high step-up flying capacitor multilevel converters

23
High Step-up Flying Capacitor Multilevel Converters Zitao Liao ECE590 March 27, 2017

Upload: others

Post on 16-Mar-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

High Step-up Flying Capacitor Multilevel Converters

Zitao LiaoECE590

March 27, 2017

Outlines

β–ͺMotivation

β–ͺ Comparison between boost and FCMLβ–ͺ Switchesβ–ͺ Inductors

β–ͺ Loss calculation and reduction

β–ͺ Conclusion and future works

2

Motivation – Compact High Voltage DC Generation

β–ͺ Satellite Propulsion Systemβ–ͺ Ion Thruster Unit

β–ͺ Pulse Electric Field (PEF)β–ͺ Food and beverage

preservation

β–ͺ Research Goalsβ–ͺ 100’s V to 1 kV Output, 1 kW

power converterβ–ͺ High power densityβ–ͺ High efficiency

3

Source: elea-technology.eu

Source: NASA

Boost converters- switches

4

ILβˆ†πΌπΏ

𝐷𝑇𝑠𝑀 𝑇𝑠𝑀

VL

𝐼𝑖𝑛

𝑉𝑖𝑛

𝑉𝑖𝑛 βˆ’ π‘‰π‘œπ‘’π‘‘

IL β†’

+ -

𝐷𝑇𝑠𝑀 𝑇𝑠𝑀

Vout

β–ͺ 1 kV, 10 A

β–ͺ High blocking voltage:β–ͺ Large Rds_on -> conduction lossβ–ͺ Large Qg, Qoss-> switching loss

β–ͺ Thermal β–ͺ Hard to cool a single hot spot

β–ͺ Availability?

FCML Boost Converters- switches

5

1

6π‘‰π‘œπ‘’π‘‘

2

6π‘‰π‘œπ‘’π‘‘

3

6π‘‰π‘œπ‘’π‘‘

4

6π‘‰π‘œπ‘’π‘‘

5

6π‘‰π‘œπ‘’π‘‘

β–ͺ Natural balancing of flying capacitors

β–ͺ S1 open: 𝑉𝑠𝑀 = 𝑉𝑐1 =1

6π‘‰π‘œπ‘’π‘‘

β–ͺ S2 open: 𝑉𝑠𝑀 = 𝑉𝑐2 βˆ’ 𝑉𝑐1

=2

6π‘‰π‘œπ‘’π‘‘ βˆ’

1

6π‘‰π‘œπ‘’π‘‘

β–ͺ Switch Rating: 1

6π‘‰π‘œπ‘’π‘‘, 10 A

β–ͺ 7-level Flying Capacitor Multilevel Converter

β–ͺ 166 V, 10 A

β–ͺ Lower voltage rating:β–ͺ Lower Rds_onβ–ͺ Lower Qg

β–ͺ Thermalβ–ͺ Heat is distributed to more switches

β–ͺ Availabilityβ–ͺ More likely to find in stock…

6

FCML Boost Converters- switches

FCML Boost Converters- switches

β–ͺ EPC 2034, GaN

β–ͺ 200 V, 48 A

β–ͺ Rds_on =7 mOhm

β–ͺ Qg = 8.8 nC

β–ͺ Size: 0.18 X 0.1 inch2

7

β–ͺ IXYS, IXFR26N100P, MOSFET

β–ͺ 1 kV, 15 A

β–ͺ Rds_on = 430 mOhm

β–ͺ Qg = 197 nC

β–ͺ Size: 0.62 X 0.54 inch2

Boost Converters- sizing the inductor

8

ILβˆ†πΌπΏ

𝐷𝑇𝑠𝑀 𝑇𝑠𝑀

πΌπ‘šπ‘Žπ‘₯

πΌπ‘šπ‘–π‘›

β€’ 𝐿 =𝐷𝑉𝑖𝑛

βˆ†πΌπΏπ‘“π‘ π‘€

β€’ πΌπ‘šπ‘Žπ‘₯ = 𝐼𝑖𝑛 +βˆ†πΌπΏ

2

β€’ πΈπ‘ƒπ‘’π‘Žπ‘˜ =1

2πΏπΌπ‘šπ‘Žπ‘₯

2

β€’ πΈπ‘ƒπ‘’π‘Žπ‘˜ ≀ 𝐸𝐿, π‘šπ‘Žπ‘₯ = πœŒπΏπ‘‰π‘œπ‘™πΏ

Higher switching loss, gate driving loss etc.

Higher RMS conduction loss, core loss.

𝑓𝑠𝑀↑

β†’ β†’

πœ‚ ↓

β€’ πΈπ‘π‘’π‘Žπ‘˜ =𝐷𝑃𝑖𝑛

2𝑓𝑠𝑀𝑓(𝛼)

β€’ Where 𝑓 𝛼 =1

𝛼+

𝛼

4+ 1, (0 < 𝛼 ≀ 2)

Inductor energy density: 𝜌𝐿=𝐸𝐿, π‘šπ‘Žπ‘₯

π‘‰π‘œπ‘™πΏ=

π΅π‘ π‘Žπ‘‘2

2πœ‡

Current ripple ratio: 𝛼 =βˆ†πΌ

𝐼𝑖𝑛

βˆ†πΌ ↑ (𝑓 𝛼 ↓)

β–ͺ πΈπ‘ƒπ‘’π‘Žπ‘˜ ↓ β†’ π‘‰π‘œπ‘™πΏ β†“β†’πœ‚ ↓

β–ͺ For a given 𝑓𝑠𝑀, πΈπ‘ƒπ‘’π‘Žπ‘˜, π‘šπ‘–π‘› =𝐷𝑃𝑖𝑛

𝑓𝑠𝑀(𝛼 = 2, largest current ripple).

Thinking process:

Conclusions:

FCML Boost Converter- sizing the inductor

9

β–ͺ 7-level Flying Capacitor Multilevel Converter

β–ͺ πΈπ‘π‘’π‘Žπ‘˜, π‘π‘œπ‘œπ‘ π‘‘ =𝐷𝑃𝑖𝑛

2𝑓𝑠𝑀𝑓 𝛼

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6 7 8 9 10

Norm

aliz

ed I

nduct

or

Volu

me

FCML Level

Normalized Inductor Size v.s. FCML Level

(D=0.9)

13.5x reduction

Total Passive Component Volume

1

6π‘‰π‘œπ‘’π‘‘

2

6π‘‰π‘œπ‘’π‘‘

3

6π‘‰π‘œπ‘’π‘‘

4

6π‘‰π‘œπ‘’π‘‘

5

6π‘‰π‘œπ‘’π‘‘

β†’ πΈπ‘π‘’π‘Žπ‘˜, π‘“π‘π‘šπ‘™ =1 βˆ’ 1 βˆ’ 𝐷 𝑁 βˆ’ 1 𝑃𝑖𝑛

2𝑓𝑠𝑀 𝑁 βˆ’ 1𝑓(𝛼)

Y. Lei, W-C Liu, R.C.N. Pilawa-Podgurski, β€œAn Analytical Method to Evaluate and Design Hybrid Switched-Capacitor and Multilevel Converters,” IEEE Transactions on Power Electronics, in press

β–ͺ Effective switching frequency β–ͺ D to (1-(1-D)(N-1))

β–ͺ Effective duty ratioβ–ͺ fsw to (N-1)fsw

10

β–ͺ πΈπ‘π‘’π‘Žπ‘˜, π‘π‘œπ‘œπ‘ π‘‘ =𝐷𝑃𝑖𝑛

2𝑓𝑠𝑀𝑓 𝛼 β†’ πΈπ‘π‘’π‘Žπ‘˜, π‘“π‘π‘šπ‘™ =

1 βˆ’ 1 βˆ’ 𝐷 𝑁 βˆ’ 1 𝑃𝑖𝑛2𝑓𝑠𝑀 𝑁 βˆ’ 1

𝑓(𝛼)

FCML Boost Converter- sizing the inductor

Energy transfer and delivery (D=0.8)

11

10 J 8 J

2 J

10 J

4 J

1 J

10 J

3 J

4 J

1 J

2 J

3 J

2 J

Source Load

Conventional Boost Converter

Conventional Boost Converter:Switch twice as fast

inductor source

3-level FCML

Hardware Prototype

12

DiodesGaNSwitches

Isolated DC-DC for gate drivers

Flying capacitorsInductor Digital Isolators

Input

Input

Z. Liao, Y. Lei and R.C.N. Pilawa-Podgurski β€œA GaN-based Flying-Capacitor Multilevel Boost Converter for High Step-up Conversion,” IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, 2016

Loss distribution

β–ͺ Conduction lossβ–ͺ Rds_on ,diode Ron and inductor DCR

β–ͺ Switching lossβ–ͺ Overlap loss and reverse recovery loss

β–ͺ Inductor core lossβ–ͺ Current ripple and switching frequency

13

p-n junction reverse recovery β–ͺ Parameters we care about:β–ͺ Peak reverse current : Irrm

β–ͺ Total reverse recovery charge : Qrr

β–ͺ Total reverse recovery time : trr

14

Diodes in hard-switched boost converters

15

Vsw

Ifet

t0 t2 t4

π‘Šπ‘Ÿπ‘Ÿ = 𝑉𝑠𝑀 π‘‘π‘Ÿπ‘ŸπΌπ‘–π‘› + π‘„π‘Ÿπ‘Ÿ 𝑓𝑠𝑀

πΈπ‘Ÿπ‘Ÿ = π‘‰π‘ π‘€πΌπ‘–π‘›π‘‘π‘Ÿπ‘Ÿ + π‘‰π‘ π‘€π‘„π‘Ÿπ‘Ÿ

β–ͺ Reverse recovery increases switching loss because:β–ͺ Longer switching transition: trr

β–ͺ Extra charge: Qrr

Iin

Qrr

Loss distribution

16

Reduction of reverse recovery

β–ͺ Parallel diodes

17

β–ͺ Both Qrr and trr increase with temperature

β–ͺ Temperature increases with input current

β–ͺ Wrr∝ IinN

, (N>1). Paralleling diode should reduce Wrr .

β–ͺ I assumed linear relationship between π‘„π‘Ÿπ‘Ÿ, π‘‘π‘Ÿπ‘Ÿ and Iin, so N = 2

π‘Šπ‘Ÿπ‘Ÿ = π‘‰π‘œπ‘’π‘‘ π‘‘π‘Ÿπ‘ŸπΌπ‘–π‘› + π‘„π‘Ÿπ‘Ÿ π‘“π‘ π‘€π‘„π‘Ÿπ‘Ÿ, π‘‘π‘Ÿπ‘Ÿ ∝ 𝐼𝑖𝑛

Test result

18

Comparison

19

[1] [2] [3] FCML Boost

Rated power 450 W 250 W 2 kW 820 W

Input voltage 25- 30 V 28- 38 V 275 V 100 V

Max outputvoltage

400 V300 –980 V

2 kV 1 kV

Switching Frequency

100 kHz 100 kHz 13.56 MHz 72 kHz

Peak efficiency

96% 97% 84% 94.1%

Overall powerdensity 38 W/in3 19 W/in3 250 W/in3

337 W/in3

19Power Density

Efficiency

[1] L. MΓΌller and J. W. Kimball, β€œHigh gain dcdc converter based on the cockcroftwalton multiplier,” IEEE Transactions on Power Electronics,vol. 31, pp. 6405–6415, Sept 2016.[2] M. Kim, D. Yang, and S. Choi, β€œA fully soft-switched single switch isolated dc-dc converter,” in 2014 IEEE Applied Power ElectronicsConference and Exposition - APEC 2014, pp. 1106–1111, March 2014.[3] L. Raymond, W. Liang, K. Surakitbovorn, and J. Davila, β€œ27.12 mhz isolated high voltage gain multi-level resonant dc-dc converter,” inEnergy Conversion Congress and Exposition (ECCE), 2015 IEEE, pp. 5074–5080, Sept 2015.

Improvements- QSW-ZVS

20

t1 t2 t4

β–ͺ ZVS turn-on of FET

β–ͺ Qrr and Qoss of FET are both discharged back to the input source

β–ͺ Trade-offs:β–ͺ High RMS conduction loss and peak current

β–ͺ High core loss

β–ͺ Variable frequency control

β–ͺ Operating at shallow DCM

β–ͺ For FCML Boost

𝐿𝑓𝐹𝐢𝑀𝐿 ≀ 0.5 1 βˆ’ 𝐷 2 𝐷 βˆ’π‘ βˆ’ 2

𝑁 βˆ’ 1π‘…π‘œπ‘’π‘‘ …(𝐷 >

𝑁 βˆ’ 2

𝑁 βˆ’ 1)

QSW-ZVS

21

Hard-Switching QSW-ZVS

Pin= 108.68 WPout= 101.99 WSwitching Frequency: 69 kHzInductor: 4 uH

Pin = 106 WPout = 100 WSwitching Frequency: 72 kHzInductor: 22 uH

β–ͺ Switches are cooler: switching loss ↓ > conduction loss ↑

β–ͺ Need better inductor design for lower core loss

Conclusions

β–ͺ FCML:β–ͺ Lower rating deviceβ–ͺ Smaller inductor

β–ͺ Improvements:β–ͺ Soft-switching techniquesβ–ͺ Better inductor design

22

23

Thank you!