high field mangneto-transport in two-dimensional electron...

14
High field magneto-transport on two-dimensional electron gas in LaAlO 3 /SrTiO 3 Ming Yang, Kun Han, Olivier Torresin, Mathieu Pierre, Shengwei Zeng, Zhen Huang, T. V. Venkatesan, Michel Goiran, J. M. D. Coey, Ariando, and Walter Escoffier

Upload: others

Post on 18-Jan-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

High field magneto-transport on two-dimensional electron gas in LaAlO3/SrTiO3

Ming Yang, Kun Han, Olivier Torresin, Mathieu Pierre, Shengwei Zeng, Zhen Huang, T. V. Venkatesan, Michel Goiran, J. M. D. Coey, Ariando,

and Walter Escoffier

Page 2: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

LaAlO3/SrTiO3

Ohtomo

A. Ohtomo and H. Hwang, Nature 427, 423 (2004)

A. Janotti et al., Phys. Rev. B 86,241108(R) (2012)

P. Delugas et al., Phys. Rev. Lett. 106, 166807 (2011)

Both require high magnetic

field.

Electronic subbands of 2DEG derived from

the Ti 3d(t2g) orbitals.

dxz/dyz

Investigate the electronic states of the

2DEG.

Transport properties in LaAlO3/SrTiO3

Page 3: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

Sample preparation

Pulsed Laser Deposition: 10 uc LAO deposited on STO substrate

T =740 oC

PO2 = 2x10-3 Torr

f = 1 Hz

Post annealing in air @ 550 oC

Fabricated in National University of Singapore

25um Al wire wedge bonding

L=180 μm

W=50 μm

Page 4: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

Measurement under high magnetic field

0.0 0.1 0.2 0.3 0.4 0.50

10

20

30

40

50

60

B (

T)

Duration (s)

Magnetic field: 0-60T Temperature: 1.5-300K Angle: 0-90o Sample size: 4x4mm

14 MJ Capacitor Bank

60T magnet

Also available at LNCMI-T: 70T and 90T down to 300mK

Page 5: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

Magneto-transport in LAO/STO

Negative MR:

Kondo effect (A. Joshua et al., PNAS110, 9633 (2013))

Diamagnetic shift (A. McCollam et al., APL Mat 2,022102(2014))

Rashba spin-orbit coupling (M. Diez et al., PRL 115, 016803 (2015))

Positive MR (perpendicular field) to negative MR(parallel field) transition.

Linear Hall effect under magnetic field.

Small oscillations superimpose on Rxx.

Single band?

SdH oscillations

0 10 20 30 40 50 60-50

0

50

100

150

200

250

(STO)

(LAO)10

I

B

(001)

(100)

MR

(%

)

B (T)

T=1.7 K

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0 0

Rxy (

k

)

B (T)

0 10 20 30 40 50 60-50

0

50

100

150

200

250

MR

(%

)

B (T)

T=1.7 K

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0

(STO)

(LAO)10

I

B

(001)

(100)

0

30

Rxy (

k

)

B (T)

0 10 20 30 40 50 60-50

0

50

100

150

200

250

MR

(%

)

B (T)

T=1.7 K

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0

(STO)

(LAO)10

I

B

(001)

(100)

0

30

60

Rxy (

k

)

B (T)

0 10 20 30 40 50 60-50

0

50

100

150

200

250

(STO)

(LAO)10

I

B

(001)

(100)

MR

(%

)

B (T)

T=1.7 K

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0 0

30

60

75

Rxy (

k

)

B (T)

0 10 20 30 40 50 60-50

0

50

100

150

200

250

MR

(%

)

B (T)

T=1.7 K

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0

(STO)

(LAO)10

IB

(001)

(100)

0

30

60

75

90

Rxy (

k

)

B (T)

Rxx(0)=1440 Ω

Page 6: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

Magneto-transport in LAO/STO

Negative MR:

Kondo effect (A. Joshua et al., PNAS110, 9633 (2013))

Diamagnetic shift (A. McCollam et al., APL Mat 2,022102(2014))

Rashba spin-orbit coupling (M. Diez et al., PRL 115, 016803 (2015))

Positive MR (perpendicular field) to negative MR(parallel field) transition.

Linear Hall effect under magnetic field.

Small oscillations superimpose on Rxx.

Single band?

SdH oscillations

0 10 20 30 40 50 60-50

0

50

100

150

200

250

(STO)

(LAO)10

I

B

(001)

(100)

MR

(%

)

B (T)

T=1.7 K

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0 0

Rxy (

k

)

B (T)

0 10 20 30 40 50 60-50

0

50

100

150

200

250

MR

(%

)

B (T)

T=1.7 K

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0

(STO)

(LAO)10

I

B

(001)

(100)

0

30

Rxy (

k

)

B (T)

0 10 20 30 40 50 60-50

0

50

100

150

200

250

MR

(%

)

B (T)

T=1.7 K

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0

(STO)

(LAO)10

I

B

(001)

(100)

0

30

60

Rxy (

k

)

B (T)

0 10 20 30 40 50 60-50

0

50

100

150

200

250

(STO)

(LAO)10

I

B

(001)

(100)

MR

(%

)

B (T)

T=1.7 K

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0 0

30

60

75

Rxy (

k

)

B (T)

0 10 20 30 40 50 60-50

0

50

100

150

200

250

MR

(%

)

B (T)

T=1.7 K

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0

(STO)

(LAO)10

IB

(001)

(100)

0

30

60

75

90

Rxy (

k

)

B (T)

Rxx(0)=1440 Ω

Page 7: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

0.02 0.04 0.06 0.08 0.10

-80

-40

0

40

80

1.68K

1.97K

2.54K

3.15K

4.20K

R

XX (

)

1/B (T)

Single-subband with Rashba effect

Multi-subbands

Non-perfect periodicity of oscillations

SdH oscillations

Effective mass m*=1.9 me heavy carrier : dxz / dyz orbitals

Dingle temperature TD=5.5 K quantum mobility μq~200 cm2/Vs

The average frequency yields the carrier density ~ 1012cm-2, one order of magnitude

lower than the carrier density extracted from the Hall effect.

61T 81T

75T

Page 8: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

0.02 0.04 0.06 0.08 0.10

-80

-40

0

40

80

1.68K

1.97K

2.54K

3.15K

4.20K

R

XX (

)

1/B (T)

Single subband +

Rashba SOI

0 1 2 3 4 5 6 7 8

0.00

0.02

0.04

0.06

R

XX/R

0

T (K)

m*=1.9 0.1 me

TD=5.5 0.3 K

SdH oscillations Lifshitz-Kosevich equation:

Effective mass m*=1.9 me heavy carrier : dxz / dyz orbitals

Dingle temperature TD=5.5 K quantum mobility μq~200 cm2/Vs

The average frequency yields the carrier density ~ 1012cm-2, one order of magnitude

lower than the carrier density extracted from the Hall effect.

Page 9: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

SdH oscillations with Rashba effect

A. Fête et al., New J. Phys.16, 112002 (2014).

Good fitting of the oscillations for both samples using the effective mass of 1.9me.

The same Rashba constant and g*-factor for both samples and consistent with the literature (3.4E-12eVm and 5.2 respectively).

The carrier density compares with Onsager relation, one order of magnitude lower than the carrier density extracted from the Hall effect.

Landau Levels:

0.02 0.04 0.06 0.08 0.10

-80

-40

0

40

80

1.68K

1.97K

2.54K

3.15K

4.20K

R

XX (

)

1/B (T)

Single subband +

Rashba effect

0 1 2 3 4 5 6 7 8

0.00

0.02

0.04

0.06

R

XX/R

0

T (K)

m*=1.9 0.1 me

TD=5.5 0.3 K

Zeeman term Rashba term

0.04 0.08

-150

-100

-50

0

50

100

experiment

fitting

R

(

)

1/B (T-1)

m*=1.9me

= 5.4510-12

eVm

n = 1.651012

cm-2

g = 5

Sample S1

0.04 0.08

-40

-20

0

20

40

experiment

fitting

Sample S2

m*=1.9me

= 5.4510-12

eVm

n = 2.401012

cm-2

g = 5

1/B (T-1)

Page 10: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0 experimental data

Rxy (

k

)

B (T)

nHall

= 1.451013

cm-2

Multi conduction channels 2-fluids model:

Quantum oscillations Classical transport

dxz dyz dxy

0.04 0.08

-150

-100

-50

0

50

100

experiment data

Rashba fitting

R

(

)

1/B (T-1)

m*=1.9me

= 5.4510-12

eVm

n = 1.651012

cm-2

g = 5

Sample S1

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0 experimental data

2 fluids fitting

Rxy (

k

)

B (T)

Two conduction channels with a dominating one

Page 11: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0 experimental data

Rxy (

k

)

B (T)

nHall

= 1.451013

cm-2

Multi conduction channels 2-fluids model:

Quantum oscillations Classical transport

dxz dyz dxy

0.04 0.08

-150

-100

-50

0

50

100

experiment data

Rashba fitting

R

(

)

1/B (T-1)

m*=1.9me

= 5.4510-12

eVm

n = 1.651012

cm-2

g = 5

Sample S1

0 10 20 30 40 50 60-2.5

-2.0

-1.5

-1.0

-0.5

0.0 experimental data

2 fluids fitting

Rxy (

k

)

B (T)

Page 12: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

Transport mobility and quantum mobility

Quantum relaxation time

Transport relaxation time

Q(θ) is the probability through a scattering angle θ.

P. T. Coleridge et al., Phys. Rev. B 39,1120(1989).

We assume that the quantum mobility of the in-plane carriers is too small for SdH oscillations.

Carriers far from the interface (dxz/dyz) :

Carriers close to the interface (dxy) :

?

Page 13: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

Summary and perspectives

Investigate on the angle dependence of the SdH oscillations with Rashba effect. Investigate on the carrier density dependence (back-gate, top-gate, UV light) to

map the band structure of the LAOSTO interface. STO substrate with different crystalline orientation.

Carriers originate from the dxz/dyz orbitals

Carriers originate from the dxy orbitals

Heavy effective mass Lower carrier density Higher mobility Far from the LAO/STO interface,

less sensitive to scattering at the interface.

Light effective mass? higher carrier density lower mobility Close the LAO/STO interface, more

sensitive to scattering at the interface.

Hypothesis:

Rashba effect

Two-fluids model

Qualitatively consistent with the negative magnetoresistance in parallel field(M. Diez et al., PRL 115, 016803 (2015))

Page 14: High field mangneto-transport in two-dimensional electron ...gdr-meeticc.cnrs.fr/wp-content/uploads/2016/06/Aussois-2016-Ming-Yang.pdf · High field magneto-transport on two-dimensional

Acknowledgement NUSNNI Group @Singapore & Dublin

LNCMI Group @Toulouse

Thank you!

arXiv:1604.03451