high performance additive for thermoset resins

4
Introduction Key Benefits Applied Minerals Inc. 110 Greene Street, Suite 1101 New York, NY 10012 1.800.356.6463 www.appliedminerals.com Reinforcement Dragonite has a high surface area and aspect ratio to provide substantial improvement in both stiffness and strength. The flexural modulus of Dragonite is 130150 Gpa. Impact Enhancer Unlike other reinforcements, Dragonite allows you to dramatically improve impact resistance. In certain epoxy systems, a 2% Dragonite loading can improve impact resistance by up to 400%. Electrical Properties Dragonite in an insulator with a low dielectric constant making it ideal for applications where electrical properties are a key performance objective. Additional Benefits CTE Reduction Increased Flame Retardance Improved Dimensional Stability 100% Natural Ingredient Dragonite Halloysite is nontoxic and natural demonstrating a high compatibility without posing any risk to the environment. High Performance Additive for Thermoset Resins DRAGONITE is a halloysitebased aluminosilicate clay exhibiting a rare, naturally occurring hollow tubular structure. Through its unique morphology and ideallysuited chemistry, it enhances the properties of wide range of thermoset resins to meet the requirements of demanding applications. 1 µm Contact: Brian Newsome Head of Sales 1 (407) 7901159 [email protected]

Upload: lytuyen

Post on 13-Jan-2017

234 views

Category:

Documents


0 download

TRANSCRIPT

 

 

 

Introduction  Key  Benefits  

Applied  Minerals  Inc. 110  Greene  Street,  Suite  1101 New  York,  NY  10012 1.800.356.6463 www.appliedminerals.com

Reinforcement  Dragonite   has   a   high   surface   area   and   aspect   ratio   to  provide   substantial   improvement   in   both   stiffness   and  strength.   The   flexural   modulus   of   Dragonite   is   130-­‐150  Gpa.    Impact  Enhancer  Unlike   other   reinforcements,   Dragonite   allows   you   to  dramatically   improve   impact   resistance.     In   certain   epoxy  systems,   a   2%   Dragonite   loading   can   improve   impact  resistance  by  up  to  400%.    Electrical  Properties  Dragonite   in   an   insulator   with   a   low   dielectric   constant  making   it   ideal   for  applications  where  electrical  properties  are  a  key  performance  objective.    Additional  Benefits  • CTE  Reduction  

• Increased  Flame  Retardance  

• Improved  Dimensional  Stability  

100%  Natural  Ingredient    Dragonite  Halloysite  is  non-­‐toxic  and  natural  -­‐  demonstrating  a  high  compatibility  without  posing  any  risk  to  the  environment.  

 

High  Performance  Additive  for  Thermoset  Resins  

DRAGONITE  is  a  halloysite-­‐based  aluminosilicate  clay  exhibiting  a  rare,  naturally  occurring  hollow  tubular  structure.    

Through  its  unique  morphology  and  ideally-­‐suited  chemistry,  it  enhances  the  properties  of  wide  range  of  thermoset  resins  to  meet  the  requirements  of  demanding  applications.    

 

1  µm  

Contact:    Brian  Newsome  Head  of  Sales    1  (407)  790-­‐1159  [email protected]    

 

 

Applied  Minerals  Inc. 110  Greene  Street,  Suite  1101 New  York,  NY  10012 1.800.356.6463 www.appliedminerals.com

DRAGONITE  in  Polyurethane  Thermosets  

 

Recommended  Product  Grades  For  Thermoset  Systems  

Untreated  product  grade  with  high  reactivity  and  acidity  (pH  of  4-­‐5).  

Recommended  at  loadings  of  1-­‐10  wt%  

 

-­‐HP  

Untreated  product  grade  with  slightly  lower  reactivity  and  acidity  (pH  5-­‐7)  due  to  2.0%  iron  oxide  content.  

Recommended  at  loadings  of  30-­‐60  wt%    

Ammoniated  product  grade  with  low  reactivity  and  pH  neutral.  Ideal  for  applications  where  high  acidity  has  the  ability  to  negatively  affect  the  polymer  network.  

Recommended  at  loadings  of  1-­‐10  wt%    

 

Mechanical  Property  Improvements      The  tensile  strength,  elongation  to  break,  Young’s  modulus,  and  Shore  A  Hardness  were  all  improved  with  the  addition  of  1.0%  halloysite  to  an  MDI  polyurethane  system.        

Gong,  B.,  Ouyang,  C.,  Yuan,  Y.,  &  Gao,  Q.  (2015).  Synthesis  and  properties  of  a  millable  polyurethane  elastomer  with  low  halloysite  nanotube  content.  RSC  Adv.,  5(94),  77106–77114.  http://doi.org/10.1039/C5RA11605H

Sample  Tensile  Strength  (Mpa)  

Elongation  to  break  

(%)  

Young’s  Modulus  (Mpa)  

Hardness  (Shore  A)  

Neat  MPU   10.4   272   15.2   92  

0.5%  Halloysite     21.7   365   21.4   92  

1%  Halloysite     22.9   347   21.5   94  

5%  Halloysite       21.1   278   48.2   97  

 

Polyurethane  /  Halloysite  Crosslinked  Network    

-­‐XR  

-­‐HP:A  

 

 

600#

500#

400#

300#

200#

100#

0#

##

G IC$[J/m

2 ]#

0######1######2#######3######4######5######6######7######8######9#####10#####11###

With#Halloysite#With#Spherical#Nanosilica###

Content$of$nanopar3cles$[wt%]#

Applied  Minerals  Inc. 110  Greene  Street,  Suite  1101 New  York,  NY  10012 1.800.356.6463 www.appliedminerals.com

DRAGONITE  in  Epoxy  Thermosets  

 Fracture  Toughness  Improvements        The  fracture  toughness  of  the  halloysite  particle  modified  epoxies  was  noticeably  increased,  with  the  greatest  improvement  in  KIC  up  to  50%  and  in  GIC  up  to  127%.      The  improvements  in  fracture  toughness  are  mainly  attributable  to  mechanisms  such  as  crack  bridging,  deflection  and  plastic  deformation  of  the  epoxy  around  the  particle  clusters.     Deng,  S.,  Zhang,  J.,  Ye,  L.,  &  Wu,  J.  (2008).  

Toughening  epoxies  with  halloysite    nanotubes.  Polymer,  49(23),  5119–5127.  

CTE  and  Mechanical  Improvement    Halloysite  was  incorporated  in  a  cyanate  ester  cured  epoxy  resin  to  lower  the  CTE  value  and  increase  the  mechanical  properties  of  the  epoxy  resin.      

Sample  (wt%)  

E’  at  50C  (Mpa)  

Increase  (%)  

E’  at  210C  (Mpa)  

Increase  (%)  

Neat  Resin   2701     62.8    

4%  Halloysite   3354   24.2   88.1   40.3  8%  Halloysite   3491   29.2   109.7   74.7  12%  Halloysite   4283   58.6   139.2   121.7  

 

Storage  Moduli  of  Epoxy/Halloysite  Hybrids    in  Glassy  and  Rubbery  States  

Liu,  M.,  Guo,  B.,  Du,  M.,  Cai,  X.,  &  Jia,  D.  (2007).  Properties  of  halloysite  nanotube–epoxy  resin  hybrids  and  the  interfacial  reactions  in  the  systems.  Nanotechnology,  18(45),  455703.    

Flexural  Modulus  and  Flexural  Strength  of  Epoxy/Halloysite    Nanocomposites  

Sample  (wt%)  

Flexural  Strength  (Mpa)  

Flexural  Modulus  (Gpa)  

Neat  Resin   47   3.26  

4%  HNTs   100   3.65  8%  HNTs   107   3.85  12%  HNTs   91   3.98  

 Liu,  M.,  Guo,  B.,  Du,  M.,  Lei,  Y.,  &  Jia,  D.  (2008).  Natural  inorganic  nanotubes  reinforced  epoxy  resin  nanocomposites.  Journal  of  Polymer  Research,  15(3),  205–212.  

Flexural  Strength  and  Modulus  Improvement    Halloysite  was  incorporated  in  a  cyanate  ester  cured  epoxy  resin  to  increase  the  flexural  strength  and  modulus.  

Impact  Strength  Improvements      The  impact  strength  of  the  halloysite  particle  modified  epoxies  was  noticeably  increased  400%  without  sacrificing  other  mechanical  properties.  The  underlying  toughening  mechanisms  responsible  for  the  unusual  400%  increase  in  impact  strength  were  investigated  and  identified  as  massive  micro-­‐cracking,  nanotube  bridging/pull  out/breaking  and  crack  deflection.            

Ye,  Y.,  Chen,  H.,  Wu,  J.,  &  Ye,  L.  (2007).  High  impact  strength  epoxy  nanocomposites  with  natural  nanotubes.  Polymer,  48(21),  6426–6433.    

 

 

 Applied  Minerals  Inc. 110  Greene  Street,  Suite  1101 New  York,  NY  10012 1.800.356.6463 www.appliedminerals.com

Sample  (wt%)  

Fracture  Toughness  (Mpa  

m1/2)  

Impact  Toughness  (kJ/m2)  

Neat  VER   1.8   1.5  

1%  Halloysite   2.1   2.9  3%  Halloysite   2.4   3.3  5%  Halloysite   2.6   4.1  

 

 Fracture  and  Impact  Toughness  Improvements      The  impact  strength  of  the  halloysite  particle  modified  epoxies  was  noticeably   increased   400%   without   sacrificing   other   mechanical  properties.  The  underlying  toughening  mechanisms  responsible  for  the   unusual   400%   increase   in   impact   strength   were   investigated  and   identified   as     massive  micro-­‐cracking,   nanotube   bridging/pull  out/breaking  and  crack  deflection.      

Fracture  Properties  of  VER  and  VER/  Halloysite  Nanocomposites  

SEM  Images  of  VER/  Halloysite  Samples    a.  VER  resin    b.  VER/1%HNT  loading  c.  VER/3%  loading  d.  VER/5%HNT  loading  

DRAGONITE  in  Vinyl  Ester  Thermosets  

 

Alhuthali,  A.,  &  Low,  I.  M.  (2013).  Mechanical  and  fracture  properties  of  halloysite  nanotube  reinforced  vinyl-­‐ester  nanocomposites.  Journal  of  Applied  Polymer  Science,  130(3),  1716–1725.    

Key$PropertiesProperty Value

Chemical)Formula Al2Si2O5(OH)4)2H20Chemistry Al2O3)37.7%)SiO2)43.4%Length 0.2B2.0)μm)Outside)Diameter 50B70)nmInside)Diameter 15B30)nmAspect)Ratio)(L/D) 10B20Particle)Size)(d90) <)10)μmParticle)Size)(d50) <0.2)μmBET)Surface)Area 65)m2gB1

True)Specific)Gravity 2.53)gcm3

Bulk)Density ~)16)lb/ft3

BET)Pore)Volume 20)B)25%Oil)(Linseed))Absorption 40)lbs)/)100)lbsCation)Exchange)Capacity 11)meq)/)100g

Contact:    Brian  Newsome  Head  of  Sales    1  (407)  790-­‐1159  [email protected]