganandNasi�00�),theintensityandscaleofagricultureinthetropicsisgenerallyincreas-ing. Therefore, the many regenerating sites embed-ded within agricultural landscapes are increasinglyisolatedfromsourcesofseedsforrecolonization.Many studies in secondary growth habitats in thetropics demonstrate that seed rain and seedling es-tablishment, particularly of large, animal-dispersedspecies,declinerapidlywithincreasingdistancefromtheforestedgebothinwetanddryforests(e.g.,AideandCavelier199�;Harvey�000;Zimmermanetal.�000;Mesquitaetal.�001).Thescaleoverwhichthisdeclineoccursrangesfromwithinafewmetersofthepastureedgeupto100meters.Needlesstosay,manyabandonedoldfieldsare>100metersfromtheforestedge,adistanceatwhichthereisgenerallyminimalseedrainunlessthereiswoodyvegetationtoattractseed dispersers. This isolation may be mediated byland use types, such as agroforestry, that facilitatemovementof someseeddisperserswithin theagri-culturalmatrix(FineganandNasi�00�;Harveyetal.�00�;Kupferetal.�00�).Giventhattheareaundersecondarysuccessionisincreasing,successionalfor-estsmaybetheprimarysourceofseedsofearlysuc-cessionalspeciesinmanyrecoveringareas(Fineganand Nasi �00�). Nonetheless, there have been fewstudies comparing seed rain or vegetation recoveryasafunctionofdifferentsurroundinglanduses.Thelackofseeddispersalintoabandonedoldfieldscanaffectboththerateofrecoveryaswellasthesuc-cessional trajectory, and a number of authors haverecorded lower numbers of individuals and speciesestablishing in old fields farther from forest (Mes-quitaetal.�001;Chinea�00�;Fergusonetal.�00�).For example, Hooper et al. (�00�) found that com-munity composition varied substantially with dis-tancefromtheforestedgeinabandonedpasturesinPanama.However,mostofthesepaststudiesontheeffectofdistance to forestedgeonvegetationcom-munitycompositionhavebeencarriedoutoverrela-tivelyshorttimeperiods(<�years)andlonger-termstudiesarecriticaltofurtheringourunderstandingofsuccessionaltrajectories.

Page 42: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Old Fields

SER Restoration Reader

The surrounding landscape also has substantial ef-fects on the faunal communities, which may affectnotonlyseeddispersal,butothercommontropicalplant community mutualisms, such as pollinationandherbivory.Thereisgrowingevidencethatchang-esinmammalassemblagesduetohunting,isolation,or fragmentation (Dirzo and Miranda 1990; Chap-manandChapman199�)canbedetrimentaltotherecruitmentofmanyneotropicaltrees.Large-seededspeciesthatareanimaldispersedmaybeparticularlyatriskofdisappearingfromfragmentedareasduetolossofdispersers(CordeiroandHowe�00�).Inad-dition,disruptionof theseanimalcommunitiescancauseprofoundchangesinseedfate(DirzoandMi-randa1990),secondaryseeddispersal(Forget199�),and seedling recruitment (Benítez-Malvido 1998).Despite the likely impacts of the surrounding landusemosaiconseedpredationandseedlingherbivory,ithasreceivedmuchlessstudy(HollandLulow199�;DuncanandDuncan�000;Jonesetal.�00�)andisaripeareaforfutureresearchonvegetationdynamicsintropicaloldfields.

Excerpted from Old Fields edited by Viki A. Cramer and Richard J. Hobbs. Copyright © 2007 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be repro-duced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Page 43: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

a guidE foR dESERt and dRyland REStoRation

A Guide for Desert and Dryland RestorationNew Hope for Arid Lands

DavidA.Bainbridge

Cloth,$100.00,ISBN1-��9��-9�8-�

Paper,$�0.00,ISBN1-��9��-9�9-�

�00�.�1�pages.8x10

Tables,figures,index

Contents

A User’s Guide ix

Preface xi

Acknowledgments xv

Chapter 1.Desertification:CrisisandOpportunity 1

Chapter 2.UnderstandingtheEcologyofAridLands 1�

Chapter 3.TheEconomicsandPsychologyofDesertification ��

Chapter 4.WhytheDesertCan’tHealItself:UnderstandingDisturbance ��

Chapter 5.RestorationApproachesandPlanning 90

Chapter 6.RestorationEquipmentandSupplies 11�

Chapter 7.ProjectManagement 1�1

Chapter 8.SoilSalvageandRestoration 1��

Chapter 9.SeedCollection,Storage,andManagement 1��

Chapter 10.ContainerPlantProductionandPlanting 190

Chapter 11.DirectSeeding �1�

Page 44: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� A Guide for Desert and Dryland Restoration

SER Restoration Reader

Chapter 12.WaterManagementandIrrigation ���

Chapter 13.RiparianRestoration ��8

Chapter 14.RestorationinUse ��8

Chapter 15.RestorationMonitoring �01

Chapter 16.TheChallengeAhead �1�

Appendix 1:PlantSamplingBackgroundandMethods ��9

Appendix 2:StayHealthy ���

Glossary ���

References ��9

AbouttheAuthor ���

Index ���

Page 45: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 1 : Desertification: Crisis and Opportunity

Quick Links: SER Restoration Reader TOC▶A Guide for Desert and Dryland Restoration TOC▶Buy A Guide for Desert and Dryland Restoration▶

From chapter 1, “Desertification: Crisis and Opportunity”

The Task Ahead

Drylandrestorationisneededinalmosteveryplacehumans have been active past the gatherer–hunterstage (Bainbridge 198�b). Areas now considered tobedesert-likeinmanycaseswerecomplexandpro-ductiveecosystemsbutweregraduallyorquicklyde-stroyed by poor management. South-eastern Spain

providesanexcellentexampleofahuman-madedes-ert,anditisbutoneofmany(Latorreetal.�001).The semiarid and arid areas of the world make upabout��percentofthegloballandareaandaccountfor 1� percent of the world’s population. In 1980about ��0 million people suffered losses in incomeand quality of life from degraded drylands (Table1.�).Todaytheselandsaffectthedailylivesofmorethan8�0millionpeople,andeveryyearanother1–1.�millionhectaresarecompletelylosttoproductionthrough desertification (Dregne 198�; United Na-tionsEnvironmentProgramme�00�).Byaddressingthe underlying causes of dryland deterioration,un-derstandingthehistoryofabuseandchange,andap-plyingthebestrestorationtechniqueswecanbegintoreversethesechanges.Globallymore than�0percentof therangeland,�0percent of rainfed croplands, and �0 percent of ir-rigatedcroplandsareatriskforfurtherdegradation(Figure1.�).Pooruseoffragileresourceshaslimitedtheabilityofdrylandresidentstomakealiving,re-duced their quality of life, destroyed communities,ledtoconflictsover landandwater,reducedhealthandlifeexpectancy,andseverelyaffectednaturalsys-temsandbiodiversity(LeanandHinrichsen199�).Landdegradationinoneareaoftenaffectsotherar-easthroughincreasedflooding,reducedstreamflow,and dust and sand deposition. Recent studies haveevensuggestedalinkbetweendustfallresultingfromdesertification in Africa and coral reef dieback intheCaribbean.Thedustfromthegrowingdesertsin

About This Excerpt

Is there hope for reversing and repairing aridlands? Dryland degradation and desertifica-tionnowaffectalmostabillionpeoplearoundthe world. In A Guide for Desert and Dryland Restoration,DavidBainbridge,whohasworkedindesertsfortwenty-fiveyears,offerspractical,field-tested solutions to this critical problem.Writtenforrestorationpractitioners,landman-agers,ranchers,farmers,educators,landscapers,andforesters,thisbookismeanttobeusedinthefieldandonthegroundtoimprovelandandwatermanagement.Inthisexcerptfromchapter1,Bainbridgeoffersanoverviewoftheproblemofdesertificationandforecaststheelementsofeffectiverestorationefforts.

Table 1.2: Areas affected by severe or very severe desertification (percentage)

Cropland

Rangeland Rainfed Irrigated

Very Severe Severe Very Severe Severe Very Severe Severe

Africa 0.4 53.3 0.7 6.5 — 1.2

Asia 0.7 44.0 1.4 8.5 1.8 6.3

Europe 1.1 46.0 0.4 14.6 0.9 3.9

Australia 4.4 8.4 <0.1 1.0 1.1 7.0

North America 2.1 59.0 0.2 1.0 1.0 3.5

South America 3.9 47.2 0.6 2.6 0.7 3.7

Page 46: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� A Guide for Desert and Dryland Restoration

SER Restoration Reader

westernChinahascircledtheglobe,withlargelyun-knownaffectsonecosystemswherethedust,fungalspores,andnutrientsaredeposited.Restorationandimprovedmanagementof thesere-sourcesareessentialinreversingtheprocessofdeg-radationanddesertification.Restorationmayincludeawiderangeof interventions, fromsurfaceshapingtosoilamendments,tillageandweedremoval,seed-ing,planting, irrigation,andaftercare.Low-cost re-vegetation efforts can help restore productivity todegraded grazing lands. On severely damaged sitestheestablishmentofanyspeciesmaybedifficult,andeventhegrowthofweedsmaybeconsideredasuc-cess. Rehabilitation and reclamation are used to de-scribeeffortstoreturnsitestouseinstableconditionbutoftenwithintroducedspeciesandlesscomplexitythanarestorationproject.Ecologicalrestorationtriestorestoreecosystemfunction(howthingswork)andstructure (how things look) to match undisturbedreferencesites.Thiscanbeverydifficultbecauseourunderstanding of these dryland systems is limitedandtheenvironmentalvariabilityisveryhigh,char-acterizedbypulsesratherthansteadyprogresseveninundisturbedand“stable”conditions.

Restoration Efforts

Work on dryland restoration began in earnest inabout1980,althoughprojectsintheSouthwestwerestartedasearlyas1900andmanywereattemptedinthe19�0s(Griffiths1901;Coxetal.198�).Withouta solid scientific base and without controlled ex-perimentsandresearch,progresswaslimited.Manyflawedandinappropriateapproacheswereusedoverand over because managers were ignorant of what

otherpeoplehaddoneinearliertrials.Researchef-forts were also hampered by a very limited under-standingofaridandsemiaridecosystems(Hall�001).Mostresearchersandlandmanagershadcomefrommorehumidareaswherevegetationdidrecovernatu-rally,andfewstudiedthelessonsfromotherdrylandsaroundtheworld.Althoughrestorationisdesirableforbiological,eco-nomic,social,andaestheticreasons,itcanrarelybejustifiedwithcurrentincompleteeconomicaccount-ing practices. This has also hampered research andlimitedtrialsanddemonstrationstoshort-termstud-ies.Fundingforlong-termresearchhasbeenrareandsupportforintegratedresearchrarerstill.Whystudytheeffectsofspending$�,000anacreforapotentialgrazingreturnoflessthan$�0ayear?Restoration research also provides us with an oftenhumblingopportunitytotestandrefineourapplica-tion and understanding of ecological processes andtheories(Bradshaw199�b).Althoughtherootsofthescienceofrestorationecologycanbetracedbacktothelate1800sinEurope,AldoLeopoldandhisworkattheUniversityofWisconsinduringtheGreatDe-pressionlaidthefoundationforenvironmentalresto-rationinAmerica.Althoughsomeexcellentworkwasdoneonrecoveryafterdisturbanceinthe19�0sand1980s (Vasek et al. 19��; Lathrop 198�b; Prose andMetzger198�),moderninterestandcommitmenttoresearchandpublication improvedrapidlyafter theSocietyforEcologicalRestoration(SER)Internation-alhelditsfirstannualconferencein1989inOakland,California.Thisconferenceincludedafewpapersondrylandrestoration.In199�IledthefirstSERwork-shop on dryland restoration at Red Rock CanyonStateParkinCaliforniawithRayFransonandLaurieLippitt(Figure1.�).Thishands-ontrainingiscriticalinimprovingunderstandingandmanagement.Many other projects were started about this timethroughouttheSouthwest,andIhavelearnedmuchfromtheirsuccessesandfailures.Mycolleagues,staff,andstudentshavealsocontributedagreatdealtomyunderstanding.Thisresearchandtestinghaveledtoimprovedtechniquesandapproachesfordesertres-toration,butitwillneverbeeasy.Amultidisciplinaryapproachisverydesirableforres-torationwork.Ideallyateamwillbeabletoprovideinsight about not only the plants, soil microorgan-

Figure 1.6: World desertification map, with severity indicated by shading.

Desertification

Page 47: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 1 : Desertification: Crisis and Opportunity

Quick Links: SER Restoration Reader TOC▶A Guide for Desert and Dryland Restoration TOC▶Buy A Guide for Desert and Dryland Restoration▶

isms,insects,animals,reptiles,andbirdsbutalsothecurrentandhistoricnationalandinternationaleventsthat have determined the economic incentives andpressures that influence land managers. Restorationbegins with a clear understanding of environmentalhistory,currentconditions,andthedecision-makingenvironment and leads through planning, funding,andimplementationtomaintenanceandmonitoring.Settingappropriaterestorationtargetsoftenisacriti-calissueandisdiscussedinmoredetailinChapter�.Current lawsoften require land tobe restoredonlytotheconditionitwasinbeforethelatestinsultandinjury.Thiscouldmeanrestoration toaliengrassesand weeds in much of the western United States.Others think, as I do, that restoration should con-siderconditionsbeforeovergrazingbegan,whenthelandwasmanagedbynativepeople.Thismaymeanbefore 1800 in California and before 1�00 in NewMexico.Wemustrememberthatthismeansareturntoadifferentmanagementscheme,notatimewhenthere was no human manipulation of the environ-ment.Mostof these landswereoccupiedandman-agedforthousandsofyears,oftensuccessfully,beforethearrivalof theEuropeans. Ifwewant togoback

beforehumaninterventioninlanduse,wewouldbeback��,000yearsormoreinCaliforniaandperhaps��0,000yearsinAustralia.ThenativepeopleofwhatisnowcalledsouthwesternNorthAmericawere intelligent,skilled,andknowl-edgeableappliedecologistswhoactivelymanagedtheland and shaped its ecosystems (Lawton and Bean19�8; Shipek 1990; Anderson 199�). Although theydid not have bulldozers, tractors, and transnationalseedcompanies theywere skilled in theuseof fire;kept animals; hunted some species very effectively;selected, transported, and planted seeds for annualand perennial crops; and transplanted trees andshrubs. A better knowledge of their managementpracticescanexplainmanybiologicalmysteries,anditwillalsohelp improveour landmanagementandprotectionof rareandendangeredspeciesandeco-systems(Figure1.8).

Restoration Is Possible

Successful restorationrequiresa systematic,holisticviewoftheinteractionsbetweenhumansandtheen-vironmentthroughtime.Themostappropriateresto-

Figure 1.7: The first SER desert restoration class, hosted by Red Rock Canyon State Park, California. Hands-on learning is best for restoration training.

Page 48: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�8 A Guide for Desert and Dryland Restoration

SER Restoration Reader

Figure 1.8: Lessons from the past: (a) Terraces and (b) reservoir at Mesa Verde, Colorado, demonstrate proven methods for soil and water conservation in arid lands.

A )

B )

Page 49: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�9Chapter 1 : Desertification: Crisis and Opportunity

Quick Links: SER Restoration Reader TOC▶A Guide for Desert and Dryland Restoration TOC▶Buy A Guide for Desert and Dryland Restoration▶

rationapproachforagivensitedependsonthetypeofdisturbance,thedegreeofdisturbance,thecausesof the disturbance, the available budget (both timeandlabor),andthegoalsandspeedofrecoveryde-sired.Theeffortshouldalwaysincludeconsiderationofecosystemstructureandfunction.Traditionallystructurehasoftenbeenfavored(howmanyplants,whatkinds)over function(water flowandretention,nutrientcycling),butrepairingfunc-tionusually ismore important.Likemanyothers, Ioriginally began with a focus on returning specificplants,butaftera fewyears itbecameclear thatre-storing function was more important. If ecosystemfunctionisrestoreditwillhastenrecoveryandensurethattheenvironmentcontinuestoimproveaftertherestorationteamleaves.Thecost for restorationcanrange froma fewhun-dreddollarsto$�0,000peracreormore.Asthein-vestmentincreasestherateofrecoverywillincrease,butevenlargeexpendituresarenoguaranteeofsuc-cess intheseextremeenvironments.Everythinghastobedonecorrectlyattherighttime,andwaterusu-allyhastobeprovidedforinitialestablishment.The cost of failing to restore damaged drylands ishigh,biologically,socially,andeconomically.Yetun-til recently thevalueof theecosystemservicespro-vided by nature has not been counted, and an eco-nomic justification for restoration was lacking. Thefunctionsoffloodcontrol,waterpurification,oxygenproduction,anddustcontroldomatter,andtheydohavevalue.WhenRobertDixoncompared thecostofabigfloodinTucsonwiththecostofdrylandres-toration,whichwouldhavelessenedorpreventedthe

flood,therestorationwouldhavecostless.Asnature’sservicesaremorecompletelyandclearlyvalued,res-torationwillbecomemorecommonasaneconomicinvestment.Itwillalwaysremainanimportantactiv-ityforbeauty,biodiversity,recreation,andqualityoflife.Restorationalsoprovidesinvaluableopportuni-tiestotestourtheoryandknowledgeabouthoweco-systemsfunction(Bradshaw199�b).Themagnitudeofthetaskgloballycanbecalculatedfromthevastareasoflandneedingtreatment.Amod-est restoration program to repair just 10 percent ofthedesertifiedrangelandsintheUnitedStatescouldcost$��billionayear,about1�percentof thecur-rentbudgetfortheDepartmentofDefense.Totreat10percentofthe�.�billionhectaresofdegradeddry-landsintheworldeachyearwouldcostabout$��0billion dollars, about � percent of the annual grossdomestic product of the United States. Sadly, thecountriesthatareworstaffectedareleastabletopay,withmanystrugglingtopayimmensedebtservicesonloansfromrichcountries.Inmanycasestheirto-talexternaldebtsaremorethanthreetimestheirto-talforeignexchangeearnings.Theongoingefforttorelievesomeofthispressureiscriticalbecausethesehighdebtservicerequirementsoftendriveresourcemismanagement.

Excerpted from A Guide for Desert and Dryland Restoration by David A. Bainbridge. Copyright © 2007 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be repro-duced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Page 50: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

REStoRing thE pacific noRthwESt

Restoring the Pacific NorthwestThe Art and Science of Ecological Restoration in Cascadia

EditedbyDeanApostolandMarciaSinclair

ForewordbyEricHiggs

Cloth,$99.9�,ISBN1-��9��-0��-9

Paper,$�9.9�,ISBN1-��9��-0�8-�

�00�.�09pages.8x10

Tables,figures,index

Contents

Foreword xiiiEric Higgs

Preface xviiPeter Lavigne

Acknowledgments xix

Introduction xxiiiDean Apostol

PART I. The Big Picture 1

Chapter 1.NorthwestEnvironmentalGeographyandHistory �Dean Apostol

Chapter 2.EcologicalRestoration 11Dean Apostol

Page 51: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�1Chapter 17 : Traditional Ecological Knowledge and Restoration Practice

Quick Links: SER Restoration Reader TOC▶Restoring the Pacific Northwest TOC▶Buy Restoring the Pacific Northwest▶

PART II. Pacific Northwest Ecosystems 27

Chapter 3.BunchgrassPrairies �9Marcia Sinclair, Ed Alverson, Patrick Dunn, Peter Dunwiddie, and Elizabeth Gray

Case Study: YellowIslandRestorationovertheLongTerm ��

Case Study:WestEugeneWetlands ��

Case Study:GarryOakEcosystemRestorationinCanada �8

Case Study:FortLewisWildflowerExplosion �9

Chapter 4.OakWoodlandsandSavannas ��Paul E. Hosten, O. Eugene Hickman, Frank K. Lake, Frank A. Lang, and David Vesely

Case Study:ManagingCulturalandNaturalElementsoftheBaldHillsofRedwoodNationalandStateParks 8�

Case Study:FuelReductionandRestorationinOakWoodlandsoftheApplegateValley 8�

Case Study: EcologicalRestorationatBaldHill,Corvallis,Oregon 89

Chapter 5.Old-GrowthConiferForests 9�Jerry F. Franklin, Dean Rae Berg, Andrew B. Carey, and Richard A. Hardt

Case Study:BiologicalComplexityRestorationatFortLewis 11�

Case Study:UpperSiuslawLate-SuccessionalReserveRestorationPlan 11�

Case Study: MonteCarloThinning 11�

Chapter 6.RiparianWoodlands 1��Dean Apostol and Dean Rae Berg

Case Study:RiparianSilvicultureatKennedyFlats,VancouverIsland,BritishColumbia 1�0

Case Study:RiparianRestorationinPortland,Oregon 1��

Chapter 7.FreshwaterWetlands 1�0John van Staveren, Dale Groff, and Jennifer Goodridge

Case Study:KingCountyWetlandMitigationBank,Washington 1��

Case Study: MudSlough,Oregon 1��

Case Study:ClayStationWetlandMitigationBank 1�8

Chapter 8.TidalWetlands 1��Ralph J. Garono, Erin Thompson, and Fritzi Grevstad

Case Study:DeschutesRiverEstuaryandCapitolLakeRestorationStudy 18�

Case Study:ControlofInvasivePlantsinWillapaBay,Washington 18�

Case Study:HabitatMappingintheLowerColumbiaEstuary 18�

Page 52: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Restoring the Pacific Northwest

SER Restoration Reader

Case Study:PadillaBayEstuarineResearchReserve 188

Case Study: NehalemBay 189

Case Study:TillamookBay 190

Case Study:SouthSloughNationalEstuarineResearchReserve 191

Chapter 9.PonderosaPineandInteriorForests 19�Stephen F. Arno and Carl E. Fiedler

Chapter 10.ShrubSteppe �1�Steven O. Link, William H. Mast, and Randal W. Hill

Case Study:HanfordPrototypeBarrier ��8

Case Study:ReducingUnnaturalFuelsintheShrubSteppe ��0

Case Study:RestorationofUplandHabitatsatColumbiaNationalWildlifeRefuge ���

Case Study:CanoeRidge ���

Chapter 11.Mountains ��1Regina M. Rochefort, Laurie L. Kurth, Tara W. Carolin, Jon L. Riedel, Robert R. Mierendorf, Kimberly Frappier, and David L. Steensen

Case Study:RestorationofaSmallImpact:ParadiseSocialTrail ��8

Case Study:SunriseCampground,Mt.RainierNationalPark ��0

Case Study:WhitebarkPineRestorationinGlacierNationalPark ��8

PART III. Crossing Boundaries 277

Chapter 12.UrbanNaturalAreas ��9Mark Griswold Wilson and Emily Roth

Case Study:TheColumbiaSlough’sCommunityPartnerships �8�

Case Study:ProtectingtheBackyardofBoise �8�

Case Study:TheSaanichApproachtoEnvironmentalProtectionandStewardship �89

Case Study: TheHighPointRedevelopmentProject �90

Case Study:BirdsasIndicatorsofHabitatQualityAlongUrbanStreams �9�

Chapter 13.StreamSystems �98Jack E. Williams and Gordon H. Reeves

Case Study:RestoringLargeWoodStructureinTenmileCreek �09

Case Study:RemovingaSmallIrrigationDaminBearCreek �1�

Page 53: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 17 : Traditional Ecological Knowledge and Restoration Practice

Quick Links: SER Restoration Reader TOC▶Restoring the Pacific Northwest TOC▶Buy Restoring the Pacific Northwest▶

Chapter 14.LandscapeandWatershedScale �19Dean Apostol, Warren Warttig, Bob Carey, and Ben Perkowski

Case Study:BuildingaCultureofRestorationintheMattoleRiverWatershed ���

Case Study:Landscape-ScaleRestorationDesignintheLittleApplegateWatershed ���

Case Study:Landscape-ScaleRestorationintheSkagitRiverBasin ���

Case Study:KennedyFlatsWatershedRestoration ���

Chapter 15. RestoringWildlifePopulations ��1Bruce H. Campbell, Bob Altman, Edward E. Bangs, Doug W. Smith, Blair Csuti, David W. Hays, Frank Slavens, Kate Slavens, Cheryl Schultz, and Robert W. Butler

Case Study:RestoringPopulationsofCavity-NestingOak-AssociatedBirdSpecies ��8

Case Study:GrayWolves ��0

Case Study:RestorationoftheColumbiaBasinPygmyRabbit ���

Case Study:RestorationofWesternPondTurtles ���

Case Study:TheTeeter-TotterEffectofEagleRecoveryonGreatBlueHerons ���

Case Study:RestorationofButterfliesinNorthwestPrairies ���

Chapter 16.ManagingNorthwestInvasiveVegetation ���David F. Polster, Jonathan Soll, and Judith Myers

Case Study:RepeatedCuttingtoTameReedCanarygrass �8�

Case Study:EliminatingScotchBroom �8�

Case Study:BiologicalControl �89

Two Case StudiesonHerbicideUse �90

Chapter 17.TraditionalEcologicalKnowledgeandRestorationPractice �9�René Senos, Frank K. Lake, Nancy Turner, and Dennis Martinez

Case Study:TheKarukTribeofNorthernCaliforniaandLocalFireSafeCouncils—FuelReductionProjects,WildlandUrbanInterface,andFuelBreaks �0�

Case Study: LomakatsiRestorationProject,SouthernOregon �0�

Case Study:HuckleberryCropManagement �0�

Case Study:WildlifeCrossingDesignontheFlatheadIndianReservation �08

Case Study: PacificLampreyResearchandRestoration �10

Case Study:SalmonRestorationinthePacificNorthwest �1�

Case Study:PaleoecologyandSalishSeaRestoration �1�

Page 54: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Restoring the Pacific Northwest

SER Restoration Reader

Case Study:BacktotheFuture �1�

Case Study:RekindlingtheFireofCamasProduction �1�

Case Study:RestoringWapatoonShuswapLake �18

Conclusion:TheStatusandFutureofRestorationinthePacificNorthwest ���Dean Apostol and Marcia Sinclair

AbouttheContributors ��1

SupportersandPartners ���

Index ���

Page 55: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 17 : Traditional Ecological Knowledge and Restoration Practice

Quick Links: SER Restoration Reader TOC▶Restoring the Pacific Northwest TOC▶Buy Restoring the Pacific Northwest▶

From chapter 17, “Traditional Ecological Knowl-edge and Restoration Practice,” by René Senos, Frank K. Lake, Nancy Turner, and Dennis Martinez

Key Concepts in TEK Restoration

Kincentricity

A key concept in the indigenous world view is kin-centricity , or a view of humans and nature as partofanextendedecologicalfamilythatsharesancestryandorigins(Salmón�000,Martinez199�).Thekinorrelativesincludeallthenaturalelementsofanecosys-tem;indigenouspeoplesometimesrefertothisinter-connectednessas“allmyrelations.”Kincentricityac-knowledgesthatahealthyenvironmentisachievableonlywhenhumansregardlifearoundthemaskin.Kinshipwithplantsandanimalsentails familial re-sponsibilities;ittellsuswhyweareonthisearthandwhatourecologicalroleornicheisvis-à-visourrela-tivesinthenaturalworld.Toputitanotherway,ittells us that we are a legitimate part of nature, thatwe have responsibilities within nature, and that inexercising those responsibilities we are as “ecologi-cal”or“natural”asanyotherspecies.Theindigenouslandethicholdsthatwecanhaveapositiverestora-tioneffectintheveryactofusingnaturalresources.Kincentric ecology entails direct interaction with

naturetopromoteenhancedecosystemandculturalfunctioning.Thisiswhatsustainablepracticesareallabout.Ourresponsibilityforparticipatinginthe“recreationoftheworld”(astribesonKlamathRiver innorth-westernCaliforniacallit)isneverfinished.PeriodicinterventionbyhumansinnaturehaslongbeenpartofecosystemdynamicsinthePacificNorthwest.Giv-enthemyriadecologicalcatastropheswenowface,theneedforactiverestorationwillonly increase.Therearenofinishedrestorationprojects.Naturehasself-healingpowers,buttheseengageonlyafteraspecificharmfuldisturbance(e.g.,adamorinvasivespecies)isremovedormodified.Humansalsocanlendahandby restoring missing species, modifying structure,and so forth.As theSERIPrimernotes, continuingmanagement is necessary to “guarantee the contin-uedwell-beingoftherestoredecosystemthereafter”(SocietyforEcologicalRestoration�00�:�).Pioneering Western ecologists and restorationistshavecometosimilarconclusionswithrespecttokin-centricity,startingwithAldoLeopold(19�9)andhisland community ethic, which posited that an indi-vidual is a member of a community of interdepen-dentpartsandthateachcitizenisethicallyboundtomaintaincooperativerelationswith thebioticcom-munity. Restorationist Stephen Packard discoveredthat recovering degraded Midwest landscapes re-quiredcorpsofdedicatedvolunteers torestoresev-eralthousandacresoftallgrassprairieandoaksavan-na(Stevens199�).Thisambitiousendeavorwasnotpossibleuntilpeople invested in therhomeplaces.Environment al philosopher Andrew Light (�00�)has explored the personal, moral, and environmentaldimensionsofmakingamendstoourkinthroughtheactofrestorationandconsidershowrestorationprovidesavenue forecologicalcitizenship.Kincen-tricityprovidesabasisforconsideringrestorationasaprocessofengagementwithnature,awaytosustainorrepairrelationswiththelivingworld.Indoingsowedevelopviablecultural,economic,andecologicalpracticesthatsupportandnurtureoursharedenvi-ronment.

Reference Systems

When addressing the needs of restoration today,whetheratthelandscape,habitat,orspecieslevel,it

About This Excerpt

The Pacific Northwest, stretching along thewest coast of North America from northernCalifornia throughBritishColumbia tosouth-eastAlaska, isa “hotspotofbogglingdiversityinrestorationprojects,”accordingtoEricHiggs,chairoftheboardofdirectorsoftheSocietyforEcologicalRestorationInternationalfrom�001to �00�. Restoring the Pacific Northwest bringstogetherfifty-sevenexpertsandpractitionerstoshowcasenineseminalhabitattypes,sixdistinctrestoration approaches, and more than threedozencasestudies.It isanessentialhandbookand encyclopedic overview for restorationistsand practitioners around the world. This ex-cerptfromchapter1�offerskeyconceptsintra-ditionalecologicalknowledge.

Page 56: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Restoring the Pacific Northwest

SER Restoration Reader

is important to recognize indigenous peoples as aninfluence in shaping and maintaining the historicalconditionofmanydifferentecosystems.Inthissense,the effectofpast indigenousmanagementpracticesshouldbeconsideredpartofthereferenceecosystem,ormoregenerallyasprovidingasetofreferencepro-cessestoguidearestorationeffort.IntheNorthwest,reference conditions influenced by indigenous landuse practices of a pre-European era are the bench-mark.Anyreferenceconditionordesignof futuredesiredconditionsmustaccountforhumans’use andman-agementoftheenvironment.Thescaleandintensityofhumanuseandmanagementoftheenvironmentare important to successful ecocultural restorationandtoestablishingasustainablerelationshiptoplace.Our reference window is at least as large as 10,000years,or thepostglacialHoloceneperiod,withpar-ticularattentionpaidto the last�,000years,duringwhich a gradual cooling trend occurred that mostresembles present climatic and ecological condi-tions(Figure1�.�).The last10,000yearsalso is theperiodduringwhichhumanshaveexertedthemostinfluenceonNorthAmericanecosystems(EganandHowell�00�).Theuseofreferenceecosystemsinrestorationisnotwithout controversy. It can be expensive and time-consuming to use multiple disciplines and indirectproxylinesofethnographicandscientificevidenceto

establishareasonableprobabilityofaccuracyiniden-tifyingasiteataspecificpoint inhistory(seeEganandHowell�00�fortechnicalinformationregardingreconstructinghistoricalecosystems).Some restoration scientists and practitioners ques-tion the value of using historical baselines to guiderestoration.Notonlycanitbedifficulttoreconstructhistorical ecosystems because of severe changes insomeenvironments,butwhygobacktoanarbitrarypointinhistory?Whychoose,forexample,atimebe-foreEuropeancontactasthereference?Whynotjusttrytoimprovethefunctionofdegradedecosystems?Isn’tnatureconstantlychanging?However,TEKdoesnotadvocatethatwestopchangeandfreezeecosystemsinaparticulartimeframeorthatwerecreateasnapshotintime.Afterall,presentconditionsarealsoasnapshotintime.Whatwere-allyneedtodoisconnectthepastwiththepresentinordertorevealwhatkindoftrajectoryanecosystemmaybeonandthennudgethattrajectoryjustenoughtorestorekeyfunctions.Historyandfunction,then,areinseparable.BothHiggsandMartinezhavewrit-tenandspokenaboutbalancinghistoricalfidelityorauthenticitywithecologicalfunctionality.Insteadoffixingasnapshotintime,weneedtorerunamovingpicture,playedoutwithinboundariesdeterminedbyhistorical trends in disturbance regimes, includingthekinds,intensities,andfrequenciesofdisturbancewithwhichanecosystemhasevolved.For example, forest stand-level restoration projectsare subject to constraints imposed by the greaterlandscape scale. Although a reference ecosystemcan guide initial restoration efforts, these will bemodified by larger landscape considerations (e.g.,fragmentation, fire hazard, exotic species invasion,specieslosses),orevenlargerphenomenasuchascli-matechange.Anchoringthereferencemodelinrealhistorical time will help us to recover key featuresof ecosystem structure, composition, and processeswithinnaturalvariability ,witha look todesigningthefuturedesiredcondition.Buildingsoundreferencemodelsforecoculturalres-toration requires the best Western science and thebestofTEK,notoneortheother.Eachhasthepo-tential toreinforcetheotherandtocompensateforinherent methodological limitations by consideringhistoryandfunction,qualityandquantity,longterm

Figure 17.2: Ecosystem trajectory showing that humans represent an ecological force on the landscape.(From Lewis and Anderson 2002. Copyright © 2002 by the University of Oklahoma Press, Norman. Re-printed with permission. All rights reserved. )

Page 57: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 17 : Traditional Ecological Knowledge and Restoration Practice

Quick Links: SER Restoration Reader TOC▶Restoring the Pacific Northwest TOC▶Buy Restoring the Pacific Northwest▶

and short term, culture and ecology, economy andenvironment.

Successional Theory and Disturbance

Traditional ecological knowledge complementscontemporaryknowledgeoffireecologybyprovid-ing information about historical and contemporaryapplications of fire by indigenous people, includingfire effects on wildlife and vegetation in differentenvironments. Indigenous knowledge of fire ecol-ogy includes but is not limited to variations in firefrequency,intensity,severity,andspecificityofareasburnedindifferentecosystemsorplantcommunitiesbyindigenouspeopleorbylightningignitions.TEKprovidesknowledgeaboutfireeffectsandecosystemresponses and about how physical and biologicalprocessessuchashydrologyandforestsuccessionre-spondtofireovertime(LewisandAnderson�00�).Integrating multiple knowledge systems to under-standtheeffectsoffireontheremainingpost-treat-mentvegetationor soilscan lead togreateraccom-plishmentofobjectives.Thinningandspringseasonpileburningmaybeintermediatestepsthathelppre-parethesiteforthereintroductionoffallseasonlow-intensity burns that emulate Indian fire (Williams�000). Ethnographic information and TEK may beinstrumentalateachtreatmentstep,especiallywhenoneisconsideringrestorationeffectsonwildlife,foodplants,ornontimber forestproducts, resources thathold high social and ecological value to local com-munities(Anderson�001).Restoring and maintaining biocultural diversity ofthe landscape through integrated restoration plan-ninginvolvesaninterdisciplinaryaswellasamulti-culturalapproach.Fuelreductionprojectsthatincor-porateIndianfirewillhavehigherlevelsofsuccessinrestoringandmaintainingbiodiversity,whichinturnwillsupportculturaldiversityandlocalcommu-nities.Thispremisemayholdtrueespeciallywithna-tiveculturesthathistoricallyandcurrentlyrelyonfireand fire-dependent landscapes for their sustenanceandculturalsurvival(Boyd1999).Acommunityfor-estryapproachcanhelplocalcommunitiescopewithlikely future changes caused by climate change andintensifieddemandsofnaturalresources.

Defining Scale

Issues of ecological and social scale are importantconsiderations in restoration work. Any restorationprogram directed toward a given geographic areamustcarefullydefinethescaleatwhichitwilloper-ate.Forexample,willprojectsfocusonasinglespe-ciesorpopulation,aparticularhabitat,oranentirewatershed?Willrestorationengagethecollaborationofanindividual,acommunity,oranationalorgani-zationorinstitution?Indigenous ways of understanding and relating totheenvironmentprovideusefulmodels for framingrestorationeffortsattheappropriatescale.IncoastalPacific Northwest environs, individual families tra-ditionallywereresponsible foraparticularresourcebaseataspecificlocation(e.g.,shellfishbeds).Villag-eswereorganizedaroundspecificplacesalongstreamreaches,andanaffiliatedtribalgroup(distinguishedby common linguistics) managed a given bioregion(J.James,personalcommunication,�001).Appropri-

Figure 17.3.

Scale of potential management effects. (From Lewis and Ander son 2002. Copyright © 2002 by the University of Oklahoma Press, Norman. Reprinted with permission. All rights reserved.)

Page 58: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�8 Restoring the Pacific Northwest

SER Restoration Reader

atetechnologiesandresourcemanagementpracticeswereritualizedtomaintainhealthyfunctioningofthesystematallsocialandecologicalscales.Definingthescaleofoperationprovidescontextforour individual actions linking with others’ actionsacross or up in scale. TEK provides an operationalframework that addresses the integration of thevarious ecological and social scales, situated withintemporalscales(Figure1�.�;Berkesetal.�000).Theperspectiveofscalecanalsobereflectiveinthatthestrengths and weaknesses of TEK and Western sci-ence are evaluated in the context of the restorationprogramorprojectsbeingplanned,implemented,ormonitored.

Excerpted from Restoring the Pacific Northwest by Dean Apostol and Marcia Sinclair. Copyright © 2006 by Island Press. Excerpted by permis-sion of Island Press. All rights reserved. No part of the excerpt may be reproduced or reprinted without permission in writing from the publisher.

Page 59: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

thE tallgRaSS REStoRaation handbook

The Tallgrass Restoration HandbookFor Prairies, Savannas, and Woodlands

EditedbyStephenPackardandCorneliaF.Mutel

ForewordbyWilliamR.JordanIII

Cloth,$��.00,ISBN9�8-1-��9-���19-�

Paper,$��.00,ISBN1-�9���-0��-�

�00�.�0�pages.�x9

Index,appendix

Contents

List of Illustrations xi

List of Tables xii

Forewordby William R. Jordan III xiii

Preface to the 2005 Edition,by Cornelia F. Mutel and Stephen Packard xix

Perspective,by Stephen Packard and Cornelia F. Mutel xxv

Acknowledgments xxxv

Part I. Introduction

Chapter 1.OrchardsofOakandaSeaofGrass �Virginia M. Kline

Chapter 2.PrairieUnderground ��R. Michael Miller

Page 60: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�0 The Tallgrass Restoration Handbook

SER Restoration Reader

Part II. Goals and Plans

Chapter 3.PlanningaRestoration �1 Virginia M. Kline

Chapter 4.RestorationOptions �� Stephen Packard

Chapter 5.RestoringRemnants ��Stephen Packard and Laurel M. Ross

Chapter 6.RestoringPopulationsofRarePlants 89James A. Reinartz

Part III. Seeds and Planting

Chapter 7.ObtainingandProcessingSeeds 99Steven I. Apfelbaum, Brian J. Bader, Fred Faessler, David Mahler

Chapter 8.TipsforGatheringIndividualSpecies 1��Richard R. Clinebell II

Chapter 9.DesigningSeedMixes 1��Neil Diboll

Chapter 10.SeedTreatmentandPropagationMethods 1�1James E. Steffen

Chapter 11.Interseeding 1��Stephen Packard

Chapter 12.PlowingandSeeding 19�John P. Morgan

Chapter 13.Hand-PlantedPrairies �1�Peter Schramm

Part IV. Management and Monitoring

Chapter 14.ConductingBurns ���Wayne R. Pauly

Chapter 15.SummerFires ���Roger C. Anderson

Chapter 16.ControllingInvasivePlants ��1Mary Kay Solecki

Chapter 17.MonitoringVegetation ��9Linda A. Masters

Page 61: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�1Chapter 1: Orchards of Oak and a Sea of Grass

Quick Links: SER Restoration Reader TOC▶The Tallgrass Restoration Handbook TOC▶Buy The Tallgrass Restoration Handbook▶

Part V. Protecting, Restoring, and Monitoring Animals

Chapter 18.Insects �0�Douglas J. Taron

Chapter 19. AmphibiansandReptiles �19Kenneth S. Mierzwa

Chapter 20.Birds ���Victoria J. Byre

Chapter 21.Bison ��9Allen A. Steuter

Appendixes

A.VascularPlantsofMidwesternTallgrassPrairies ��1Douglas Ladd

B.TerrestrialVertebratesofTallgrassPrairies �01Stanley A. Temple

C.Cross-ReferencesforPlantNames �1�

D.PublicationsonNaturalCommunitiesoftheTallgrassRegion ���

E.SourcesofSeedsandEquipment ���

F.RestorationContacts ���

Contributors ���

Index ��1

Page 62: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� The Tallgrass Restoration Handbook

SER Restoration Reader

From chapter 1, “Orchards of Oak and a Sea of Grass,” by Virginia M. Kline

The Tallgrass Prairie

What Is a Prairie?

Frenchexplorerscalleditprairie,takenfromaFrenchwordmeaning“meadow,”andearlysettlersadoptedthatnameforthisunfamiliarNewWorldgrassland,for which there seemed to be no appropriate wordinEnglish.Thosewhoexperiencedtheprairiefirst-handhadnoneedforaprecisedefinitionoftheterm;thatwouldcomemuchlater,afterafledglingscienceacquireditsownnewname:ecology.JohnT.Curtis,thefirstecologistattheUniversityofWisconsin,un-dertookwithhisstudentsthetaskofdelineatingandcharacterizingeachofthemajorbioticcommunitiesofWisconsin.Basedontheirextensivefieldstudies,Curtis’sbookThe Vegetation of Wisconsinwaspub-lishedin19�9.InitCurtisdefinedaprairieasanopencommunity,dominatedbygrass,andhavinglessthanonetreeperacre.Insettingthis limit,hecautionedthat thiswasanarbitrarydistinction for theconve-nienceofthosestudyingacontinuumofvegetation.Natureseldomdrawslines;onecommunityislikelytoblendintothenext.

Plants of the Prairie Community

Prairiesarerichinspecies,andthegrasses,compos-ites,andlegumesareespeciallywellrepresented.(SeeappendixAfora listingof tallgrassprairievascularplants.)Theparticulargroupof speciespresentde-pends on geographic location, since some species’rangesarelimitedtocertainareas withintheprairieregion;italsodependsonlocaltopographyandsoil.Prairies near the northern limits of the prairie re-giondifferincompositionfromthosefarthersouth,while within the same geographic area, prairies onhigh rockyhill slopes, sand terraces,deep silt loamsoils, and poorly drained lowlands also differ fromone another. In Wisconsin, characteristic grasses ofthedrierprairiesincludelittlebluestem,prairiedrop-seed,andside-oatsgrama.Siteswithdeepsilt loamsoilsaredominatedbybigbluestemandIndiangrass,while wetter sites have blue joint grass and prairiecordgrass.(SeeFigure1.1.)Disturbanceandfirehis-toryinfluencecompositionaswell;forexample,somespeciesrequiresoildisturbance,suchasthatprovidedbybisonwallowsoranimalburrows, toget started,andsomespeciesdobestwhenfiresarefrequentoroccurataparticularseason.Prairie plants grow close together, sharing availableresourcesintimeandspace.Somespeciesflowerear-ly in theseason, some inmidsummer, some in fall.Thusnotallthespecieshavetheirmostrapidgrowthphasesatthesametime;insteadtheytaketurns.Earlygrowerstendtobeshort,andheighttendstoincreaseoverthegrowingseason,culminatinginthetallgrass-esinearlyfall.However,somespeciesthatbloomlat-erthanthetallgrasses,includinggoldenrods,asters,andgentians,areshorterthanthegrasses,takingad-vantageoftheincreasedlightlevelsasthegrassleavesturnfallcolor.Beneaththesurface,rootsofdifferentshapes,sizesanddepthsdividethespace.

Adaptations of the Plants

Eachspeciesisadaptedtotheextremetemperatures,drought,wind,highlightintensity,fire,andgrazingthatarepartoftheprairieplant’senvironment.Someofthemorphologicaladaptationseasilyobservedontheprairie includefinelydividedornarrowverticalleavestopreventoverheatingbythesunandofferlessresistance to the wind, and leathery or waxy leaves

About This Excerpt

In the 19�0s, researchers at the University ofWisconsin-Madison Arboretum launched ex-perimentsaimedatlearninghowprairieswork,andthefieldofecologicalrestorationwasborn.The Tallgrass Restoration Handbook offers theexcitement and perspective of the trial-and-error, hands-on work of prairie restoration.Written by practitioners for practitioners, thisis a practical manual of the art and science ofprairie,savanna,andoakwoodlandrestoration.Inthisexcerpt,VirginiaKlineintroducesustothelivingcommunitythatmakesupthis“seaofgrassandorchardsofoak.”

Page 63: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 1: Orchards of Oak and a Sea of Grass

Quick Links: SER Restoration Reader TOC▶The Tallgrass Restoration Handbook TOC▶Buy The Tallgrass Restoration Handbook▶

Figure 1.1: Prairie grasses.

(Note: There are as yet no popular guides to the identification of most prai-rie or woodland grasses and sedges. Yet these plants are crucial to restora-tion. The best way to learn them is to master the technical keys and to find local botanists who can coach you. The drawings and captions here will introduce a few of the most widespread species.)

a. Little bluestem (Schizachyrium scoparium): Seed heads throughout top half of the stems. Leaves folded (v-shaped) in bud. Base of stem very flat. Mesic to dry soil. Thigh high.

b. June grass (Koeleria macrantha): Long, compact, erect seed heads. Dry, often sandy soil. Shin high.

c. Big bluestem (Andropogon gerardii): “Turkey-foot” seed heads. Stems often multicolored (with blue, purple, red, green, yellow, and orange). Base of stem roundish. Leaves rolled in bud. Mesic soil. Head high.

d. Indian grass (Sorghastrum nutans): Seed head featherlike. Distinctive auricles (lobes that hug stem at base of leaf ). Mesic soil. Head high.

e. Porcupine grass (Stipa spartea): Needle-sharp seeds measure five to eight inches long. Dry soil. Waist high.

f. Blue joint grass (Calamagrostis canadensis): Wispy seed heads on three- to four-foot stems. Papery ligule around stem at base of leaf. Forms solid stands in wetlands; spreads by runners. Waist high.

g. Switch grass (Panicum virgatum): Open seed heads. Hairy where leaf meets stem. Wet-mesic soil. Chest high.

h. Canada wild rye (Elymus canadensis): Plant is pale blue-green at flow-ering time. Nodding heads of bristly seeds, which spread and recurve as they dry. Wet-mesic soil and woods edges. Waist to chest high.

i. Prairie dropseed (Sporobolus heterolepis): Very narrow leaves in dense clumps. Spherical seeds in open heads that rise well above leaves. Strong scent of buttered popcorn or hot wax. Mesic to dry soil. Seed heads waist high.

j. Prairie cord grass (Spartina pectinata): Coarse, rough-edged leaves tapering to very fine tips. Rows of brushlike seed heads. Wet soil. Over head high.

to reduce water loss. Unseen are the extensive rootsystems that make up two-thirds of the total plantbiomass—anadaptationthathelpsmaintainafavor-able water balance and allows rapid regrowth afterfireorgrazing.Budslocatedatorbelowthegroundsurfaceareimportantforresprouting,asistheability,ingrasses,toregrowfromnodeslowontheplant.Althoughweoftenconsiderwindandhighlightlev-els as factors that plants must withstand, wind andlight are important resources as well. Many prairiespecies take advantage of wind for pollen and seeddispersal.Manyhavea largeamountof leaf surface(eventhoughindividualleavesmaybesmall)totakeadvantageofthehighlightintensity,therebyincreas-ing productivity. Many of the plants, including thewarm-seasongrasses,carryoutphotosynthesisusing

adistinctivechemicalpathwaythat isadvantageousunderthehotanddryconditionsfrequentlyencoun-teredinprairies.ThisC�pathway(sonamedbecausethefirstproductformedisa four-carbonmolecule)allowsahighrateofphotosynthesisathightempera-turesandahigherefficiencyofwateruse.Tallgrassprairies are among the most productive vegetationtypesintheworld.

Fire

Fire is an important process in prairies, where it ispartofapositivefeedbacksystem,thegrowthofprai-riegrassprovidingexcellent fuel for fireandfire inturn stimulating the growth of prairie grass. Light-ningcanigniteaprairiefire,butduringthecenturies

Page 64: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� The Tallgrass Restoration Handbook

SER Restoration Reader

preceding European settlement, fires set by NativeAmericansweremuchmore important.Thesepeo-pleusedfireforavarietyofreasons,whichcanper-hapsbesummarizedasmanagingtheirhabitat.Theyburnedfrequently,possiblyasoftenaseveryyear.Where the climate is suitable for trees and shrubs,fire is critical to prevent woody invasion of prairie.Fireplayedamajorroleinmaintainingthemosaicofprairie, oak savanna, and oak forest that character-izedtheeasternboundaryoftheprairie.Firealsoin-creasesthevigorofmanyprairiespecies,andtheyearofaburnislikelytobeassociatedwithtallerplants,especially the grasses, and a greater abundance offlowers.Thestimulationisduetoremovalofthein-sulating litter of grass stems and leaves by the fire,whichallowsthesoiltowarmupearlierinthespringandthusincreasesthelengthofthegrowingseason.Todaymanagersofprairiesoftenusecarefullytimedburnstohelpcontrolunwantedexoticweedsaswell.

Excerpted from The Tallgrass Restoration Handbook by Stephen Packard and Cornelia F. Mutel. Copyright © 2005 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Page 65: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

gREat baSin RipaRian EcoSyStEmS

Great Basin Riparian EcosystemsEcology, Management, and Restoration

EditedbyJeanneC.ChambersandJerryR.Miller

ForewordbyJamesA.MacMahon

Cloth,$�0.00,ISBN1-��9��-98�-�

Paper,$��.00,ISBN1-��9��-98�-�

�00�.��0pages.�x9

Tables,figures,index

Contents

Foreword ixJames A. MacMahon

Preface xiii

Chapter 1.RestoringandMaintainingSustainableRiparianEcosystems:TheGreatBasinEcosystemManagementProjectJeanne C. Chambers and Jerry R. Miller 1

Chapter 2. ClimateChangeandAssociatedVegetationDynamicsduringtheHolocene:ThePaleoecologicalRecord ��Robin J. Tausch, Cheryl L. Nowak, and Scott A. Mensing

Chapter 3.FluvialGeomorphicResponsestoHoloceneClimateChange �9Jerry R. Miller, Kyle House, Dru Germanoski, Robin J. Tausch, and Jeanne C. Chambers

Chapter 4.BasinSensitivitytoChannelIncisioninResponsetoNaturalandAnthropogenicDisturbance 88Dru Germanoski and Jerry R. Miller

Page 66: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Great Basin Riparian Ecosystems

SER Restoration Reader

Chapter 5.GeomorphicandHydrologicControlsonSurfaceandSubsurfaceFlowRegimesinRiparianMeadowEcosystems 1��David G. Jewett, Mark L. Lord, Jerry R. Miller, and Jeanne C. Chambers

Chapter 6.EffectsofNaturalandAnthropogenicDisturbancesonWaterQuality 1��Michael C. Amacher, Janice Kotuby-Amacher, and Paul R. Grossl

Chapter 7.EffectsofGeomorphicProcessesandHydrologicRegimesonRiparianVegetation 19�Jeanne C. Chambers, Robin J. Tausch, John L. Korfmacher, Dru Germanoski, Jerry R. Miller, and David G. Jewett

Chapter 8.Explanation,Prediction,andMaintenanceofNativeSpeciesRichnessandComposition ���Erica Fleishman, Jason B. Dunham, Dennis D. Murphy, and Peter F. Brussard

Chapter 9.Process-BasedApproachesforManagingandRestoringRiparianEcosystems ��1Jeanne C. Chambers, Jerry R. Miller, Dru Germanoski, and Dave A. Weixelman

AbouttheEditorsandAuthors �9�

Index �99

Page 67: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 9: Process-Based Approaches for Managing and Restoring Riparian Ecosystems

Quick Links: SER Restoration Reader TOC▶Great Basin Riparian Ecosystems TOC▶Buy Great Basin Riparian Ecosystems▶

From chapter 9, “Process-Based Approaches for Managing and Restoring Riparian Ecosystems,” by Jeanne C. Chambers, Jerry R. Miller, Dru Germanoski, and Dave A. Weixelman

Processes Structuring Great Basin Riparian Areas

The processes currently structuring riparian areasinthecentralGreatBasinarestronglyinfluencedbypast climates.Thepaleoecological records collectedaspartoftheEMProject,aswellaspreviousinvesti-gations,indicatethatamajordroughtoccurredintheregionfromapproximately��00to1�00YBP(Milleretal.�001;Chapter�).Duringthisdrought,mostoftheavailablesedimentswerestrippedfromthehill-slopesanddepositedonthevalleyfloorsandonside-valley alluvial fans (Chapter �). As a consequenceof this hillslope erosion, streams are now sedimentlimitedandhaveanaturaltendencytoincise.Infact,geomorphicdataindicatethatoverthepasttwothou-sandyears,thedominantresponseofthestreamstodisturbancehasbeenincision.Themostrecentepi-sodeofincisionbeganabout�00to�00YBP,whichpredates Anglo-American settlement of the area inthe18�0s.The tendency of a stream to incise depends on thesensitivityof thewatershedtobothnaturalandan-

thropogenic disturbance. Analysis of central GreatBasin watersheds indicate that stream incision isclosely related to watershed characteristics, includ-inggeology,size,andmorphology,andtovalleyseg-ment attributes like gradient, width, and substratesize(Chapter�).Inthesesemiaridecosystemswhereprecipitationand,thus,streamflowishighlyvariablebothbetweenandwithinyears,mostincisionoccursduring episodic, high-flow events. Since the initia-tionoftheEMProjectin199�,high-floweventsca-pableofproducingsignificantincisionhaveoccurredin199�and1998(Chambersetal.1998;Germanoskiet al. �001). Watersheds that are highly sensitive todisturbancerespondtomore-frequent,lower-magni-tuderunoffeventsthanwatershedsthatarelesssen-sitivetodisturbance,Thecombinedgeomorphicandhydrologic characteristics of the watersheds deter-minethecompositionandpatternofriparianvegeta-tionatwatershed-tovalley-segmentscales(chapter�).Thus,watershedattributesthatcharacterizebasinsensitivity to disturbance also have good predictivevalueforvegetationtypesandassociations.A number of the watersheds are characterized byprominent side-valley alluvial fans that influenceboth stream and riparian ecosystems. The fansreached their maximum extent during the droughtthatoccurredfromabout��00to1�99YPB(Milleretal.�001;Chapter�).Watershedswithwell-devel-oped fans often are characterized by stepped-valleyprofilesand,consequently,ripariancorridorsthatex-hibitabruptchangesinlocalgeomorphicandhydro-logicattributes.Becauseof the relationshipsamonggeomorphiccharacteristics,hydrologicregimes,andriparianvegetation,thefansalsoinfluenceecosystempatterns within the riparian corridors (Korfmacher�001;Chapters�and�).Manyofthefanscurrentlyserveas localbase-levelcontrolsthatdeterminetherateandmagnitudeofupstreamincision.Riparian ecosystems located immediately upstreamof alluvial fans often are at risk of stream incisionthroughthefandeposits.Manyofthefanshavemul-tipleknickpoints(ashort,oversteepenedsegmentofthelongitudinalprofileofthechannel)andaresub-jecttostreamincisionduetohighshearstressasso-ciated with knickzone migration during high-flowevents. Similarly, ecosystems located in watershedswith pseudostable channels can be degraded dur-ing catastrophic incision via groundwater sapping.

About This Excerpt

“Great Basin Riparian Ecosystems is not justabouttheecologyandrestorationofGreatBa-sinriparianareas,butalsothegeomorphologyandhydrologyoftheassociateduplands….Themost important lesson in these pages is thatrestorationists cannotescapehistory.Thegeo-morphichistoryiscriticaltounderstandingtherolesofhumans, livestock,andclimatechangeinstreamchannelincision,andrestoringtopre-settlementconditionsmayactuallyresultinanunstable state in a nonequilibrium landscape.Thelessonsrecountedherehavebroadimplica-tionsforothersystems.”

—EdithB.Allen,formereditorof Restoration Ecology

Page 68: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�8 Great Basin Riparian Ecosystems

SER Restoration Reader

Becausethestreamchannelservesasagroundwaterdischargepoint,itrepresentsthebaseleveltowhichthehydraulicgradientofthegroundwatersystemisadjusted. Stream incision lowers this base level forgroundwaterdischarge,resultingindeclinesinwatertablelevelsandsubsequentchangesinthecomposi-tionandstructureofriparianvegetation(Castellietal.�000;WrightandChambers�00�).Meadowcom-plexesarepresentlytheecosystemsmostsusceptibleto degradation not only because they are often lo-catedupstreamofalluvialfans,butalsobecausetheyaresubjecttoprocessessuchasgroundwatersapping(Chapter�).The rate and magnitude of stream incision in cen-tralGreatBasinwatershedshavebeen increasedbyanthropogenic disturbances. Because most of thestreamshavebeenpronetoincisionforthepasttwothousand years, separating changes attributable toongoingstreamincisionfromthoseassociatedwithanthropogenicdisturbancecanbeexceedinglycom-plex (Chapter �). In the cases of roads, diversions,andlivestockorrecreationaltrails,thepointofinitia-tionofstreamincisionoftencanbeidentifiedandthelocaleffectsofthedisturbanceonthestreamrecon-structed.Themostdirectevidencethatanthropogen-icdisturbancehasinfluencedstreamincisioninthecentralGreatBasinisderivedfromongoingstudiesontheeffectsofroadsonriparianareas.Increasingly,roadsare identifiedasmajor causesof stream inci-sionandriparianareadegradationacrosstheUnitedStates(USDAForestService199�;FormanandDe-blinger �000; Trombulak and Frissel �000). In thecentralGreatBasin,severalcausesof“roadcaptures”have been documented and many others observedwherestreamshavebeendivertedontoroadsurfacesduringhigh flows(Lahde�00�).Thisdiversionhasresulted in increasedshearstressandstreampowerand,ultimately,streamincision(Lahde�00�).Onceinitiated,streamincisionoftencontinuestooccurasaresultofknickpointmigration.Assigningcauseandeffecttomorediffuseanthropo-genic disturbances such as overgrazing by livestockismoredifficult.Ingeneral,overgrazingbylivestockcan negatively affect stream bank and channel sta-bility, and localized changes in stream morphologyoftenhavebeenassociatedwithovergrazingbylive-stock in the western United States (see reviews inTrimbleandMendel199�;Belskyetal.1999).How-

ever,datathatclearlydemonstratetherelationship(s)betweenregionalstreamincisionandovergrazingbylivestockhavenotbeencollectedforthecentralGreatBasin.Inreality,itmayneverbepossibletopreciselydistinguish the amount of channel incision causedby climate change from that due to anthropogenicdisturbance. From a restoration and managementstandpoint,itisimportanttorecognizethatbecauseparticulartypesofstreamsarepronetoincision,theyhavegreatersensitivitytobothnaturalandanthropo-genicdisturbances.Anthropogenicdisturbanceshaveeffectsonthecen-tral Great Basin riparian ecosystems that are unre-latedtostreamincision.Insemiaridrangelands,likethoseinthewesternUnitedStates,thegeneraldegra-dationofriparianareashasbeenattributedprimarilytoovergrazingbylivestock(seereviewsinKauffmanand Krueger 198�; Clary and Webster 1989; Skov-lin 198�; Fleischner 199�; Ohmart 199�; Belsky etal.1999).Livestockgrazinginfluencesriparianeco-systemsby(1)removingherbage,whichallowssoiltemperaturestoriseandresultsinincreasedevapora-tion;(�)damagingplantsduetorubbing,trampling,grazing,orbrowsing;(�)alteringnutrientdynamicsbydepositingnitrogeninexcreta fromanimalsandremoving foliage; and (�) compacting soil, whichincreases runoff and decreases water availability toplants.ResearchconductedonGreatBasinmeadowecosystems (Weixelman et al. 199�; Chapter �) andelsewhereshowsthattheseeffectscancausechangeinplantphysiology,populationdynamics,andcom-munity attributes such as cover, biomass, composi-tion,andstructure.Inaddition,overgrazingbylive-stockcanresultinlocaldecreasesinwaterqualityasaresultofincreasedsedimentfromroaddamageandroadcrossings(M.Amacher,unpublisheddata).Dis-turbancesdue to recreation, suchascampsites, andvehicleandfoottraffic,haveincreasinglywidespreadeffectsbuthavebeenpoorlydocumented.Thecumulativeeffectsofclimaticperturbationandanthropogenic disturbance in the central Great Ba-sinhavemultipleconsequencesforstreamsandtheirassociatedriparianecosystems.Therehavebeenma-jor changes in channelpatternand formandmanystreams have been isolated from their floodplains(Chapters�and�).Surfacewaterandgroundwaterin-teractionshavebeenaltered(Germanoskietal.�001;Chapter�),anddeclinesinwatertableshavecaused

Page 69: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�9Chapter 9: Process-Based Approaches for Managing and Restoring Riparian Ecosystems

Quick Links: SER Restoration Reader TOC▶Great Basin Riparian Ecosystems TOC▶Buy Great Basin Riparian Ecosystems▶

changesinplantspeciescompositionandvegetationstructure (Wright and Chambers �00�; Chapter �).Overgrazing by livestock and other anthropogenicdisturbances have caused additional degradation ofthese ecosystems. The net effects of these changeshavebeenadecreaseintherealextentofripariancor-ridorsandareductioninhabitatquantityandqualityforbothaquaticandterrestrialanimals.

Conceptual Basis for Management and Restoration

Theimportanceofdevelopingaconceptualbasisformanagingandrestoringdegradedecosystemsisgain-ing increasing recognition (Allen et al. 199�; Wil-liamsetal.199�;Whisenant1999;NationalResearchCouncil�00�).FordegradedriparianecosystemslikethoseintheGreatBasin,suchaconceptualbasismustconsiderboththetypeandcharacteristicsofdegra-dation,andtherecoverypotentialasdeterminedbytheunderlyingphysicalandbioticprocesses.InthecentralGreatBasinmanyofthestreamsand,consequently,riparianecosystemsarecurrentlyinanonequilibriumstate.Becauseofthedroughtthatoc-curredbetween��00and1�00YBPandtheerosionofavailablehillslopesediments,thestreamsaresedi-mentlimitedandexhibitatendencytoincise.Someofthestreamshaveadjustedtothenewsetofgeomor-phic conditions, in other words, they have reachedtheirmaximumdepthofincisionunderthecurrentsediment and hydrologic regime. Others are stilladjustingandwillcontinuetoincisebecauseofhet-erogeneouschannelprofilesandthelackofhillslopesediments. Due to the resulting changes in streamprocessesandsurfaceandgroundwaterrelations,ri-parianecosystemshavecrossed thresholds.Forourpurposes,thresholdcrossingsoccurwhenthesystemdoesnotreturntotheoriginalstatefollowingdistur-bance (Ritter et al. 1999). Threshold crossings canbedefinedbasedonthe limitsofnaturalvariabilitywithinsystems.Forstreamsandriparianecosystemsthathavecrossedgeomorphicandhydrologicthresh-

olds, returning the systemtoapredisturbance stateis an unrealistic goal. Thus, it is necessary to baseconceptsofsustainabilityandapproachestomanage-mentoncurrent,andnothistoric,streamprocessesandriparianecosystemconditions.AsoutlinedinChapter1,thegoalofrestorationandmanagement activities in the central Great Basin issustainablestreamandriparianecosystems.Sustain-ableecosystems,overthenormalcycleofdisturbanceevents,retaincharacteristicprocessesincludingratesand magnitudes of geomorphic activity, hydrologicflux and storage, biogeochemical cycling and stor-age, and biological activity and production (modi-fied from Chapin et al. 199� and Christensen et al.199�). Sustainable stream and riparian ecosystemsalso exhibit physical, chemical, and biological link-agesamongtheirgeomorphic,hydrologic,andbioticcomponents(Gregoryetal.1991).Thus,forthepur-posesofthisvolume,managingandrestoringripar-ianareasisdefinedasreestablishingormaintainingsustainable fluvial systems and riparian ecosystemsthatexhibitbothcharacteristicprocessesandrelatedbiological,chemical,andphysicallinkagesamongsys-temcomponents(modifiedfromNationalResearchCouncil199�).Inherentinthisdefinitionistheideathat sustainable ecosystems provide important eco-systemservices.InthecentralGreatBasin,ecosystemservicesfromriparianareasincludeanadequatesup-plyofhigh-qualitywater,habitatforadiversearrayofaquaticandterrestrialorganisms,forageandbrowsefornativeherbivoresandlivestock,andrecreationalopportunities.

Excerpted from Great Basin Riparian Ecosystems by Jeanne C. Cham-bers and Jerry R. Miller. Copyright © 2004 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Page 70: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

SouthwEStERn pondERoSa pinE foREStS

Ecological Restoration of Southwestern Ponderosa Pine Forests

EditedbyPeterFriederici

ForewordbyGaryPaulNabhan

Cloth,$�0.00,ISBN1-��9��-���-1

Paper,$��.00,ISBN1-��9��-���-X

�00�.�8�pages.�x9

Tables,figures,index

Contents

Foreword xiGary Paul Nabhan

Acknowledgments xiii

Introduction xvPeter Friederici

PART I. The Context for Restoration 1

Chapter 1.The“FlagstaffModel” �Peter Friederici

Chapter 2.TheEvolutionaryandHistoricalContext ��W. Wallace Covington

Chapter 3.FirstPeoplesinthePines:HistoricalEcologyofHumansandPonderosas �8Thom Alcoze

Page 71: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�1Chapter 6: Ecological Restoration as Thinking Like a Forest

Quick Links: SER Restoration Reader TOC▶Southwestern Ponderosa Pine Forests TOC▶Buy Southwestern Ponderosa Pine Forests▶

Chapter 4.EcologicalandMarketEconomics �8P. J. Daugherty and Gary B. Snider

Chapter 5.TheGovernanceEnvironment:LinkingScience,Citizens,andPolitics �0Hanna J. Cortner

Chapter 6.EcologicalRestorationasThinkingLikeaForest 81Max Oelschlaeger

PART II. Restoring Ecosystem Functions and Processes 93

Chapter 7.ThePonderosaPineForestPartnership:Ecology,Economics,andCommunityInvolvementinForestRestoration 99William H. Romme, Mike Preston, Dennis L. Lynch, Phil Kemp, M. Lisa Floyd, David D. Hanna, and Sam Burns

Chapter 8.FuelsandFireBehavior 1��G. Thomas Zimmerman

Chapter 9.SoilsandNutrients 1��Paul C. Selmants, Adrien Elseroad, and Stephen C. Hart

Chapter 10.Hydrology 1�1Malchus B. Baker Jr.

Chapter 11.AssessingLandscape-LevelInfluencesofForestRestorationonAnimalPopulations 1��James Battin and Thomas D. Sisk

PART III. Restoring and Protecting Biological Diversity 191

Chapter 12.HealingtheRegionofPines:ForestRestorationinArizona’sUinkaretMountains 19�Peter Friederici

Chapter 13.TreeHealthandForestStructure �1�Joy Nystrom Mast

Chapter 14.UnderstoryVegetation ���Julie E. Korb and Judith D. Springer

Chapter 15.ExoticInvasivePlants ��1Carolyn Hull Sieg, Barbara G. Phillips, and Laura P. Moser

Chapter 16.Vertebrates ��8Carol L. Chambers and Stephen S. Germaine

Chapter 17.ArthropodResponses:AFunctionalApproach �8�Karen C. Short and José F. Negrón

Chapter 18.Threatened,Endangered,andSensitiveSpecies �0�Paul Beier and Joyce Maschinski

Page 72: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Ecological Restoration of Southwestern Ponderosa Pine Forests

SER Restoration Reader

PART IV. Conducting Restoration: Practical Concerns 329

Chapter 19.Community-BasedForestRestoration ���Ann Moote

Chapter 20.EcologicalRestorationintheUrban–WildlandInterface ���John M. Marzluff and Gordon A. Bradley

Chapter 21.AirQualityandSmokeManagement ��1Gretchen Barkmann

Chapter 22.RestorationandCulturalResources �8�Helen C. Fairley

Chapter 23.Monitoring �0�Peter Z. Fulé

Chapter 24.AdaptiveManagementandEcologicalRestoration �1�Carol Murray and David Marmorek

Conclusion: KeyConceptsandQuestionsinAdaptiveEcosystemRestorationofPonderosaPineForestEcosystems ��9W. Wallace Covington and Diane Vosick

Appendix 1:SpeciesMentionedinText ���

Appendix 2: Threatened,Endangered,andSensitiveVertebrateSpeciesinArizona,NewMexico,SouthUtah,andColorado ��9

Appendix 3:ArizonaThreatened,Endangered,andSensitivePlantsPotentiallyAffectedbyPonderosaPineForestRestoration ��0

Appendix 4: ColoradoThreatened,Endangered,andSensitivePlantsPotentiallyAffectedbyPonderosaPineForestRestoration ���

Appendix 5: NevadaThreatened,Endangered,andSensitivePlantsPotentiallyAffectedbyPonderosaPineForestRestoration ���

Appendix 6:NewMexicoThreatened,Endangered,andSensitivePlantsPotentiallyAffectedbyPonderosaPineForestRestoration ��0

Appendix 7: UtahThreatened,Endangered,andSensitivePlantsPotentiallyAffectedbyPonderosaPineForestRestoration ���

References ���

AbouttheContributors ���

Index ���

Page 73: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 6: Ecological Restoration as Thinking Like a Forest

Quick Links: SER Restoration Reader TOC▶Southwestern Ponderosa Pine Forests TOC▶Buy Southwestern Ponderosa Pine Forests▶

From chapter 6, “Ecological Restoration as Thinking Like a Forest,” by Max Oelschlaeger

Ecological Restoration in Ecosystem Context

FrankGolley(199�)arguesthatthe“ecosystemcon-cept” militates against the theoretical separation ofevolvedhumansystems,orculture(carriedbysym-boliccodes),fromevolvedbiologicalsystems,orna-ture (carried by genetic codes). That separation, hecontinues, is not only conceptually untenable, butdangerous to the sustainability of cultural-naturalsystems.Themuddlethatcharacterizesrestorationofsouth-westernponderosaforestsispreciselyacaseinpoint.Why? Because these ecosystems are increasinglyand predominantly artifactual, shaped more by hu-managencythannaturallyevolved,moretheconse-quence of cultural narratives than of genetic codes.Theevolvingnarrativeofecologicalrestorationrec-ognizestheiranthropogenicnature.Italsodreamsofrestoringthese forests tohealthbyuncouplingour-selves from them, by taking actions that incremen-tallynudgetheforestsontotrajectoriesofrecovery.This evolving conversation, whatever its uncertain-ties,isahigh-mindedeffort—ecocentricratherthan

narrowly anthropocentric. Ecological restorationpresupposes that biophysically evolved systems andcreatures have intrinsic value. The community ofrestorationistsisbeginningtothinkandactinwaysfirstconceptualizedbyAldoLeopold(19�9).Hear-guedthatgoverninglandmanagementpracticeswerefundamentally flawed, and that new ways of think-ingthataddresstheevolvedrealityofecosystemsandthedeleteriousoutcomesofecologicallymyopichu-man actions were essential to long-term ecosystemintegrity,stability,andbeauty.Inparticular,Leopolddistinguished views that classify natural systems asresources to be economically exploited from thosethat categorize them as something more than rawmaterials forhumanpurposes—even if theycanbeeconomicallyexploited.Inhisessay“ThinkingLikea Mountain,” Leopold shows how ranchers thinkaboutmontaneecosystemsascowfactories, loggersthink about them as wood factories, and huntersthinkaboutthemasdeerfactories.Butnonethinkslike the mountain itself, a naturally evolved systemwith a temporal dimension and evolved structurethateludethenativerangeofhumanperceptionsandestablished conceptual schemes. Leopold’s intent istomakeclearthedifficultyhumansfaceinthinkingecologically. In fact, without expanding the tempo-ralscaleofperceptionandescapingconventionsthatoverdeterminetheirthinking,humanscannotthinkecologically.For those caught in the muddle, the challenge ofrestorationmightbedescribedas coming to “thinklikeaforest.”Andmaybe,justmaybe,acceptingthatchallenge might help us begin to understand whystakeholders are conflicted. Why? Because humanshaveverylittleexperience,almostnone,inthinkinglike a forest. Since the advent of Neolithic culture,webig-brainedtwo-leggedshaveprimarily thoughtaboutthenaturalworld,whetherlandscapesorspe-cies,fromtheperspectiveofaself-interestedspecies.In the modern world, that self-interest has playedoutthroughnarrow,fundamentallyeconomicjudg-ments; forest policies and sciences have primarilyservedtheendsofexploitation.Public-lands forests would doubtless be in evenworseconditionwithout theeffortsofGiffordPin-chot,whostoppedalonghistoryoflaissez-faireex-ploitation.Buttheethicalcredobehindprogressiveresource conservation was—and remains—largely

About This Excerpt

Withyearsofdroughtparchingthesouthwest-ernregionof theUnitedStates,agrowinghu-manpopulationmovingintodrasticallyalteredponderosapineforests,andseverewildfiresoc-curringregularlyintheregion,Ecological Resto-ration of Southwestern Ponderosa Pine Forestsisa timelyandmuch-neededvolumewith infor-mationthatisalsorelevantoutsidethisregion.In this book, Peter Friederici brings togetherpractitionersand thinkers fromawidevarietyoffieldstosynthesizewhatisknownabouteco-logicalrestorationinponderosapineforests.Inthis excerpt, Max Oelschlaeger argues that allparticipantsintheseforestsmustseethemselvesaspartofthe“foreststory”forrestorationtobesuccessful.

Page 74: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Ecological Restoration of Southwestern Ponderosa Pine Forests

SER Restoration Reader

economic.Fireexclusionandsuppressiongrewoutofthesameideologythatledtothedammingofwildrivers.Justasfree-flowingriverswereconceptualizedas wastingwater, so forestfireswereviewedasde-stroyingvaluabletimber,andthegrassesthatnatu-rally carried frequent, low-intensity fires throughthepineswereseenas fodder thatcouldgrowbeefandmutton.Today’smulti-usestatutoryframework(often termed “multi-abuse” by environmentalists)is firmly rooted in utilitarianism. Forest science it-selfhasbeenmesmerizedbyclassicalphysicsanditsquestforpredictiveknowledge,andbymarketeco-nomics,whichviewsforestsasrawmaterialsonly.Forest science fails to recognize its roots in thescientificrevolutionofthe1�00sandthenotionthatthroughsciencehumanswouldbecomethemastersandpossessorsofnature.Theresulting“conspiracyofoptimism”(Hirt199�)heldthatbyapplyingsci-ence to management and policy we could excludefire, harvest timber, eradicate insects, graze thegrasses, provide recreational opportunities— andstillhavehealthy,flourishingforests.But forestsci-encewasuntil recentlyblind to theevolvedroleoflow-intensitygroundfiresinponderosapineecosys-tems,ignorantoftheunsustainabilityofcommercialforestryinthearidSouthwest,indifferenttothead-verseconsequencesofgrazing,andoblivioustotheharmfulconsequencesofsomerecreationaluses.Politically the forestshavebeenheld in the lockofthe“irontriangle”(Chapter�)madeupofcommer-cial interests, western congressional representativesand senators, and entrenched land managementbureaucrats, including forest scientists. It assured astreamoftimber,employment,andsubsidiesforthecommercial interests, campaign contributions andreelectionformembersofCongress,andfundingformanagementagencies—butnoneofthesestakehold-erswerethinkinglikeaforest.Rather,allconsideredtheforestacommodity,rawmaterialtofuelaneco-nomicengine.The situation finally changed during the 1990s, ascommercial forestry on public lands dramaticallydeclined. Yet environmental advocates continue toworry,understandably,aboutthereestablishmentofcommercialforestry.Today’sgreatestdangertopon-derosa forests is not the sawyer but crown fire, butproposalsformultigenerational,landscape-scaleeco-

logicalrestorationprojectsthatwouldincrementallylessenandultimatelyeradicate thedangerofcrownfireareviewedbysomeadvocacygroupsasaTrojanHorse.Giventhehistoryoftheseforests,thispositionisnotincomprehensible.YetasIlistentothediversecommunityofecologicalrestorationists, I hear hope that the basic composi-tion, structure, and function of ecosystems drivenfarfromtheirnaturaldynamicequilibriummightberestored.Whoamongus—otherthanprofiteerslook-ingforaquickbuckandthefirststageoutoftown—couldbeagainstsuchagoal?Wehavelearnedthattheanthropogenicecosystemstowhichwearesocloselycoupled are, whatever previous intentions, subjectto catastrophic, costly, and irreversible changes. Ihave been somewhat surprised when people whomI respect for their untiring defense of southwesternforestsclaimthatecologicalrestorationisafastroadto Hell—to forest conditions worse than those thatexist now. This proves, at least, that “high-minded-ness”comesatthecostofcognitivedissonance.Butcognitivedissonancecanbeproductivebyinvitingadeeperandricherunderstandingofthetangleofis-suesconcerningrestoration.

Sweet Reason

Humanbeingsaregenerallynotrisk-takers.Wetendtolikethingssettled,sureandcertain.Politicians,es-pecially,donotlikerisk.Landmanagersdonotlikerisk.Theyneedtobeincontroloftheforest.Scientificresearchersattempttominimizeriskofvarioustypesof methodological mistakes. Environmentalists donotlikerisks,either,especiallyleadersofmanyenvi-ronmentalorganizations,forwhomcompromisehasbecomeadreadedword.Andallofus,whenitcomestoethical judgment,hateevenawhiffofrelativism.Whatwelikeareevaluativejudgmentsthataparticu-largoalisclearlybetterthananyothergoal.Thus,wetoooftenacceptutilitarianarguments.Yet thedeepest thinkersofourtime, like theNobelPrizewinnerIlyaPrigogine,arguethattheendofcer-tainty isathand(Prigogine198�,199�).Fallibilismrules.Nojudgmentsofpolicy,science,orethicsareanythingmoreor less than fallible.Remarkablead-vancesinunderstandingthebiologicalbasisofhumannaturehavetrailedinthewakeoftheoreticaldevelop-mentssuchasGödel’sproofandHeisenberg’suncer-

Page 75: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

��Chapter 6: Ecological Restoration as Thinking Like a Forest

Quick Links: SER Restoration Reader TOC▶Southwestern Ponderosa Pine Forests TOC▶Buy Southwestern Ponderosa Pine Forests▶

taintyprinciple.Asaresult,somesaywehavemovedbeyondbothobjectivism(thebeliefthathumanscanhavesureandcertainknowledgethatisgoodforallpeople inallplacesatall times)andrelativism(thebeliefthathumanscannevermakeknowledgeclaimsthatescapetheparticularityoftimeandplace,personandclass,orpoliticalideology,nationalistfervor,andreligiousdogma).Oneconstructivealternativetoeitherobjectivismorrelativismistheconjecturethathumanslearnastheygo.Weare,simply,falliblelearners.Learninghowtothinklikeaforestisanexerciseinfallibilitythatper-hapsbeginswith the recognition thatmostofwhatwethoughtweknewaboutforestsisnotdefensible.Clearcutting,forexample,defendedbyseveralgener-ationsoftimbermanagersasscientificallygroundedandthusasrational forestmanagement, isclearlyafailedeconomicstrategythatishardonwesternfor-ests and associated human communities (Langston199�; Power 199�). Similarly, fire exclusion withinponderosa pine forests (though not necessarily aturban–wildlandinterfaces)isunecologicalandeco-nomicallywasteful,leadingtoever-increasinglossofponderosaforeststocrownfire,destructionofwater-sheds,lossofcriticalhabitatforendangeredspecies,dramatically increasing expenditures to fight fires,lossofproperty,andeventhelossofhumanlife(US-GAO1998).Thatsaid,arewelearningtothinklikeaforest?May-be,onlymaybe.Weremaincollectivelyat thesheerbeginningofalearningcurvethatslopesupsteeplyandonlygraduallyflattensout.Thescientificprocessofconjectureandrefutation—orfalliblelearning—isfarthest along inansweringquestionone:Whatarethecausalfactorsthathaveledtopresentconditionsandthatmightbemanipulatedtohealponderosafor-ests?These factorsareaddressed inParts IIandIIIofthisvolume.However,stakeholdergroups,includ-ingresearchers,arebeginningtorealizethatscience,howevernobleinitsquestfortruth, isnotthefinalsolution(Chapter�).Neitherthesciencethatexiststoday, nor future advances, will ever be complete.Scientificinquiryitselfisincreasinglyunderstoodasexistingwithinandpartiallyframedbycomplicatedhistorical, social, political, and economic contexts(Sarewitz199�).Further,scientificinquiryinevitablyhasmultiplepublicdimensions,includingacommit-ment to open and continuing public inquiry, com-

ment, and even participation (Lee 199�; WildlandsProject�001–�00�).Enterquestiontwo;namely,policy—Whatameliora-tiveactionsareappropriate,overwhattimeframe,atwhatcost?—andthepolicyprocess—Whatprocessesare appropriate in establishing forest policy? Manycommentatorsremarkontheparadoxofthepublic-landsWest,whichatoneandthesametimemanifestsaninspiring“geographyofhope”(Stegner198�)whileyielding first and typically a politics of exploitation(Wilkinson199�)thatgiveswayfinallytoapoliticsofstalemate(Kemmis1990).Asso-callednewWesternhistorianshavemadeclear(Limerick198�),thepost-settlement West was overdetermined by ideologieslittle suited to its landscapes, and thereby subjectedto short-term exploitation. Only recently has thepolicyprocessstartedtochange,withavarietyofex-perimentsininclusive,collaborativeprocesses.Giventhe diversity of opinion among stakeholder groups,though, and the inability of various experiments incollaborativeprocess toovercomethesedifferences,itislikelythatthefederalgovernmentwillcontinuetopourtensofbillionsofdollarsintotheblackholeoffireexclusionandsuppression(Chapter�).Asfarasthepolicyprocessthatmightestablishlandscape-scaleecologicalrestorationprojectsisconcerned,fal-liblelearningremainsadream.Finally,questionthree,thatofintention:Whatreasonslegitimateaproposedpolicy,policyprocess,orscientificclaim?Clearly,giventhemuddlethatexistsandthein-creasingfrequencyofcrownfires,thestatusquoisnotalegitimatealternative.Prolongingthemuddlemightservetheagendasofsomestakeholdergroups,butsuchstalemateblocksthinkinglikeaforest.Policies for ecological restoration are informed byscienceonthequantitativesideandbyethicsonthequalitativeside.Scienceitselfisinevitablyvalue-lad-en,andthelegislativeframeworkthatestablishedandgovernsourpubliclands—includingsuchlegislationastheWildernessActandEndangeredSpeciesAct—isitselftheresultofso-calledcitizenchoices(Sagoff1988), or affirmations by the American people ofwhatcountsandwhatdoesnot.Thoughnarrowlyfo-cused,largelyself-interestedeconomicmotivescon-tinuetoplaya largerole inthemanagementofournational forests and parks, their establishment did

Page 76: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�� Ecological Restoration of Southwestern Ponderosa Pine Forests

SER Restoration Reader

reflectAmerica’scollectivecommitment to intrinsicvaluesofthenatural(orseminatural)world.Ecologicalrestorationnecessarilyservestheselargerpurposes(Bateson19�9;Golley199�).Thus,restora-tionisconflictedpartlybecauseitimplicitlycontainsdefinitions of our humanity—notions of whom weare,wherewearegoing,andwhyweshouldgothere,orineffectamoralmap(Jordan�00�).

Excerpted from Ecological Restoration of Southwest Ponderosa Pine Forests edited by Peter Friederici. Copyright © 2003 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Page 77: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

aSSEmbly RulES and REStoRation Ecology

Assembly Rules and Restoration EcologyBridging the Gap between Theory and Practice

EditedbyVickyM.Temperton,RichardJ.Hobbs,TimNuttle,andStefanHalle

Cloth,$90.00,ISBN1-��9��-���-�

Paper,$��.00,ISBN1-��9��-���-1

�00�.���pages.�x9

Tables,figures,index

Contents

Preface xiii

Chapter 1.Introduction:WhyAssemblyRulesAreImportanttotheFieldofRestorationEcology 1Vicky M. Temperton, Richard J. Hobbs, Tim Nuttle, Marzio Fattorini, and Stefan Halle

PART I. Assembly Rules and the Search for a Conceptual Framework for Restoration Ecology 9

Chapter 2.AdvancesinRestorationEcology:InsightsfromAquaticandTerrestrialEcosystems 10Stefan Halle and Marzio Fattorini

Chapter 3.TheSearchforEcologicalAssemblyRulesandItsRelevancetoRestorationEcology ��Vicky M. Temperton and Richard J. Hobbs

Page 78: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�8 Assembly Rules and Restoration Ecology

SER Restoration Reader

Chapter 4.AssemblyModelsandthePracticeofRestoration ��Julie L. Lockwood and Corey L. Samuels

PART II. Ecological Filters as a Form of Assembly Rule 71

Chapter 5.EcologicalFilters,Thresholds,andGradientsinResistancetoEcosystemReassembly ��Richard J. Hobbs and David A. Norton

Chapter 6.TheDynamicEnvironmentalFilterModel:HowDoFilteringEffectsChangeinAssemblingCommunitiesafterDisturbance? 9�Marzio Fattorini and Stefan Halle

Chapter 7.BeyondEcologicalFilters:FeedbackNetworksintheAssemblyandRestorationofCommunityStructure 11�Lisa R. Belyea

PART III. Assembly Rules and Community Structure 133

Chapter 8.Self-OrganizationofPlanktonCommunities:ATestofFreshwaterRestoration 1��Carmen Rojo

Chapter 9.FunctionalGroupInteractionPatternsAcrossTrophicLevelsinaRegeneratingandaSeminaturalGrassland 1��Winfried Voigt and Jörg Perner

Chapter 10.Structure,Dynamics,andRestorationofPlantCommunities:DoArbuscularMycorrhizaeMatter? 189Carsten Renker, Martin Zobel, Maarja Öpik, Michael F. Allen, Edith B. Allen, Miroslav Vosátka, Jana Rydlová, and François Buscot

Chapter 11.ModelingofPlantCommunityAssemblyinRelationtoDeterministicandStochasticProcesses ��0Gerrit W. Heil

Chapter 12.ApplicationofStableNitrogenIsotopestoInvestigateFood-WebDevelopmentinRegeneratingEcosystems ���Jan Rothe and Gerd Gleixner

PART IV. Assembly Rules in Severely Disturbed Environments 265

Chapter 13. TheRolesofSeedDispersalAbilityandSeedlingSaltToleranceinCommunityAssemblyofaSeverelyDegradedSite ���Markus Wagner

Chapter 14.OrderofArrivalandAvailabilityofSafeSites:AnExampleofTheirImportanceforPlantCommunityAssemblyinStressedEcosystems �8�Vicky M. Temperton and Kerstin Zirr

Page 79: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

�9Chapter 5: Ecological Filters, Thresholds, and Gradients in Resistance to Ecosystem Reassembly

Quick Links: SER Restoration Reader TOC▶Assembly Rules and Restoration Ecology TOC▶Buy Assembly Rules and Restoration Ecology▶

Chapter 15.AreAssemblyRulesApparentintheRegenerationofaFormerUraniumMiningSite? �0�Hartmut Sänger and Gottfried Jetschke

Chapter 16.TheRoleofNutrientsandtheImportanceofFunctionintheAssemblyofEcosystems ���Anthony D. Bradshaw

PART V. Disturbance and Assembly 341

Chapter 17.Disturbance,Succession,andCommunityAssemblyinTerrestrialPlantCommunities ���Peter S. White and Anke Jentsch

Chapter 18.Disturbance,AssemblyRules,andBenthicCommunitiesinRunningWaters:AReviewandSomeImplicationsforRestorationProjects ���Christoph D. Matthaei, Colin R. Townsend, Chris J. Arbuckle, Kathi A. Peacock, Cornelia Guggelberger, Claudia E. Küster, and Harald Huber

Chapter 19. HowStructureControlsAssemblyintheHyporheicZoneofRiversandStreams:ColmationasaDisturbance �89Eva-Barbara Meidl and Wilfried Schönborn

Synthesis �09

Chapter 20.AssemblyRulesandEcosystemRestoration:WheretofromHere? �10Tim Nuttle, Richard J. Hobbs, Vicky M. Temperton, and Stefan Halle

AbouttheContributors ���

Index ��9

Page 80: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

80 Assembly Rules and Restoration Ecology

SER Restoration Reader

From chapter 5, “Ecological Filters, Thresholds, and Gradients in Resistance to Ecosystem Reassembly,” by Richard J. Hobbs and David A. Norton

Thewayinwhichbiologicalcommunitiesareassem-bledfromtheregionalpoolofbiodiversityhasreceivedincreasingstudy,andthequestionofwhetherrecog-nizable“assemblyrules”existhasbeenexamined(seeChapter�).Thereisnowevidencetosuggestthatas-semblyrulesmaybefoundforbothexperimentalandnaturalcommunities.However,thereisalsoevidencetosuggestthatdifferentassemblagesresultfromdif-ferentstartingconditions,orderofspeciesarrivalorintroduction,andtypeandtimingofdisturbanceormanagement.Otherchaptersinthisbookdiscusstheongoingde-bateoverhowthebioticelementsofecosystemsas-semble, particularly following disturbance, and ex-amine whether this process is relevant to ecologicalrestoration. In Hobbs and Norton (199�), we pro-posedsomegeneralprinciplesthatmighthelpbuildabroadframeworkforrestorationecology.Inthischap-ter,weexplorevariousaspectsofecosystemdynamicsandrestorationtodevelopsuchaframeworkfurther.Specifically,welookathowageneralframeworkcanserveasabasisforbetterunderstandingwhatcanbeachieved in restoration at a particular site. We startbyreviewingrecentdevelopmentsinecologicalcon-ceptsandexamininghowtheyradicallyaltertheway

inwhichweshouldconsiderecosystemdynamicsandrestoration.Inparticular,wereflectontheimportanceofalternativestablestatesinecosystemsandthedriv-ers that force transitions between states. We look atthesestateandtransitionapproachesinarestorationcontext,particularlyinrelationtorestorationthresh-olds.Wethenconsidertheconceptofbioticandabi-otic filters and examine whether it meshes with theideasofstates,transitions,andthresholdstoassistindeveloping a comprehensive framework for ecosys-temrestoration.

New Ecosystem Paradigms

Ecologicalconceptshavechangeddramaticallyoverthe past �0 years (Pickett and Ostfeld 199�, Pickettet al. 199�). It is now increasingly recognized thatecosystems are complex, dynamic entities that varyatmultiplescalesinbothspaceandtime.Thecom-plexdynamicbehaviorofecosystemsoftenmakesitdifficulttounderstandhowtheyfunctionandtopre-dicttheoutcomesofanygiveneventormanagementactivity(Hobbs1998,HobbsandMorton1999,Pahl-Wostl 199�). Following Hobbs and Morton (1999),wenowoutlinesomeofthemainchangesinecologi-calthinkingthatarerelevanttounderstandingeco-logicalassemblyandrestoration.

The Flux of Nature

Ecologists historically viewed the natural world asa fundamentally stable place in which each specieshaditsorderedpositionwithinacommunityandinwhich any disturbance would result in an orderedsuccessional progression leading back to the origi-nalclimaxstate(Christensen1988).Ecologicalcom-munitieswereconsideredtobeorganized,patternedcollections of coevolved species that incompatiblespeciescouldnoteasilypenetrate(Simberloff198�).Ecologistsnowspeakofthisviewastheequilibriumparadigm.Inrecentyears,wehaveseenthisnotionoforganizationandstabilitygivewaytotheviewthatthenaturalworldisdynamic.Inthisparadigm,eco-systemsarecharacterizedmorebyinstabilitythanbypermanence.Ecosystemsarealsomarkedbyfrequentdisturbances thatcontinuallypush them inalterna-tivedirections insteadof causing them to return totheir original condition. We now see ecosystems as

About This Excerpt

How are ecosystems assembled? How do thespecies that make up a particular biologicalcommunityarriveinanarea,survive,andinter-actwithotherspecies?Howcanwereturnade-gradedareatoafunctioningecosystemthatcanserveasahabitatorperformusefulecosystemservices? Assembly Rules and Restoration Ecol-ogysetsrestorationecologyinafirmtheoreticalframework that is both readable and rigorous.Inthisexcerptfromchapter�,RichardJ.HobbsandDavidA.Nortonconsidertheinteractionofaspectsofecologicalfiltersindetermininghowwellrestorationprojectssucceed.

Page 81: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

81Chapter 5: Ecological Filters, Thresholds, and Gradients in Resistance to Ecosystem Reassembly

Quick Links: SER Restoration Reader TOC▶Assembly Rules and Restoration Ecology TOC▶Buy Assembly Rules and Restoration Ecology▶

characterizedbymoreorlessunpredictableindivid-ualisticspeciesresponsesratherthanbypredictableandcorrelatedspeciesresponses.The nonequilibrium paradigm just described recog-nizesthatthenaturalworldisanuncertainplaceinwhichdisturbancesareconstantlycausingalterationsinthecompositionofassemblagesandinthespatialpatternsoftheenvironment(Fiedleretal.199�,Pick-ettetal.199�,PickettandWhite198�,Sousa198�).Thisviewdoesnotsuggestthatecologicalequilibriadonotexistbutratherthattheyarescale-dependentand embedded in nonequilibrial conditions. Nev-ertheless, the nonequilibrium paradigm does implythatpredictableendpointstothesuccessionalprocessfollowing disturbance are rare, that multiple stablestatesmayexist,andthatsomequasi-stablestatescanpersistforlongperiods.

Multiple Stable States

Disturbanceinevitablysetsinmotionsomeformofsuccession.Currentdiscussionofecosystemdevelop-mentfollowingdisturbanceaskswhetherconceptsofindividualistic assembly and multiple endpoints aremore appropriate than classical successional theory(Youngetal.�001).Thecourseofsuccessioncanbedifficult to predict, because the direction the eco-system or assemblage takes is contingent upon theparticularcircumstancesof thedisturbanceandthenatureofthebiophysicalconditionsthatprecedeandfollowit.Thenotionofcontingencyimpliesthathis-torymattersinpatternsandprocessesofcommunitychange.Asaconsequence,theendpointofasucces-sionalprocessisnotapredictablyuniformoutcome;instead,severalstatesarepossible,dependingonthecontingent circumstances (Hobbs 199�, Noble andSlatyer1980).Ageneralfeatureofmanyecosystemsisthepotentialforthesystemtoexistinanumberofdifferentstates,dependingonbothpastandpresentbioticandabioticfactors.

Patchiness and Landscape Ecology

Recognitionoftheimportanceofspatialandtempo-ralvariability,togetherwiththeincreasedavailabilityofsuitabletoolsforanalyzingit,isattherootoftheemergingdisciplineoflandscapeecology.Theunder-standing and management of the natural world de-

pendsasmuchontheanalysisofflowsofresourcesacrossecosystemsasitdoesonthedetailedstudyofindividualplaces.Oneoftheprincipalissuesunder-pinninglandscapeecologyisrecognitionofthevitalimportanceofpatchiness(Levin1989,Ostfeldetal.199�,TurnerandGardner1991).Patchinessfocusesonthespatialmatrixofecologicalprocessesandem-phasizesthefluxesofmaterialsandorganismswithinandbetweendifferentpartsofthelandscape.

Thresholds in Restoration

Therecentchangesinthewayecologicalsystemsareviewedhaveanumberoflessonsforrestorationecol-ogy.Ifecosystemsarenonequilibrium,patchy,andli-abletoexistinanumberofdifferentstates,thenres-torationgoalsneedtotakethesefacts intoaccount.Aimingforasingleendpointmaynotbevalidormayconstrain the restoration endeavor too much. Fur-thermore, it seems likely that formanyecosystems,restorationthresholdsexistasaresultofhumanac-tivities that prevent the system from returning to alessdegradedstatewithouttheinputofmanagement,restoration,andaftercareeffort(Aronsonetal.199�a;HobbsandHarris�001,Whisenant1999).Whisenant (1999) has recently suggested that twomaintypesofsuchthresholdsexist,onecausedbybi-oticinteractionsandalterationsandtheotherbyabi-oticalterations,transformations,or inherent limita-tions(Figure�.1).Ifthesysteminquestionhasbeendegradedmainlyasaresultofbioticchanges(suchasgrazing-inducedchangesinvegetationcomposition),restorationeffortsshouldfocusonbioticmanipula-tionsthatremovethedegradingfactor(forexample,thegrazinganimal)andadjustthebioticcomposition(forexample,replantinglostspecies).If,ontheotherhand,thesystemhasbecomedegradedasaresultofchanges in abiotic features (such as soil erosion orchanged hydrology), restoration efforts must focusfirstonremovingthedegradingfactorandrepairingthe physical and/or chemical environment (for ex-ample,toreinstateaparticularhydrologicalregime).Thereislittlepointinfocusingexclusivelyonbioticmanipulationand ignoringtheabioticproblems. Inotherwords,systemfunctioningshouldbecorrectedormaintainedbeforequestionsofbioticcompositionandstructureareconsidered.Takingsystemfunctionintoaccountprovidesausefulframeworkforinitial

Page 82: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

8� Assembly Rules and Restoration Ecology

SER Restoration Reader

assessmentofthestateofthesystemandsubsequentselection of repair measures (Ludwig et al. 199�,TongwayandLudwig199�).Where function isnotimpaired,restorationcanthenfocusoncompositionandstructure.Notethat thethresholdmodel(seeFigure�.1)sug-gests that the biota simply respond passively to theabioticenvironment;thatis,bioticthresholdsalwayscomeafterabioticones.Insomesituations,however,thepresenceofakeystonespeciesor“ecosystemengi-neers”mayberequiredtochangetheabioticenviron-ment.Hence,bioticmanipulationmayberequiredinsomecasestoovercomeanabioticthreshold.

Excerpted from Assembly Rules and Restoration Ecology edited by Vicky M. Temperton, Richard J. Hobbs, Tim Nuttle, and Stefan Halle. Copyright © 2004 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Figure 5.1: Conceptual model of transitions between undegraded and degraded ecosystem states and the presence of biotic and abiotic thresholds (after Whisenant 1999).

Page 83: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

thE hiStoRical Ecology handbook

The Historical Ecology HandbookA Restorationist’s Guide to Reference Ecosystems

EditedbyDaveEganandEvelynA.Howell

ForewordbyCurtMeine

Cloth,$�0.00,ISBN9�8-1-��9-�����-9

Paper,$��.00,ISBN1-�9���-0��-9

�00�.�88pages.�x9

Tables,figures,boxes,index

Contents

Figures, Tables, and Boxes ix

Acknowledgments xiii

Foreword xvCurt Meine

Preface to the 2005 Edition xxiDave Egan

Introduction 1Dave Egan and Evelyn A. Howell

Part I. Cultural Evidence 25

Chapter1.Archaeology,Paleoecosystems,andEcologicalRestoration �9Michael J. O’Brien

Page 84: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

8� The Historical Ecology Handbook

SER Restoration Reader

Chapter 2.TheContributionofEthnobiologytotheReconstructionandRestorationofHistoricEcosystems ��M. Kat Anderson

Chapter 3.ThePleasuresandPitfallsofWrittenRecords ��Michael Edmonds

Chapter 4.OralHistory:AGuidetoItsCreationandUse 101James E. Fogerty

Chapter 5.MapsandPhotographs 1�1Tina Reithmaier

Chapter 6.GovernmentLandSurveyandOtherEarlyLandSurveys 1��Gordon G. Whitney and Joseph DeCant

Part II. Biological Evidence 173

Chapter 7.InferringForestStandHistoryfromObservationalFieldEvidence 1��P. L. Marks and Sana Gardescu

Chapter8.UsingDendrochronologytoReconstructtheHistoryofForestandWoodlandEcosystems 199Kurt F. Kipfmueller and Thomas W. Swetnam

Chapter 9.Palynology:AnImportantToolforDiscoveringHistoricEcosystems ��9Owen K. Davis

Chapter 10.PackratMiddensasaToolforReconstructingHistoricEcosystems ���David Rhode

Chapter 11.TechniquesforDiscoveringHistoricAnimalAssemblages �9�Michael L. Morrison

Chapter 12.Geomorphology,Hydrology,andSoils �1�Stanley W. Trimble

Chapter 13.InferringVegetationHistoryfromPhytoliths ���Glen G. Fredlund

Part III. Synthesis: Case Studies Using Reference Conditions 363

Chapter 14.UsingHistoricalDatainEcologicalRestoration:ACaseStudyfromNantucket ���Peter W. Dunwiddie

Chapter 15.AMultiple-ScaleHistoryofPastandOngoingVegetationChangewithinIndianaDunes �91Kenneth L. Cole

Page 85: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

8�Chapter 8: Using Dendrochronolgy to Reconstruct the History of Forest and Woodland Ecosystems

Quick Links: SER Restoration Reader TOC▶The Historical Ecology Handbook TOC▶Buy The Historical Ecology Handbook▶

Chapter 16.ImplementingtheArchaeo-environmentalReconstructionTechnique:RediscoveringtheHistoricGroundLayerofThreePlantCommunitiesintheGreaterGrandCanyonRegion ���Thom Alcoze and Matt Hurteau

Chapter 17.DocumentingLocalLandscapeChange:TheSanFranciscoBayAreaHistoricalEcologyProject ���Robin Grossinger

AbouttheContributors ���

Index ���

Page 86: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

8� The Historical Ecology Handbook

SER Restoration Reader

About This Excerpt

Afundamentalaspectoftheworkofecologicalrestorationistorediscoverthepastandbringitintothepresent.DaveEganandEvelynHowellhave assembled twenty-three experts who de-scribetechniquesfocusingonculturallyderivedevidence(documents,maps,photographs,landsurveys, oral history) and biological records(woodlot surveys, tree rings, pollen, packratmiddens, opal phytoliths, animal remains, re-cords of changes in soil and hydrology). Thisexcerptdiscussestreeringsasasourceofproxyinformationthatcanbeusedinreconstructingandunderstandingthehistoryofpastcultures,landscapes,andenvironments.

From chapter 8, “Using Dendrochronology to Reconstruct the History of Forest and Woodland Ecosystems,” by Kurt F. Kipfmueller and Thomas W. Swetnam

Treeringsareanimportantsourceoflong-termproxyinformation thatcanbeused inreconstructingandunderstandingthehistoryofpastcultures,landscapes,andenvironments.Dendrochronology—ortree-ringdating—reliesonthepracticeofcross-dating,whichistheassignmentofexactcalendardatestoeachan-nualringthroughthematchingofpatternsofgrowthandother tree-ringcharacteristics.Thebest-knownapplications of dendrochronology (e.g., Stokes andSmiley 19�8; Fritts 19��; Baillie 199�; Schweingru-ber199�).Thetree-ringdatingofancientcliffdwell-ingsandpueblosofthesouthwesternUnitedStates,forexample,iswidelyknownandcelebratedinbothscientificandpopularliterature(Douglass19�9;Bail-lie199�).Likewise,theuniqueinsightsderivedfromtree-ring reconstructions of past climatic variationsarecommonlyreferencedinassessmentsofclimaticchangeanditsimplicationsatglobalscales(Oldfield1998;USGCRP1999).Asomewhatlesswell-knownapplicationofdendro-chronologyisinthefieldofhistoricalecology(orpa-leoecology).Althoughthepotentialoftreeringsforecologicalresearchwasrecognizedbythefounderof

modern dendrochronology, A. E. Douglass (19�0),it is only recently that the subdiscipline of dendro-ecologyhasreceivedmuchattentionbydendrochro-nologistsorecologists(e.g.,FrittsandSwetnam1989;Schweingruber199�).In198�,forexample,aninter-nationalconferenceontheecologicalaspectsoftree-ring research resulted in seventy-nine conferencepapers (Jacoby and Hornbeck 198�), and a recenttree-ringconferencewiththebroadthemeof“Envi-ronmentandHumanity”(Dean,Meko,andSwetnam199�)containedaboutthirtypapers(outofatotalofeighty-two) that directly addressed ecological top-ics.Moreover, theutilityof tree rings inaddressingimportant ecological questions is gaining recogni-tionamongthelargercommunityofecologists.ThistrendisexemplifiedbyrecentW.S.CooperAwards(for “outstanding contributions in geobotany, phys-iographicecology,orplantsuccession”)presentedbytheEcologicalSocietyofAmerica to theauthorsoffourpapersthatmadeextensiveuseofdendrochro-nologicaltechniques(Hupp199�;Fastie199�;Arse-naultandPayette199�;LloydandGraumlich199�).Aprimaryreasonforthisexpandedinterestinden-drochronology is that both ecologists and naturalresource managers have become increasingly awareofthefundamentalimportanceofhistoricalperspec-tives. This appreciation stems, in part, from recog-nition of the ubiquity of nonequilibrium dynamicsarising from historical processes, such as climaticchange and aperiodic disturbances (Sprugel 1991).Tounderstandhowecosystemsarrivedattheircur-rentconfigurations,wemustknowaboutpasteventsandtrajectoriesofchange(Brown199�;Christensenetal.199�).Thisinterestinhistoryisreflectedinanincreasing demand for reconstructions of past eco-systemprocessesandstructuresthatwouldbeusefulin defining the “historical or natural range of vari-ability” (Morgan et al. 199�; Kaufmann et al. 199�;Landres, Morgan, and Swanson 1999; Stephenson1999;Swetnam,Allen,andBetancourt1999).Dendrochronology is particularly suited to his-torical-ecological research because trees tend to belong-lived and the variations in characteristics oftheir annual rings can be used to reconstruct longand detailed histories of the surrounding environ-ment.Anotherreasonisthatcross-dating—themostimportantprincipleandpracticeofdendrochronol-ogy—facilitates a multidisciplinary and multiple-

Page 87: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

8�Chapter 8: Using Dendrochronolgy to Reconstruct the History of Forest and Woodland Ecosystems

Quick Links: SER Restoration Reader TOC▶The Historical Ecology Handbook TOC▶Buy The Historical Ecology Handbook▶

lines-of-evidence approach that is very effective inhistorical reconstruction (Swetnam, Allen, and Be-tancourt1999).Cross-datingisthematchingoftree-ringcharacteristicswithinandamongtreesacrossarangeoftemporalandspatialscalesforthepurposeofexactlydatingindividualringsandthestructuresandelementscontainedwithintherings.Cross-dat-ingismostcommonlyduetoregionalclimaticvaria-tion(e.g.,droughtandwetyears)thatcausesynchro-nous changes in tree growth processes (Douglass19�1; Stokes and Smiley 19�8; Fritts 19��). Hence,bycarryingouttree-ringcross-dating,mostdendro-chronologists are at least indirectly involved in thestudyofclimaticvariability,eventhoughtheirprima-ryfocusmaybeonthestudyofecologicaleventsandprocesses (e.g.,birthsanddeathsof trees,wildfires,insectoutbreaks,andconstructionofancientdwell-ingsandhumandemography).Theuseofdendrochronologicalprinciplesandtech-niques affords several important advantages overother dating techniques. The primary advantage ofdendrochronologyisaccuracyofdating.Theuseofdendrochronological principles ensures that the as-signmentofannualdates toa seriesof tree rings isexact.Thisaccuracyinturnfacilitatestheestablish-ment of connections between the temporal occur-rence of events and the timing of other changes tothe physical system. Without this level of accuracy,dendrochronologists cannot establish important re-lationships between tree growth and events in thesurroundingenvironment.Second, tree-ring data represent an extraordinarynaturalarchiveofecologicalvariationoverlongpe-riods of time. Depending upon the physical envi-ronmentandrateofdecay,treeringscanbeusedtoreconstructpasteventsorchangesinecologicalsys-temsspanningcenturiesand,insomecases,millen-nia. This is especially true when a large number ofsamples are cross-dated, as opposed to simple ringcounting of a few samples. Simple ring counting islimitedtemporallybythelongevityofthetreespecies

beingsampled.Thoughthismaybeverylonginsomespeciesthatattaingreatage,suchasbristleconepine(Pinus longaeva),thecross-datingofremnantmateri-al(i.e.,samplefromlogs,stumps,andstandingdeadtrees)canextendtherecordofchangeconsiderably.Thebristleconepinechronologydevelopedbycross-datingcurrentlyexceedsninethousandyears,almosttwiceaslongastheoldestcurrentlylivingindividual(theoldestlivingbristleconepinethatweknowofisaboutforty-eighthundredyearsold).Remnantmate-rialhasalsobeenanintegralpartofdevelopmentoffirehistoriesinthesouthwest(e.g.,BaisanandSwet-nam1990)andofdocumentationofchangesinforestcommunities(LaMarche19��;LloydandGraumlich199�;DonneganandRebertus1999).Another benefit of dendrochronology is that it canassist in identifying potential mechanisms of vari-ability. For instance, tree-ring-based fire history re-constructions indicate that fires occurred in manymountain ranges of the southwestern United Statesduring 1��8 (Swetnam and Baisan 199�; SwetnamandBetancourt1998) (figure8.1).Studyofhistori-caldocumentsandclimatereconstructionsfromtreeringsandcoralsindicatethattheElNino–SouthernOscillation was probably a climatic mechanism forthose events (Swetnam and Betancourt 1990). Anunusually strong El Nino event occurred in 1���.The regional climate signal is clearly evident in thegrowthcharacteristicsofprecipitationsensitiveconi-ferscollectedthroughouttheregion,withawideringformingin1���followedbyanarrowringduringthedryyearof1��8(figure8.1).Similarrelationshipsbe-tween climate and natural disturbances exist in thecaseof insect-causedepidemics,aswewilldescribelater.

Excerpted from Historical Ecology Handbook by Dave Egan and Evelyn A, Howell. Copyright © 2005 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be repro-duced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Page 88: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

Ex Situ plant conSERvation

Ex Situ Plant ConservationSupporting Species Survival in the Wild

EditedbyEdwardO.GuerrantJr.,KayriHavens,andMikeMaunder

ForewordbyPeterH.Raven

Cloth,$90.00,ISBN1-��9��-8��-�

Paper,$��.00,ISBN1-��9��-8��-�

�00�.���pages.�x9

Tables,figures,index

Contents

Foreword xiiiPeter H. Raven

Preface xvii

Acknowledgments xxi

Introduction xxiiiGhillean T. Prance

PART I. The Scope and Potential of Ex Situ Plant Conservation 1

Chapter 1.ExSituMethods:AVitalbutUnderusedSetofConservationResources �Mike Maunder, Kayri Havens, Edward O. Guerrant Jr., and Donald A. Falk

Chapter 2.InSituandExSituConservation:PhilosophicalandEthicalConcerns �1Holmes Rolston III

Page 89: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

89Chapter 12: Population Responses to Novel Environments: Implications for Ex Situ Plant Conservation

Quick Links: SER Restoration Reader TOC▶Ex Situ Plant Conservation TOC▶Buy Ex Situ Plant Conservation▶

Chapter 3.WesternAustralia’sExSituProgramforThreatenedSpecies:AModelIntegratedStrategyforConservation �0Anne Cochrane

Chapter 4.TheRoleofFederalGuidanceandStateandFederalPartnershipsinExSituPlantConservationintheUnitedStates ��Kathryn L. Kennedy

Chapter 5.ExSituSupporttotheConservationofWildPopulationsandHabitats:LessonsfromZoosandOpportunitiesforBotanicGardens 8�Mark R. Stanley Price, Mike Maunder, and Pritpal S. Soorae

PART II. Tools of the Trade 111

Chapter 6.PrinciplesforPreservingGermplasminGeneBanks 11�Christina Walters

Chapter 7.ClassificationofSeedStorageTypesforExSituConservationinRelationtoTemperatureandMoisture 1�9Hugh W. Pritchard

Chapter 8.DeterminingDormancy-BreakingandGerminationRequirementsfromtheFewestSeeds 1��Carol C. Baskin and Jerry M. Baskin

Chapter 9.PollenStorageasaConservationTool 180Leigh E. Towill

Chapter 10.TissueCultureasaConservationMethod:AnEmpiricalViewfromHawaii 189Nellie Sugii and Charles Lamoureux

Chapter 11.ExSituConservationMethodsforBryophytesandPteridophytes �0�Valerie C. Pence

PART III. The Ecological and Evolutionary Context of Ex Situ Plant Conservation 229

Chapter 12.PopulationResponsestoNovelEnvironments:ImplicationsforExSituPlantConservation ��1Brian C. Husband and Lesley G. Campbell

Chapter 13.PopulationGeneticIssuesinExSituPlantConservation ���Barbara Schaal and Wesley J. Leverich

Chapter 14.IntegratingQuantitativeGeneticsintoExSituConservationandRestorationPractices �8�Pati Vitt and Kayri Havens

Chapter 15.EffectsofSeedCollectionontheExtinctionRiskofPerennialPlants �0�Eric S. Menges, Edward O. Guerrant Jr., and Samara Hamzé

Page 90: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

90 Ex Situ Plant Conservation

SER Restoration Reader

Chapter 16.HybridizationinExSituPlantCollections:ConservationConcerns,Liabilities,andOpportunities ���Mike Maunder, Colin Hughes, Julie A. Hawkins, and Alastair Culham

Chapter 17.AccountingforSampleDeclineduringExSituStorageandReintroduction ���Edward O. Guerrant Jr. and Peggy L. Fiedler

PART IV. Using Ex Situ Methods Most Effectively 387

Chapter 18. RealizingtheFullPotentialofExSituContributionstoGlobalPlantConservation �89Mike Maunder, Edward O. Guerrant Jr., Kayri Havens, and Kingsley W. Dixon

Appendix 1.RevisedGeneticSamplingGuidelinesforConservationCollectionsofRareandEndangeredPlants �19Edward O. Guerrant Jr., Peggy L. Fiedler, Kayri Havens, and Mike Maunder

Appendix 2. GuidelinesforSeedStorage ���Christina Walters

Appendix 3.GuidelinesforExSituConservationCollectionManagement:MinimizingRisks ���Kayri Havens, Edward O. Guerrant Jr., Mike Maunder, and Pati Vitt

Appendix 4.ExSituPlantConservationOrganizationsandNetworks ���Kevin M. James

AbouttheContributors �8�

Index �91

Page 91: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

91Chapter 12: Population Responses to Novel Environments: Implications for Ex Situ Plant Conservation

Quick Links: SER Restoration Reader TOC▶Ex Situ Plant Conservation TOC▶Buy Ex Situ Plant Conservation▶

From chapter 12, “Population Responses to Novel Environments: Implications for Ex Situ Plant Conservation,” by Brian C. Husband and Lesley G. Campbell

Theprimarygoalofexsituplantconservationistoestablishandmaintainseedorgrowingcollectionsofwildspeciesoutsidetheirnaturalhabitat forthedi-rectorindirectpurposesofspeciesrecoveryinsitu.Suchprogramstypicallyinvolvethreestages:collec-tion from natural populations, establishment andmaintenanceofseedorgrowingmaterialoffsiteand,whenappropriate,useofexsituplantmaterialforinsitureintroductionefforts.Viewedinthisway,frominitial collection to final end use, the success of anexsituconservationprogramdependson itsabilitytoadequatelyrepresentthespeciesofinterestintheexsitupopulationand topreserve theutilityof thepopulationforfuturerecoveryefforts.Thechallengeforconservationists,then,istodeterminethegeneticanddemographicfactorsthataffecttheimplementa-tionandlong-termutilityofanexsituconservationprogram.In this chapter, we identify the critical genetic anddemographicfactorsinfluencingexsituconservationby examining relevant evolutionary principles. Webeginbyconsideringthehistoricalroleofevolution-arybiologyinplantconservationandtheneedforitsgreateruseinexsituconservation.Wearguethatthe

challengesfacingexsituconservationprogramscanbeviewedwithintheconceptualframeworkofpopu-lationsinabruptlychangingenvironments.Followingonthistheme,wecharacterizetheselectiveenviron-mentthatatransplantedpopulationwillexperienceandthedemographicconsequencesthatsuchanen-vironmentalshiftmayimpose.Wethenexplorethegeneticanddemographicfactorsthatmayinfluencethe success of such a transplantation or coloniza-tionevent.Finally,wediscusstheimplicationsofourfindingsforexsituconservationprogramsandsug-geststepsthatincreasethechancesforsuccess.

Evolutionary Biology in Ex Situ Conservation

Evolutionary biology has contributed much to thedevelopmentofconservation,particularlyasitrelatesto the protection of extant populations in situ. Forexample, the theoreticalandempirical literaturere-gardingtheecologyandgeneticsofsmallpopulations(Franklin1980;Lande1988,199�;BarrettandKohn1991;Rieseberg1991;Schemskeetal.199�;Lynchetal.199�;NewmanandPilson199�;FischerandMat-thies1998a,1998b;BataillonandKirkpatrick�000)hashelpedtoquantifytherisksofextinctionfacingmanythreatenedspecies. Inaddition,knowledgeofthe organization of genetic variation (Frankel andBrown198�;BrownandBriggs1991)hasledtotherefinementofcollectionandmanagementstrategiesusedinnationalprogramsofplantconservation(Falk1991;CenterforPlantConservation1991).Unfortu-nately,theevolutionarybiologyofexsituconserva-tionforwildspecieshasbeenlesswellexploredandtherefore has played a smaller role in conservationpractice. As a result, many ex situ collections haveinvolved a small number of threatened taxa whoserepresentation in collections is narrow (Brown andBriggs1991;Maunderetal.1999).Thegeneticbaseonwhichmanyreintroductionprogramsarefoundedislikelytobeequallynarrow.Todeterminethepotentialroleofevolutionarybiolo-gyforguidingoffsitecollectionsandrestorativeplant-ings,weconductedasurveyofrecentexsituplantingsandinsitureintroductionsforseveralNorthAmeri-canspeciesatrisk,availablethroughonlinesearches(Table 1�.1). In total, �0 cases were identified; al-though the list is far fromexhaustive, it shows that�9percentofallplantingswerebasedonpropagules

About This Excerpt

Thisbookoutlinestherole,value,andlimitsofexsituconservationandupdatesthebestman-agementpracticesforthefield.Plantconserva-tionpractitionersatbotanicgardens,zoos,andotherconservationorganizations,aswellasstu-dentsandfacultyinconservationbiology,man-agers of protected areas, and the internationalcommunity concerned with species conserva-tionwillfindEx Situ Plant Conservationavitaltool.Thefollowingexcerptfromchapter1�dis-cussestheprofoundmodificationstowhichexsitupopulationscanbesubjectedasaresultofthehorticulturalorstorageenvironment.

Page 92: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

9� Ex Situ Plant Conservation

SER Restoration Reader

fromonlyasinglesourcepopulation,and�0percentoftheseplantingswerebasedonfewerthan10sourceindividuals(Table1�.1).Clearly,collectionsofthreat-enedspecies,foreitherexsituorinsituconservation,arenecessarilyconstrainedbythelimitedavailabilityofsourcematerial(BrownandBriggs1991).Indeed,manyofthespecieslistedinTable1�.1arenotknownfrommore thana singlepopulation. It is especiallyimportantforthisreasonthatconservationprogramsconsider thegenetic (e.g., geneticvariance,popula-tiondifferentiation,inbreeding)andecological(e.g.,numberof individuals,habitatcharacteristics)attri-butesoforganismstoensurethatplantings,bothonandoffsite,areviableinthelongtermandcanmeetspecified recovery targets. Interestingly however,inour limitedsurvey,8�percentand��percentofthesecasesdidnotstateexplicitgeneticorecologicalcriteria,respectively,toguidetheirprograms.Whenthesecriteriawereconsidered,theyweremostoftenappliedtodecisionsregardingsamplingorcollectingtheoriginalmaterialbut rarely indecisions regard-ingstorageorestablishmentofplantingsoffsiteandsubsequentreintroductionefforts.Developingscientificallyinformedprogramsofexsituconservationwillinvolvemorethansimplyapplyingthetheorythatisapplicabletoinsituconservationbe-causetheirgoalsandprocedurescanbequitedistinct.In contrast to in situ methods, ex situ conservationinvolvessamplingmaterialfromexistingpopulations.Samplingerrorandlossofgeneticdiversitythroughgeneticdriftarelikelytobeimportantinbothaspectsofconservationandinfactmaybeexaggeratedinexsitueffortsbythejointeffectsofsmallsourcepopula-tionsandfinite samples.Currently, thereareseveralexcellentdiscussionsintheliteratureconcernedwiththebiologyandtheconservationrisksassociatedwithsmallpopulations(SouléandSimberloff198�;BarrettandKohn1991;Lande199�).Perhapswhatismostdistinctaboutexsituconserva-tion,incomparisonwithinsitu,isthattargetplantsare being removed from their native location andintroduced and maintained in a new environmentwhoseabioticandbioticconditionscertainlyaredif-ferentfromthatoftheoriginalpopulation.Althoughthespecificenvironmentoftheexsitucollectionwillvarywidelyamongcases,theexpectationofanabruptshiftintheexsituenvironmentwillapplyequallytoseedcollectionsandactivelygrowingplantmaterial.

Whereas inonecase (in situ) theconservationist isattemptingtofacilitatesurvivalandgrowthofanex-tantpopulation,intheotherheorsheispotentiallyaddinganewsourceofendangerment,namelymal-adaptation.Becausethebiologicalfeaturesofinsituand ex situ populations are inherently different, sotooarethebestmanagementpracticesnecessaryforsuccess. In particular, the conservation biologist isfacedwith thechallengeofcollectinga sample thatisgeneticallyrepresentativeandmaintainingitinanenvironment that may be anything but ecologicallyrepresentative of the native habitat. Furthermore,exsitucollectionsarenotanend in themselvesbutratherameanstowardthegoaloflong-termviabilityforpopulationsinsitu.Therefore,exsitucollectionsoftenmustbemanaged to simultaneouslymaintaintheirshort-termviabilityoffsiteandtheirlong-termutilityinrestorationorreintroductionefforts(Guer-rant199�).Aconceptual frameworkandsomepracticalguide-lineshavebeendevelopedforexsituconservationofcropplants(BrownandMarshall199�;SchoenandBrown199�).Thisapplicationofevolutionarybiol-ogymaynotbecompletelytransferabletowildspe-ciesbecausethegoalsandthetargetspecies for thelatteraresomewhatdifferent.Forcropspecies,exsitucollectionsaremorepermanentandserveprimarilyas sources of single characters or individual genesthatplantbreederswilltransferintolocallyadaptedstocks.Forwildorganisms,exsituprogramsoperateonashorttolong-termtimescaleandoftenoriginatefrom a smaller number of plants. In addition, theprimarygoalof theexsitucollection is to facilitatedemographicviabilityofthespeciesinthewild,notgenetic preservation, so the ex situ collection mustprovideasourceofpropagulesthatcanbeassembledintowhole,functioningpopulations.Moreover,con-servingwildspeciesoffsiteismorecomplexbecauseof their diverse and complex life histories, variablematingsystems,andlowerstoragetolerance(BrownandBriggs1991).

Excerpted from Ex Situ Plant Conservation edited by Edward O. Guer-rant Jr., Kayri Havens, and Mike Maunder. Copyright © 2004 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permis-sion in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Page 93: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

wildlifE REStoRation

Wildlife RestorationTechniques for Habitat Analysis and Animal Monitoring

MichaelL.Morrison

ForewordbyPaulR.Krausman

Cloth,$�0.00,ISBN1-��9��-9��-9

Paper,$��.00,ISBN1-��9��-9��-�

�00�.�1�pages.�x9

Tables

Contents

Foreword xiSeries Introduction xvAcknowledgments xixIntroduction 1

Chapter 1. Populations 7PopulationConceptsandHabitatRestoration 8ThreeRoadstoRecovery:Breeding,Reintroduction,andTranslocation 18Lessons ��

Chapter 2. Habitat 41Definitions ��WhentoMeasure �9WhattoMeasure �9HowtoMeasure �9Lessons ��

Page 94: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

9� Wildlife Restoration

SER Restoration Reader

Chapter 3. Historic Assessments 71Background �1Techniques ��CaseStudies �9Lessons 81

Chapter 4. A Primer on Study Design 85ScientificMethods 8�MonitoringasResearch 8�PrinciplesofStudyDesign 88ExperimentalDesign 9�Lessons 100

Chapter 5. Fundamentals of Monitoring 103Definitions 10�Inventory 10�Monitoring 10�SamplingConsiderations 108AdaptiveManagement 11�ThresholdsandTriggerPoints 11�Lessons 11�

Chapter 6. Sampling Methods 119Principles 1�0AmphibiansandReptiles 1��Birds 1�0Mammals 1�8Lessons 1�9

Chapter 7. Designing a Reserve 155SelectingaSite 1��Corridors 1��Buffers 1�1Isolation 1��Fragmentation 1��

Page 95: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

9�Chapter 1: Populations

Quick Links: SER Restoration Reader TOC▶Wildlife Restoration TOC▶Buy Wildlife Restoration▶

AreIsolationandFragmentationAlwaysBad? 1�8TheValueofRemnantPatches 1�9Lessons 1�9

Chapter 8. Wildlife Restoration: A Synthesis 187MajorMessages 188DevelopingaRestorationPlan 190InformationGaps 19�WorkingwithWildlifeScientistsandManagers 19�Lessons 19�

Index 199

Page 96: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

9� Wildlife Restoration

SER Restoration Reader

From chapter 1, “Populations”

Three Roads to Recovery: Breeding, Reintroduction, and Translocation

Althoughhabitatrestorationistheprimaryfocusofthisbook,inthissectionIreviewtheuseofcaptivebreeding,reintroduction,andtranslocationinrestor-inganimalpopulations.Throughouttheworld,thesetechniqueshavebeenusedtoassistwiththerestora-tionofnumerousrareandendangeredspecies.Thegoal of this section is to introduce readers to thesethreeoptionsforrestorationprograms.Theprocessof restorationoftencreatesa systemofsubdivided populations of animals. Metapopulationbiology,therefore,hasdirectapplicationtothedesignandmanagementofrestorationprojects.Metapopu-lationdynamicsincludeslocalpopulationextinction,local population establishment or reestablishment,and movement or linkage among the various localpopulations. Metapopulation management, if prop-erlyapplied,canreducetheprobabilityofpermanentextinctioninlocalpopulationsandhelpmaintainge-neticvariability.Captivebreedingfacilitiescanmain-tainessentiallyfragmentedpopulations.Thuscaptivepropagation and restoration planning depend on aknowledgeofmetapopulationdynamics(BowlesandWhelan199�).Captivebreedingandreintroductionarenottheide-almeansof achieving recoveryof rarepopulations.Captive propagation is expensive, and reintroduc-

tionisproblematic.Factorssuchasratesofgeneflowamong subpopulations, effective population size,mutationrates,andsocialstructuremustallbecon-sidered when planning restoration and reintroduc-tion. Small populations might have been subject topast population bottlenecks, and genetic manipula-tionmightberequiredtorecoverdecliningpopula-tionsortorestoreormaintainevolutionarypotential.Maintenance of genetic variation and evolutionarypotential are concerns for rare or isolated popula-tionsaswellascaptivepopulations.Captivebreedingmayleadtolossofgeneticvariationthroughrandomdrift, togeneticadaptation throughselection to thecaptiveenvironment,andthustoinadequateadapta-tionforreintroductiontoarestoredlocation(BowlesandWhelan199�).Rameyetal.(�000)citefivekeyissuesyoumustad-dresswhenconsideringtheaugmentationofpopula-tions:ß Aretheretwolinesofevidence(genetic,demo-

graphic,behavior)supportingthehypothesesthataseverepopulationbottleneckhasoccurred?

About This Excerpt

Inthispracticalbook,theinauguralvolumeoftheScience and Practice of Ecological Restorationseries,MichaelL.Morrisonprovidesecologists,restorationists, managers, and students witha basic understanding of the fundamentals ofwildlife populations and wildlife/habitat rela-tionships. He argues that the success of a res-torationprojectshouldbejudgedbyhowwild-life species respond to it. In this excerpt fromchapter1,Morrisondiscussesthreeavenuestorecoveryofwildlifepopulations.

Figure 1.5: Chronology of a captive breeding and restoration program. (From Mace et al. (eds.), “Conserving Genetic Diversity with the Help of Biotechnology—Desert Antelopes as an Example,” Figure 1. Pages 123–134 in H. D. M. Moore et al. (eds.), Biotechnology and the Conser-vation of Genetic Diversity. Copyright 1992, The Zoological Society of London. (Reprinted by permission of Oxford University Press.)

Page 97: Highlights from ation R The Science and Practice ad Series · 2020-02-20 · SER Restoration Reader The Tallgrass Restoration Handbook: For Prairies, Savannas, and Woodlands 59 Edited

9�Chapter 1: Populations

Quick Links: SER Restoration Reader TOC▶Wildlife Restoration TOC▶Buy Wildlife Restoration▶

ß Wouldtheintroductionofadditionalanimalsde-graderesourceconditions,drivingthewildani-malstomorerapidextinction?

ß Was thepopulationbottleneckdue toadiseaseoutbreak(orotherspecificoccurrence)andcanyoueliminatethesourceoftheproblem?

ß Are there habitat patches nearby to establish apopulation (or metapopulation) of larger sizeratherthanasingle,isolatedpopulation?

ß Howshould the sexandagecompositionofanaugmentationbestructured?

Thesequestionsmustbeconsideredbeforeyoubeginananimalrestorationproject.Moreover,thereisnoreasontoproceedwithreintroductionifhabitatandnicheconditionsarenotappropriate.

Issues

Captivebreedingandreintroductionhavebeensuc-cessful and indeed may be the only alternative toextinction in the wild. A restoration and conserva-tionprogramthatincludescaptivebreedingandre-introduction involves numerous overlapping steps(Figure 1.�). Here I review some of the issues youshouldconsiderwhenplanningforcaptivebreeding,reintroduction,ortranslocation.IdrawheavilyfromthesummaryofgeneticconsiderationsdiscussedbyLacy(199�).GOALS.Thegoalofcaptivebreedingprogramsistosupportsurvivalof thespecies,subspecies,orotherdefinedunitinthewild.AccordingtoDeBoer(199�),meetingthisgoalrequires:ß Propagating and managing highly endangered

taxa, with prescribed levels of genetic diversityand demographic stability, for defined periodsof time, to prevent extinction. Using captiveprogramsaspartofconservationstrategiesthatmanage captive and wild populations to ensuresurvivalofthesetaxainthewild—whichmeansusing captive populations to reestablish, rein-force,orre-createwildpopulations.

ß Developingself-sustainingcaptivepopulationsofrareorendangeredtaxaforeducationprogramsthat benefit the survival of conspecifics in thewild(Figure1.�).

Regardlessofthespecies,therearecertainprerequi-sitestomeetingthesegoals:ß Attheleveloftheindividual,sufficientlongev-

ityandphysical,physiological,andpsycholog-icalwell-beingshouldbeassuredinthecaptivesituation. This involves species-specific zoo-technical, medical, and biological knowledgeandresearch.

ß Atthelevelofbreedingpairsandgroups,suffi-cientreproductionshouldbeassuredtoguar-anteecontinuityovergenerations.Thisentailsspecies-specificknowledgeandresearchonre-productivebiology,ethology,andrelatedtop-ics.

ß Atthelevelofpopulation,thepreservationofageneticpopulationstructureshouldbeassuredthatresembles thewildoneascloselyaspos-sible.

Excerpted from Wildlife Restoration by Michael L. Morrison. Copyright © 2002 by Island Press. Excerpted by permission of Island Press. All rights reserved. No part of this excerpt may be reproduced or reprinted without permission in writing from the publisher. Island Press grants permission to forward this unaltered electronic document to friends, colleagues, and other interested parties.

Figure 1.6: The Hawaiian goose, or nene, is being raised at the Zoologi-cal Society of San Diego’s Keauhou Bird Center, Hawaii, for reintroduc-tion into the wild. (Photo courtesy of Zoological Society of San Diego.)