high-tcsuperconducting integrated circuit: a dc squid with input coil

4
532 IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-21, NO. 2, MARCH 1985 High-T, SuperconductingIntegratedCircuit: A dc SQUID with Input Coil M. S. DiIorio and M.R. Beasley Department of Applied Physics StanfordUniversity Stanford, CA 94305 ABSTRACT We have fabricated a high transition temperature superconducting integrated circuit consisting of a dc SQUID and an input coupling coil. The purpose i s to ascertain the generic problems associated with con- structing a high-T circuit as well as to fabricate a high performance 8c SQUID. The superconductor used for both the SQUID and t h e input coil is Nb$n which must be deposited at 800°C. Importantly, the insula- tor separating SQUID and input coil maintains its integrity at this elevated temperature. A hole in the insulator permits contact to the innermost winding of the coi 1. This contact has been achieved without significant degradation of the superconductivity. Consequently, the device operates over a wide temperature range, from below 4.2 K t o near Tc. I. INTRODUCTION High transition temperature (high-T ) super- conducting circuits hold great technologicaf interest because of their higher operating temperature and their potentially superior performance at low temperature. Operation at higher temperatures permits the use of relatively inexpensive closed-cycle refrigeration. At lower temperatures the primary benefit stems from the large IcR product (critical current times device resistance) which is an overall figure of merit for any superconducting device and which specifically determines the intrinsic energy sensitivity. Material problems have historically prevented the develoym5nt of high-Tc devices. Using a step-edge technique, 9 however, it has been possible to incorporate the A-15 type superconductors in thin f i l m high-Tc superconductor-normal metal-supercon- ductor (SNS) dc SQUIDS which operate over a wide temperature range. To' incorporate such SQUIDs i n t o practical superconducting circuits, an i n p u t coil is required for effective coupling. In this paper we describe the design and fabrication of a complete high-Tc+ dc SQUID circuit which incorporates an integrated high-T planar input coil. At the same time this work also iemonstrates a general approach to the fabrication of high-Tc integrated circuits. 11. DESIGN For the design of the circuit we utilize a planar coupling scheme t t has been adapted from that of Jaycox and Ketchep to meet the specific constraints a simplified schematic of our approach. Note that the o f high-T, superconducting materials. Figure 1 shows circuit is physically inverted (i.e. input coil on bottom, ground plane on top) from the conventional configuration. The reason for this will become c l e a r below, but it essentially stems from the need to temperatures. The input coil forms the bottom level deposit high-Tc superconductors at elevated and i s covered by an insulating layer which serves a dual purpose. First, it isolates the coil from the top level, which contains the SQUID. Second, this insulating layer also contains a step-edge necessary for the fabrication of the SNS microbridgeswhich Manuscript received September 10, 1984. cu N b ,Sn TOP LEVEL /I \bias coi I ,coil Fig. 1. Fabrication scheme. (a) Exploded view with input coil on the bottom,insulatorinthemiddle, and Cu/Nb3Sn bilayer containing ground plane, coupling hole, and dc SQUID, on the top. (b) Top viewofcompletedcircuit. 0018-9464/85/0300-0532%01.00@1985 IEEE

Upload: m

Post on 24-Sep-2016

218 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: High-Tcsuperconducting integrated circuit: A dc SQUID with input coil

532 IEEE TRANSACTIONS ON MAGNETICS, VOL. MAG-21, NO. 2, MARCH 1985

High-T, S u p e r c o n d u c t i n g I n t e g r a t e d C i r c u i t : A dc SQUID w i t h I n p u t C o i l

M. S. D i I o r i o and M.R. Beasley Depar tment o f App l ied Phys ics

S t a n f o r d U n i v e r s i t y S tan ford , CA 94305

ABSTRACT

We have f a b r i c a t e d a h i g h t r a n s i t i o n t e m p e r a t u r e s u p e r c o n d u c t i n g i n t e g r a t e d c i r c u i t c o n s i s t i n g o f a dc SQUID and an i n p u t c o u p l i n g c o i l . The purpose i s t o ascer ta in the gener ic p rob lems assoc ia ted w i th con- s t r u c t i n g a h i g h - T c i r c u i t as w e l l as t o f a b r i c a t e a high performance 8c SQUID. The superconductor used f o r b o t h t h e SQUID and t h e i n p u t c o i l i s Nb$n which must be d e p o s i t e d a t 800°C. I m p o r t a n t l y , t h e i n s u l a - t o r s e p a r a t i n g SQUID and i n p u t c o i l m a i n t a i n s i t s i n t e g r i t y a t t h i s e l e v a t e d t e m p e r a t u r e . A h o l e i n t h e i n s u l a t o r p e r m i t s c o n t a c t t o t h e i n n e r m o s t w i n d i n g o f t h e c o i 1. Th is con tac t has been ach ieved w i thou t s i g n i f i c a n t d e g r a d a t i o n o f t h e s u p e r c o n d u c t i v i t y . Consequent ly , the dev ice operates over a wide temperature range, from below 4.2 K t o near Tc.

I. INTRODUCTION

H igh t rans i t i on t empera tu re (h igh -T ) super- c o n d u c t i n g c i r c u i t s h o l d g r e a t t e c h n o l o g i c a f i n t e r e s t b e c a u s e o f t h e i r h i g h e r o p e r a t i n g t e m p e r a t u r e and t h e i r p o t e n t i a l l y s u p e r i o r p e r f o r m a n c e a t l o w tempera tu re . Opera t i on a t h ighe r t empera tu res pe rm i t s t h e u s e o f r e l a t i v e l y i n e x p e n s i v e c l o s e d - c y c l e r e f r i g e r a t i o n . A t l ower t empera tu res t he p r imary b e n e f i t s tems f rom the la rge I c R p r o d u c t ( c r i t i c a l c u r r e n t t i m e s d e v i c e r e s i s t a n c e ) w h i c h i s an o v e r a l l f i g u r e o f m e r i t f o r any superconduct ing dev ice and w h i c h s p e c i f i c a l l y d e t e r m i n e s t h e i n t r i n s i c e n e r g y s e n s i t i v i t y . M a t e r i a l p r o b l e m s have h i s t o r i c a l l y p revented the deve loym5nt o f h igh-Tc dev ices . Us ing a step-edge technique, 9 however, it has been p o s s i b l e t o i n c o r p o r a t e t h e A-15 type superconductors i n t h i n film high-Tc superconductor-normal metal-supercon- d u c t o r (SNS) dc SQUIDS which operate over a wide temperature range. To ' incorporate such SQUIDs i n t o p r a c t i c a l s u p e r c o n d u c t i n g c i r c u i t s , an i n p u t c o i l i s r e q u i r e d f o r e f f e c t i v e c o u p l i n g .

I n t h i s paper we desc r ibe t he des ign and f a b r i c a t i o n of a complete high-Tc+ dc SQUID c i r c u i t wh ich incorpora tes an i n t e g r a t e d h i g h - T p l a n a r i n p u t c o i l . A t t h e same t i m e t h i s work a l s o i e m o n s t r a t e s a general approach t o t h e f a b r i c a t i o n o f h i g h - T c i n t e g r a t e d c i r c u i t s .

11. DESIGN

F o r t h e d e s i g n o f t h e c i r c u i t we u t i l i z e a p l a n a r c o u p l i n g scheme t t has been adapted from t h a t o f Jaycox and K e t c h e p t o meet t h e s p e c i f i c c o n s t r a i n t s

a simplified schematic of our approach. Note t h a t t h e o f high-T, superconduct ing mater ia ls . F i g u r e 1 shows

c i r c u i t i s p h y s i c a l l y i n v e r t e d ( i . e . i n p u t c o i l on bottom, ground plane on t o p ) f r o m t h e c o n v e n t i o n a l c o n f i g u r a t i o n . The reason f o r t h i s will become c l e a r below, but it e s s e n t i a l l y stems f rom the need t o

temperatures. The i n p u t c o i l f o r m s t h e b o t t o m l e v e l depos i t h igh -Tc superconductors a t e l e v a t e d

and i s covered by an i n s u l a t i n g l a y e r w h i c h s e r v e s a dua l purpose. F i rs t , i t i s o l a t e s t h e c o i l f r o m t h e t o p l e v e l , w h i c h c o n t a i n s t h e SQUID. Second, t h i s i n s u l a t i n g l a y e r a l s o c o n t a i n s a step-edge necessary f o r t h e f a b r i c a t i o n o f t h e SNS mic robr idges wh ich

Manuscr ipt received September 10, 1984.

cu

N b ,Sn

TOP LEVEL

/I \bias

coi I

,coil

F i g . 1. F a b r i c a t i o n scheme. (a ) Exp loded v iew w i th i npu t co i l on t h e b o t t o m , i n s u l a t o r i n t h e m i d d l e , and Cu/Nb3Sn b i l aye r con ta in ing g round p lane , coup l i ng hole, and dc SQUID, on the t op . (b ) Top v i e w o f c o m p l e t e d c i r c u i t .

0018-9464/85/0300-0532%01.00@1985 IEEE

Page 2: High-Tcsuperconducting integrated circuit: A dc SQUID with input coil

533

compr ise the dc SQUID. The t o p l e v e l i s a super- conductor -normal meta l b i layer f rom wh ich i s formed b o t h t h e dc SQUID and t h e g r o u n d p l a n e t o t h e c o i l . As i n t h e scheme o f Jaycox and Ketchen, the g round p l a n e a l s o p l a y s t h e r o l e o f t h e SQUID l o o p i t s e l f . The s i z e o f t h e h o l e i n t h e g r o u n d p l a n e t h e n de te rm ines t he se l f i nduc tance o f t he SQUID.

N o t e t h a t t h e i n s u l a t o r c o n t a i n s a c o n t a c t window wh ich pe rm i t s a s e c t i o n o f t h e t o p l e v e l t o be used as one o f t h e l e a d s t o t h e i n p u t c o i l . Hence i n a l l , o n l y t h r e e l a y e r s o f m e t a l l i z a t i o n and one l a y e r o f i n s u l a t i o n a r e needed. More impor tan t ly , on ly two layers o f superconductor , wh ich demand h i g h s u b s t r a t e temperatures, are requi red. The break i n t h e ground plane necessary t o f o r m t h e l e a d t o t h e i n p u t c o i 1 i s expected t9 have min imal impact on the coupl ing cons tan t , k , s i n c e t h e s c r e e n i n g c u r r e n t s f l o w n e a r t h e edges o f t h e s u p e r c o n d u c t o r . As will be descr ibed i n t h e n e x t s e c t i o n , t h e s t e p i n t h e i n s u l a t o r p r o - duces a very narrow break i n t h e s u p e r c o n d u c t i n g l a y e r ( a l o n g t h e step-ed,ge). This small break i n t h e ground p lane shou ld have m in ima l e f fec t on t he coup l i ng . I n a d d i t i o n , s i n c e a narrower s l i t r e s u l t s i n a lower i nduc tance , t he use o f t he s tep -edge a l l ows us t o l o c a t e t h e m i c r o b r i d g e s away f r o m t h e h i g h e r f i e l d r e g i o n n e a r t h e c o u p l i n g h o l e w i t h o u t i n t r o d u c i n g e x c e s s i v e p a r a s i t i c i n d u c t a n c e . N o t e t h a t t h e u s e o f a step-edge t o p roduce l ow i nduc tance s l i t s may be more g e n e r a l l y u s e f u l such as i n t h e f a b r i c a t i o n o f h i g h - T c t h i n film transformers .

S i n c e t h e n - t u r n i n p u t c o i l c o u p l e s t o t h e SQUID l oop i n t h e same f a s h i o n as a n : l t u r n t h i n film t r a n s f o mer, we can use the analysis of Jaycox and Ketchen' t o c a l c u l a t e t h e i m p o r t a n t c i r c u i t parameters. I n o r d e r t o m a x i m i z e t h e p e r f o r m a n c e o f t h e SQUID (i.e. t o m i n i m i z e t h e n o i s e ) , a l o w v a l u e o f t h e SQUID s e l f i n d u c t a n c e i s d e s i r e d . On t h e o t h e r hand, a h i g h e r v a l u e o f t h e s e l f i n d u c t a n c e i s d e s i r a b l e i n o r d e r t o i m p r o v e t h e c o u p l i n g t o t h e SQUID. I n o u r d e s i g n a compromise value o f a b o u t 100 pH i s chosen, which resuqts i n a c a l c u l a t e d c o u p l i n g h o l e d i a m e t e r o f 60 vm. The 1 i newid th o f t he 50 - t u r n i n p u t c o i l i s 5 p and t h e s p a c i n g i s a l s o 5 pm ( h e n c e t h e p i t c h i s 10 p). The ensu ing i npu t c o i l i n d u c t a n c e i s c a l c u l a t e d t o be 0.28 UH o f w h i c h 29 nH i s due t o t h e s t r i p l i n e i n d u c t a n c e o f t h e i n p u t c o i l w i t h r e s p e c t t o t h e SQUID loop. For purposes o f compar i son , 20 - tu rn co i l s were a l so f ab r i ca ted .

111. FABRICATION

The f a b r i c a t i o n p r o c e s s b e g i n s w i t h t h e e v a p o r a t i o n o f 3000 A o f Nb Sn on to a heated (800°C) sapph i re subs t ra te . The c o i ? i s t h e n f o r m e d by means o f c o n t a c t l i t h o g r a p h y and i o n beam e tch ing . Hence, we a r e l e f t w i t h t h e b o t t o m l e v e l i n F i g . l ( a ) . N e x t t h e i n s u l a t o r , S i 0 2 , i s s p u t t e r d e p o s i t e d on t o p o f t h e c o i l . A t o t a l o f 6000 A i s d e p o s i t e d i n t h r e e s e q u e n t i a l d e p o s i t i o n s o f 2000 A each. Between d e p o s i t i o n s t h e s a m p l e s a r e s u b j e c t e d t o u l t r a s o n i c a g i t a t i o n i n a c e t o n e i n o r d e r t o remove any p a r t i c l e s , a l o n g w i t h t h e i r o v e r l y i n g S i 0 2 . F o l l o w i n g t h i s , a s tep edge (1600 A i n h e i g h t ) i s i o n beam e t c h e d i n t o t h e Si02. I n a separate step, a s m a l l h o l e i s a l s o i o n beam e t c h e d i n t o t h e S i 0 d e f i n i n g a c o n t a c t window t o t h e i n n e r m o s t t u r n o i c ' t h e u n d e r l y i n g i n p u t c o i l ( s e e t h e m i d d l e l e v e l o f F i g . l ( a ) ) . The t o p l e v e l c o n s i s t s o f a Cu/Nb$n b i l a y e r and c o n t a i n s t h e two mic robr idges compr is ing the dc SQUID. T h i ? p rocess has been desc r ibed i n de ta i l e l sewhere . B r i e f l y , t h e s u p e r c o n d u c t o r , Nb3Sn (1000 A ) , i s e v a p o r a t e d a t an ang le so as t o produce a break i n t h e film a t t h e step-edge. T h i s e v a p o r a t i o n n u s t be c a r r i e d o u t a t 800°C i n o r d e r t o o b t a i n a high-Tc film. The sample i s t h e n r a p i d l y c o o l e d ( t o b e l o w

100°C) and the normal meta l , Cu (1000 A ) , i s evapora ted a t a complementary angle so as t o c o v e r t h e s t e p and j o i n t h e t w o s u p e r c o n d u c t i n g banks. The Cu must be d e p o s i t e d a t t h i s l o w e r t e m p e r a t u r e t o a v o i d agg lomera t i on and /o r i n te rd i f f us ion . Th i s requ i remen t t h a t t h e Cu n o t be exposed t o h i g h s u b s t r a t e t e m p e r a - t u r e s hence demands t h a t t h e Cu/Nb3Sn b i l a y e r be on t h e t o p a n d h e n c e t h e i n p u t c o i l be on the bottom. The t o p l e v e l , shown i n F i g . l ( a ) , i s c o m p l e t e d u s i n g s t a n d a r d p h o t o l i t h o g r a p h i c t e c h n i q u e s , a l o n g w i t h

F ig . 2 SEM m i c r o g r a p h o f i n n e r r e g i o n o f c i r c u i t (v iew i s reversed f rom F ig . 1 ) . Bo th s u p e r c o n d u c t i n g l a y e r s a r e Nb3Sn. A h o l e i n t h e i n s u l a t o r i n t h e b o t t o m l e f t p a r t o f p i c t u r e a l l o w s t h e t o p film superconductor t o make c o n t a c t t o u n d e r l y i n g 5 0 - t u r n i n p u t c o i 1. Mic robr idges a re about 4 ~ ~ 7 1 wide and l o c a t e d c l o s e r t h a n i s u s u a l t o t h e 60 um x 60 w c o u p l i n g h o l e . B o t h Cu and NbjSn f rom t h e b i l a y e r have been removed i n a swath cut a long t he s tep .

Fig. 3 SEM mic rograph o f i n n e r r e g i o n o f a d i f f e r e n t c i r c u i t . Here the top superconductor i s NbgGe w h i l e t h e 5 0 - t u r n i n p u t c o i l i s s t i l l Nb3Sn. The 2.5 um w ide m ic rob r idges a re now l o c a t e d f u r t h e r away f r o m t h e 5 m d i a m e t e r h o l e t o w h i c h t h e y a r e c o n n e c t e d v i a a l o w i n d u c t a n c e s l i t . O n l y t h e Cu has been removed f rom the swath cu t a long the s tep ( to n a r r o w t h e b r i d g e s ) .

Page 3: High-Tcsuperconducting integrated circuit: A dc SQUID with input coil

534

s p u t t e r e t c h i n g o f t h e Cu and plasma e t c h i n g o f t h e Nb3Sn. The more i s o t r o p i c plasma e t c h i n g p r o c e s s i s p r e f e r r e d t o i o n beam e t c h i n g i n t h i s i n s t a n c e , because of problems due t o s h a d o w i n g t h a t r e s u l t f r o m t h e f a c t t h a t t h e u n d e r l y i n g s u r f a c e i s n o t p l a n a r . The w i d t h o f t h e m i c r o b r i d g e s i s d e f i n e d i n s u b s e q u e n t processing steps where 2-4 w w i d e b r i d g e s a r e f i r s t p a t t e r n e d u s i n g p r o j e c t i o n l i t h o g r a p h y and i o n beam e tch ing . These m ic rob r idges a re t hen na r rowed to t h e i r f i n a l w i d t h o f 0.2 m, by m a n s o f e l e c t r o n beam li hography fo l lowed by low angle ion beam etch ing. ' Here, the more d i rect ional ion beam e t c h i n g i s e s s e n t i a l due t o t h e s u b m i c r o n l i n e w i d t h s . The n o n - p l a n a r n a t u r e o f t h e u n d e r l y i n g s u r f a c e i s n o t a p rob lem here s ince the mic robr idges never need be l o c a t e d d i r e c t l y o v e r a c o i l w i n d i n g . A t o p v i e w o f t h e c o m p l e t e d c i r c u i t i s shown i n F i g . l ( b ) . SEM m i c r o g r a p h s o f t h e i n n e r r e g i o n o f t w o o f o u r c i r c u i t s a r e shown i n Fig. 2 and Fi.9. 3. (The p i c tu res a re reversed f rom F ig . 1.) N o t e t h a t t h e 2-4 pm wide br idges have not yet been narrowed t o t h e i r f i n a l width.

There are a number of general problems unique t o t h e f a b r i c a t i o n o f h i g h - T i n t e g r a t e d c i r c u i t s . The p r o c e s s j u s t o u t l i n e d d e a f s e f f e c t i v e l y w i t h many o f these, as w e l l as a d d r e s s i n g t h e s p e c i f i c p r o b l e m s o f o u r c i r c u i t .

One m a j o r d i f f i c u l t y l i e s i n m a i n t a i n i n g t h e i n t e g r i t y o f t h e i n s u l a t o r . M o s t h i g h - T c m a t e r i a l s r e q u i r e d e p o s i t i o n a t e l e v a t e d t e m p e r a t u r e s (e.9. 800°C f o r Nb3Sn and 900°C f o r Nb3Ge), w h i c h p u t s severe demands on t h e i n s u l a t i n g m a t e r i a l . I n a d d i - t i o n , t h e t o p o l o g y c r e a t e d by t h e u n d e r l y i n g i n p u t co i l r equ i res super io r s tep cove rage . Bo th t hese problems are so lved by t h e s p u t t e r d e p o s i t i o n o f Si02. The Si02. serves as an e x c e l l e n t i n s u l a t o r capab le o f su rv i v ing t o ve ry h igh t empera tu res and t he iso t rop ic depos i t ion p roduces the necessary coverage o f t h e c o i 1. The i n s u l a t o r must a l s o r e m a i n f r e e o f p i n h o l e s so as t o p r e v e n t s u p e r c o n d u c t i n g s h o r t s . The problem i s p a r t i c u l a r l y s e r i o u s i n o u r c a s e due t o t h e t e n d e n c y o f p a r t i c u l a t e m a t t e r b e n e a t h t h e d e p o s i t e d i n s u l a t i n g l a y e r t o come f r e e d u r i n g t h e subsequent h igh tempera ture fabr ica t ion s tep . Our s o l u t i o n l i e s w i t h t h e s e q u e n t i a l d e p o s i t i o n s o f S i 0 , break ing vacuum i n between t o t h o r o u g h l y c l e a n t $ e surface, and thereby remove any p a r t i c l e s .

A n o t h e r s i g n i f i c a n t p r o b l e m l i e s w i t h m a k i n g a h igh-Tc contact t o t h e u n d e r l y i n g c o i 1. The d i f f i c u l t y stems f r o m t h e p r e s e n c e o f r e s i d u e s a t t h e i n t e r f a c e . Our s o l u t i o n c o n s i s t s o f i o n beam e t c h i n g a c o n t a c t window i n t h e Si02.. S i n c e t h e A-15 superconductors are damage s e n s i t i v e , t h e Tc o f t h e ma te r ia l benea th t he con tac t window i s reduced by the i o n beam e tch ing . However, t h i s damage i s annealed o u t a t 800°C when t h e top. superconductor i s d e p o s i t e d . ( T h i s a p p r o a c h r o u t i n e l y y i e l d s c r i t i c a l c u r r e n t s o f t h e c o n t a c t i n e x c e s s o f 10 mA.) A l t e r n a t i v e s o l u t i o n s t o e t c h i n g t h i s c o n t a c t window, such as l i f t o f f , were also sought. The drawback i s t h a t t h e s e i n t r o d u c e p h o t o r e s i s t , and hence p a r t i c l e c o n t a m i n a t i o n , a t a c r i t i c a l p o i n t i n t h e p r o c e s s i n g which has a d e t r i m e n t a l e f f e c t on t h e i n t e g r i t y of t h e i n s u l a t o r .

One add i t i ona l p rob lem, more s p e c i f i c t o o u r c i r c u i t , a r i s e s i n b r e a k i n g t h e t o p s u p e r c o n d u c t - i n g film o v e r t h e S iOz s tep-edge. S ince the top film m u s t c o v e r t h e e n t i r e i n p u t c o i l ( i n o r d e r t o s e r v e a s an e f f e c t i v e g r o u n d p l a n e ) , a c lean, sharp step i s r e q u i r e d o v e r r e l a t i v e l y l a r g e d i s t a n c e s ( - 1 11011). P a r t i c l e c o n t a m i n a t i o n , a l o n g w i t h t h e f a c t t h a t t h e u n d e r l y i n g s u r f a c e i s n o t p l a n a r , makes t h i s p a r t i c u l a r l y d i f f i c u l t . One s o l u t i o n i s t o s a c r i f i c e

a smal l amount o f c o u p l i n g and c u t a narrow swath i n t h e Nb$n/Cu b i l a y e r a l o n g t h e s t e p ( s e e F i g . 2 ) . More r e c e n t l y , a b e t t e r s o l u t i o n has been developed i n wh ich the 1600 A o f S i 0 i s i o n beam e tched f rom t w o d i r e c t i o n s . The i& beam i s a l i g n e d t o e t c h p a r a l l e l w i t h t h e d i r e c t i o n o f t h e s t e p a n d 800 A o f Si02 i s removed. The sample i s t h e n r o t a t e d 180" and the rema in ing 800 A o f S i 0 2 i s removed. T h i s produces a c lean break i n t h e s u p e r c o n d u c t o r a l l a l o n g the s tep -edge . I ron i ca l l y , t he ang le evapora t i on o f t h e s u p e r c o n d u c t o r , a l o n g w i t h t h e s t e p edges un in ten - t i o n a l l y p r o d u c e d by t h e i n p u t c o i l , c r e a t e s d i f f i c u l - t i e s f o r t h e s e c t i o n o f t h e c o i 1 c o n t a i n e d i n t h e t o p l e v e l . To remain continuous, it must cross perpen- d i c u l a r t o t h e u n d e r l y i n g c o i l w i n d i n g s .

80 r

/ / SAMPLE G84-51 84

R.0.18 a T= 4.2 K

/ ^ I

W b- a 8

I I I I I I I 1 I 0 100 2 0 0 300 4 0 0 500 600 700 000 900

I i o s CURRENT (FA)

Fig. 4 Cur ren t - vo l tage (I-V) c h a r a c t e r i s t i c f o r a c i r c u i t o p e r a t i n g a t 4.2 K. The two I-V curves show t h e maximum m o d u l a t i o n i n t h e c r i t i c a l c u r r e n t due t o a c u r r e n t a p p l i e d t h r o u g h t h e i n p u t c o i l . The i n s e t shows t h e vo l tage modu la t ion where the SQUID i s b i a s e d as shown.

SAMPLE G84-51 84 R = 0.180 T = 10.1 K

0 IO t 20 30 4 0 50 60 10 80 90 Ibias CURRENT ( p A 1

Fig. 5 C u r r e n t - v o l t a g e c h a r a c t e r i s t i c f o r same c i r c u i t o p e r a t i n g a t 10.1 K which i s n e a r t h e Tc of t h e SQUID. The I-V i s t o o n o i s e rounded t o observe a c r i t i c a l c u r r e n t a t t h i s temperature.

Page 4: High-Tcsuperconducting integrated circuit: A dc SQUID with input coil

535

s u p p o r t t h i s p o s s i b i l i t y . F u r t h e r s t u d y will be r e q u i r e d t o e x p l a i n t h i s b e h a v i o r .

SUMMARY

We h a v e s u c c e s s f u l l y f a b r i c a t e d a h igh-Tc i n t e g r a t e d c i r c u i t c o n s i s t i n g o f a dc SQUID w i t h an i n p u t c o u p l i n g c o i l . The p r o c e s s d e a l s e f f e c t i v e l y w i th t he p rob lems i nhe ren t t o t he use o f h igh -Tc superconduc t ing ma te r ia l s and SNS Josephson micro- bridges. Problems s t i l l remain with' unexpectedly low c r i t i c a l c u r r e n t m o d u l a t i o n . However, by u t i l i z i n g a sma l le r coup l i ng ho le , t he c i r cu i t s ope ra te success - f u l l y o v e r a wide temperature range (so f a r , f r o m below 4.2 K t o n e a r l y 14 K). The measured value o f the mutual inductance i s c l o s e t o t h a t e x p e c t e d f r o m cons ide ra t i ons o f t he des igned geomet r i ca l i nduc t - ance. The des ign should be more g e n e r a l l y a p p l i c a b l e t o o t h e r t y p e s o f h i g h - T c i n t e g r a t e d c i r c u i t s .

ACKNOWLEDGEMENTS

We would l i k e t o t h a n k F. He l lman fo r sha r ing he r e x p e r t i s e with Nb2Sn f i lms, and A. de Lozanne f o r

IV. ELECTRICAL CHARACTERISTICS

C u r r e n t v o l t a g e c h a r a c t e r i s t i c s f o r a r e p r e - s e n t a t i v e dc SQUID w i t h a 5 0 - t u r n i n p u t c o i l o p e r a t i n g a t 4.2 and 10.1 K a r e shown i n F igs. 4 and 5, respec- t i v e l y . The SQUID has a r e s i s t a n c e o f 0.18 il c o r r e s p o n d i n g t o r e s i s t a n c e s o f - 0.36 i n each mic robr idge. The I R p r o d u c t f o r t h i s p a r t i c u l a r d e v i c e i s 20 pV. f h e i n s e t i n each o f t h e f i g u r e s shows the vo l tage modu la t i on o f t h e SQUID as a f u n c t i o n ' o f t h e c u r r e n t t h r o u g h t h e i n p u t c o i l . . C l e a r l y t h e c i r c u i t f u n c t i o n s o v e r a wide temperature range. The o p e r a t i o n i s n o t p e r f e c t , h o w e v e r . The ICR p r o d u c t i s low, r e s u l t i n g f r o m a lower Tc i n t h e m i c r o b r i d g e o f t h i s p a r t i c u l a r c i r c u i t . Such low Tc'S have been observed i n a number o f c i r c u i t s and are b e l i e v e d t o be due t o damage caused by t h e i o n beam e t c h i n g when t h e m i c r o b r i d g e s a r e n a r r o w e d t o submic ron w id ths . Fo r tuna te l y , t h i s p rob lem does n o t seem t o be i n h e r e n t i n o u r f a b r i c a t i o n p r o c e s s , as we h a v e o b t a i n e d h i g h e r T c c i r c u i t s w i t h I c R p roduc ts i n excess o f 0.5 mV a t 4.2 K.

The nu tua l induc tance, M y between the SQUID and i n p u t c o i l was determined by m e a s u r i n g t h e p e r i o d o f t h e SQUID vo l tage modu la t ion over a la rge range o f i n p u t c o i l c u r r e n t . F o r t h e SQUID shown,M = 0.20 nH and i s independent o f temperature as expected (see F ig. 4 and 5). The induc tance o f t he i npu t co i 1 was n o t measured. The geomet r i ca l i nduc tance o f t he SQUID due t o t h e l o o p ( d e t e r m i n e d , by t h e h o l e s i z e ) i s s i m p l y M/n,where n i s t h e number o f t u r n s i n t h e c o i l . The measured value f o r t h i s SQUID i s 4 pH. For comparison, the value o f t h e i n d u c t a n c e i n f e r r e d f rom the v I t a .e a t w h i c h t h e m o d u l a t i o n i s a t t e n u a t e d i s - 7 pH? 'Both of these inductance va lues are i n genera l agreement wi th that expected (7.8 pH) f o r t h e

5 Vm d iamete r coup1 i ng ho le t ha t was used i n t h i s c i r c u i t . I n c o n t r a s t , t h e t o t a l SQUID s e l f i n d u c t a n c e ( w h i c h i n c l u d e s t h e p a r a s i t i c i n d u c t a n c e due t o t h e m i c r o b i d g e s t r u c t u r e ) i s rmch larger, namely 39 pH. T h i s t o t a l SQUID s e l f i n d u c t a n c e i s i n f e r p e d f r o m t h depth o f t h e m o d u l a t i o n o f t h e c r i t i c a l c u r r e n t s , assuming equal c r i t i c a l c u r r e n t s i n t h e m i c r o - br idges.

%

As i n d i c a t e d by t h e above, a s i g n i f i c a n t p r o b l e m w i t h t h e c i r c u i t s i s t h e l o w d e p t h o f m o d u l a t i o n w h i c h i s w e l l be low that expected on t h e b a s i s o f t h e d e s i g n . I n o r d e r t o o b t a i n an observable depth o f modu la t ion i t has been necessary t o reduce the d iamete r o f t he coup l i ng ho le f rom the des igned va lue o f 60 um t o 5 urn. T h i s r e d u c e s t h e t o t a l s e l f i n d u c t a n c e o f t h e SQUID and hence t h e s e l f s h i e l d i n g . The reason f o r t h e p r o b l e m i s n o t understood but has beeq noted by o ther researchers us ing h igh -Tc ma te r ia l s .

A l t h o u g h p a r t o f t h i s d i f f i c u l t y 'may stem from unequal c r i t i c a l ' c u r r e n t s i n t h e i n d i v i d u a l m i c r o - b r i d g e s ( l e a d i n g t o an e r r o n e o u s l y h i g h i n f e r r e d v a l u e o f t h e t o t a l s e l f i n d u c t a n c e ) , t h i s c a n n o t be t h e pr imary problem. A c o m p l e t e d c i r c u i t with a 5 m coup l i ng ho le d iamete r was f i r s t measured and t h e n f u r t h e r p r o c e s s e d i n o r d e r t o d o u b l e t h e d i a m e t e r o f t h e c o u p l i n g h o l e ( w i t h o u t a l t e r i n g any o t h e r p a r t o f t h e c i r c u i t ) . When t h e c i r c u i t was remeasured the geomet r ica l induc tance was found t o s c a l e as pre- d i c t e d w h i l e t h e t o t a l i n d u c t a n c e was f o u n d t o i n c r e a s e by much more than expected.' The reason f o r t h i s remains unclear.

many he lp fu l d iscus2 ions . Th is work was suppor ted by t h e NSF-ECS.

1.

2.

3.

4. 5.

6.

7.

REFERENCES

A. de Lozanne, M.S. D i I o r i o , and M.R. Beasley, Appl. Phys. Let t . , 42, 541, (1983). M.S. D i I o r i o , A. deLozanne , and M.R. Beasley, IEEE Trans. Mag., MAG-19, 308, (1983). J.M. Jaycox and M;B. Ketchen, IEEE Trans. Mag.,

S e e g . 1 o f Kef. 3. J. Clarke, W.M. Goubau, and M.B. Ketchen, J. Low Temp. Phys.; 25, 99, (1976). C.D. Tesche and 4. Clarke, J. Low Temp. Phys. 29, 301 (1977). J.H. Claassen, Appl. Phys. Lett., 4 839, (1982). See a l s o R.F. Voss, R.B. LaibowTiz, and

A.N. Broers, Appl. Phys. Lett., 37, 656, (1980).

MAG-19,' 400, (1981).

Hence, a l t h o u g h t h e c i r c u i t f u n c t i o n s i n a l l regards, i t s performance has been degraded by t h e a p p a r e n t l y l a r g e t o t a l SQUID inductances. A l a r g e k i n e t i c i n d u c t a n c e s m i g h t a c c o u n t f o r such behav io r b u t a p r e l i m i n a r y e s t i m a t e o f i t s v a l u e does no t