high solubility liquid crystal dye guest-host device · the authors gratefully acknowledge the...

1
The authors gratefully acknowledge the financial support of the EPSRC High solubility liquid crystal dye guest-host device D.J. Gardiner and H. J. Coles Centre of Molecular Materials for Photonics and Electronics, Electrical Engineering Division, Cambridge University Engineering Department, 9 JJ Thomson Avenue, CB3 0FA, UK Bistable electro-optic effect in Smectic A 1 1) Scattering: Frequency, f < critical frequency f C , motion of ionic material generates highly opaque dynamic scattering texture. Vth ~ 2) Clear: f > f C . No ionic motion, dielectric reorientation generates haze- free highly clear state: Vth ~ (d/Δε) 1/2 . Figure 1. Device Schematic A. Pure 10/2 liquid crystal Bistable o polarisers Indefinite storage High Efficiency! RESULTS COCLUSIOS Very high solubilities can be achieved o adverse effect on electro-optic properties Thinner cells Microphase separation of constituent moieties into siloxane, alkyl chain and aromatic core regions CLEAR (> 1 kHz) SCATTERING (< 100 Hz) Materials σ σ || 1 ( d Si CH 3 CH 3 O Si CH 3 CH 3 C H 3 NO 2 N CH 3 N N Organosiloxane disperse red 1 dye 2 . Si CH 3 CH 3 O Si CH 3 CH 3 C H 3 CN O Smectic A organosiloxane liquid crystal (“10/2”) 3 K – S A 41.1°C S A –I 70.3°C Mixture preparation – high miscibility Figure 2. Birefringent textures of the 38% w/w mixture showing (left) S A batonnet formation and (right) focal conic texture of the mesophase Three mixtures prepared: 4%, 22% and 38% w/w DR dye in 10/2 host All mixtures showed complete miscibility, even at the highest concentration DGH Mixture S A to Isotropic transition 10/2 72°C 4% w/w DR 72°C 22% w/w DR 67°C 38% w/w DR 56°C Application Areas •Slow update devices 0 50 100 150 200 250 300 -35 -30 -25 -20 -15 -10 -5 Threshold Voltage (V, RMS) 10/2 write 10/2 erase T S (°C) 0 50 100 150 200 250 300 0 10 20 30 40 Concentration of dye (% w/w) Threshold Voltage (V, rms) Ts = - 30 Ts = - 10 Ts = - 30 Ts = - 10 °C Write °C Erase °C °C FUTURE WORK •Increase order parameter of dye and host •Other dyes, for example anthraquinone and fluorescent dyes. •Reduce operating voltages by using thinner cells and optimizing material parameters: dielectric anisotropy and conductivity ratio. 5 Order parameters: Dye ~ 0.47 10/2 ~ 0.52 1) D. Coates, W. A. Crossland, J. H. Morrissy, and B. Needham, J. Phys. D Appl. Phys. 11, 2025 (1978). 2) Courtesy of Dow Corning Inc. 3) J. Newton, H. Coles, P. Hodge, and J. Hannington, J. Mat. Chem. 4, 869-874 (1994). 4) D. J. Gardiner and H. J. Coles, J. Appl. Phys. 100, 4903 (2006). 5) D. J. Gardiner and H. J. Coles, J. Phys. D. Appl. Phys. 39, 4948 (2006). Email: [email protected], [email protected] Absorbance against wavelength 0 0.2 0.4 0.6 0.8 1 400 450 500 550 600 650 700 Wavelength (nm) Absorbance References All mixtures show comparable or superior behviour even at high concentration B. DGH mixtures Figure 3. Electro-optic threshold voltages of the write and erase modes for the pure material and DGH mixtures. 0 20 40 60 80 100 120 140 160 180 200 -35 -30 -25 -20 -15 -10 -5 0 Response time (ms) Pure 10/2 + 4% w/w DR +22% w/w DR + 38% w/w DR T S (°C) 0 5 10 15 20 25 30 35 40 45 50 -35 -30 -25 -20 -15 -10 -5 0 Response time (ms) Pure 10/2 + 4% w/w DR +22% w/w DR + 38% w/w DR T S (°C) Figure 4. Electro-optic response times of the a) clear (erase) and b) scattering (write) modes against temperature. Applied voltage = Vth + 50V. The electro-optic properties of the host are a consequence of the highly anisotropic conductivity. 4 E.g. 0.8 to 0.5 ~ 8CB for , 005 . 0 ~ || σ σ a) b)

Upload: doanhuong

Post on 31-Aug-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

The authors gratefully acknowledge the financial support of the EPSRC

High solubility liquid crystal dye guest-host device

D.J. Gardiner and H. J. Coles

Centre of Molecular Materials for Photonics and Electronics,

Electrical Engineering Division,

Cambridge University Engineering Department,

9 JJ Thomson Avenue,

CB3 0FA, UK

Bistable electro-optic effect in Smectic A1

1) Scattering:

• Frequency, f < critical frequency fC, motion of ionic material

generates highly opaque dynamic scattering texture.

• Vth ~

2) Clear:

• f > fC. No ionic motion, dielectric reorientation generates haze-

free highly clear state:

• Vth ~ (d/∆ε)1/2.

Figure 1. Device Schematic

A. Pure 10/2 liquid crystal

Bistable

"o polarisers

Indefinite storage

High Efficiency!

RESULTS

CO"CLUSIO"S•Very high solubilities can be achieved

•"o adverse effect on electro-optic properties

•Thinner cells

•Microphase separation of constituent moieties into

siloxane, alkyl chain and aromatic core regions

CLEAR (> 1 kHz) SCATTERING (< 100 Hz)

Materials

− ⊥σσ ||1(d

Si

CH3

CH3

O Si

CH3

CH3

CH3

NO2

N

CH3

N N

• Organosiloxane disperse red 1 dye2.

Si

CH3

CH3

O Si

CH3

CH3

CH3 CNO

• Smectic A organosiloxane liquid crystal (“10/2”)3

• K – SA 41.1°C SA – I 70.3°C

Mixture preparation – high miscibility

Figure 2. Birefringent textures of the 38% w/w mixture

showing (left) SA batonnet formation and (right) focal conic

texture of the mesophase

• Three mixtures prepared: 4%, 22% and 38% w/w DR

dye in 10/2 host

• All mixtures showed complete miscibility, even at

the highest concentration

DGH Mixture

SA to Isotropic transition

10/2 72°C

4% w/w DR 72°C

22% w/w DR 67°C

38% w/w DR 56°C

Application Areas•Slow update devices

0

50

100

150

200

250

300

-35 -30 -25 -20 -15 -10 -5

Th

resh

old

Vo

lta

ge

(V, R

MS

)

10/2 write

10/2 erase

TS (°C)

0

50

100

150

200

250

300

0 10 20 30 40

Concentration of dye (% w/w)

Th

resh

old

Vo

lta

ge (

V,

rms)

Ts = - 30

Ts = - 10

Ts = - 30

Ts = - 10

°CWrite

°C

Erase °C

°C

FUTURE WORK•Increase order parameter of dye and host

•Other dyes, for example anthraquinone and fluorescent dyes.

•Reduce operating voltages by using thinner cells and optimizing material parameters:

dielectric anisotropy and conductivity ratio.5

• Order parameters:

• Dye ~ 0.47

• 10/2 ~ 0.52

1) D. Coates, W. A. Crossland, J. H. Morrissy, and B. Needham, J. Phys. D Appl. Phys. 11, 2025 (1978).

2) Courtesy of Dow Corning Inc.

3) J. Newton, H. Coles, P. Hodge, and J. Hannington, J. Mat. Chem. 4, 869-874 (1994).

4) D. J. Gardiner and H. J. Coles, J. Appl. Phys. 100, 4903 (2006).

5) D. J. Gardiner and H. J. Coles, J. Phys. D. Appl. Phys. 39, 4948 (2006).

Email: [email protected], [email protected]

Absorbance against wavelength

0

0.2

0.4

0.6

0.8

1

400 450 500 550 600 650 700

Wavelength (nm)

Ab

sorb

an

ce

References

All mixtures show comparable

or superior behviour even at

high concentration

B. DGH mixtures

Figure 3. Electro-optic threshold voltages

of the write and erase modes for the pure

material and DGH mixtures.

0

20

40

60

80

100

120

140

160

180

200

-35 -30 -25 -20 -15 -10 -5 0

Resp

on

se t

ime (

ms)

Pure 10/2

+ 4% w/w DR

+22% w/w DR

+ 38% w/w DR

TS (°C)

0

5

10

15

20

25

30

35

40

45

50

-35 -30 -25 -20 -15 -10 -5 0

Res

pon

se t

ime

(ms)

Pure 10/2

+ 4% w/w DR

+22% w/w DR

+ 38% w/w DR

TS (°C)

Figure 4. Electro-optic response times of

the a) clear (erase) and b) scattering

(write) modes against temperature.

Applied voltage = Vth + 50V.

The electro-optic properties of the host

are a consequence of the highly

anisotropic conductivity.4 E.g.

0.8 to0.5 ~ 8CBfor ,005.0~|| ⊥σσ

a)

b)