higgs searches within and beyond the standard...

35
Higgs searches within and beyond the Standard Model Laura Reina (FSU) APS Meeting, Denver, May 2009

Upload: others

Post on 24-Feb-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Higgs searches within and beyond theStandard Model

Laura Reina (FSU)

APS Meeting, Denver, May 2009

Page 2: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

• The Tevatron and even more the Large Hadron Collider (LHC) will

test new ground and answer some of the fundamental open questions of

Particle Physics:

−→ Electroweak (EW) symmetry breaking: Higgs mechanism?

−→ New Physics (NP) in the TeV range?

• The reach of the Tevatron and the incredible physics potential of the

LHC rely on our ability to provide:

−→ very accurate predictions (signal/backgr, PDF, masses, couplings);

−→ broad selection of models (aiming for general properties).

• Precision becomes even more crucial for a future Linear Collider

(ILC,CLIC,. . .).

• Higgs-boson physics: what would the theoretical and experimental

precision be good for?

−→ test consistency of the Standard Model and its extensions;

−→ discover one (or more) potential Higgs boson(s);

−→ identify it (them): measure couplings, mass(es), quantum numbers.

Page 3: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

What are we looking for?

Page 4: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

• Spectrum of ideas to explain EWSB: based on weakly or strongly

coupled dynamics embedded into some more fundamental theory at a

scale Λ (probably ≃ TeV):

−→ Elementary Higgs: SM, 2HDM, SUSY (MSSM, NMSSM,. . .), . . .

−→ Composite Higgs: technicolor, little Higgs models, . . .

−→ Extra Dimensions: flat,warped, . . .

−→ Higgsless models

• SM Higgs boson, our learning ground:

−→ LSMHiggs = (Dµφ)†Dµφ− µ2φ†φ− λ(φ†φ)2

complex SU(2) doublet, reduced to one real massive scalar field upon

EWSB via Higgs mechanism: 〈φ†〉 = (0 v√2), where v = (−µ2/λ)−1/2;

−→ scalar particle, neutral, CP even, m2H = −2µ2 = 2λv2;

−→ mass related to scale of new physics, but constrained by EW precision fits;

−→ minimally coupled to gauge bosons −→ MW = g v2, MZ =

g2 + g′2 v2;

−→ coupled to fermions via Yukawa interactions −→ mf = yfv2;

−→ three- and four-point self couplings: testing the potential.

Page 5: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

• Beyond SM we could have:

−→ more scalars and/or pseudoscalars particles over broad mass spectrum

(elementary? composite?);

−→ physical states mixture of original fields (→ FCNC, . . .);

−→ no scalar (!);

−→ several other particles (fermions and vector gauge bosons).

If coupled to SM particles:

−→ constraints from EW precision measurements should apply;

−→ still lots of room for unknown parameters to be adjusted: little

predictivity until discoveries won’t populate more the physical spectrum.

Upon discovery:

• measure mass (first crucial discriminator!);

• measure couplings to gauge bosons and fermions;

• test the potential: measure self couplings;

• hope to see more physics.

Page 6: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

What we know from past and currentsearches

Page 7: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

SM Higgs boson: light mass strongly favored

Increasing precision will provide an invaluable tool to test the consistency of

the SM and its extensions.

80.3

80.4

80.5

150 175 200

mH [GeV]114 300 1000

mt [GeV]

mW

[G

eV]

68% CL

∆α

LEP1 and SLD

LEP2 and Tevatron (prel.)

March 2009 mW = 80.399 ± 0.025 GeV

mt = 173.1 ± 1.3 GeV

MH = 90+36−27 GeV

MH < 163 (191) GeV

plus exclusion limits (95% c.l.):

MH > 114.4 GeV (LEP)

MH 6= 160 − 170 GeV (Tevatron)

⊲ only SM unknown: Higgs-boson mass;

⊲ strong correlation between MW (sin θeffW ), mt and MH .

Page 8: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Experimental uncertainties, estimate

Present Tevatron LHC LC GigaZ

δ(MW )(MeV) 25 27 10-15 7-10 7

δ(mt) (GeV) 1.1 2.7 1.0 0.2 0.13

δ(MH)/MH (indirect) 30% 35% 20% 15% 8%

(U. Baur, LoopFest IV, August 2005)

Intrinsic theoretical uncertainties

−→ δMW ≈ 4 MeV: full O(α2) corrections computed.

(M. Awramik, M. Czakon, A. Freitas, and G. Weiglein, PRD 69:053006,2004)

−→ estimated: ∆mt/mt ∼ 0.2∆σ/σ + 0.03 (LHC)

(R. Frederix and F. Maltoni, JHEP 0901:047,2009 )

Page 9: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

SM Higgs: does a light Higgs constrain new physics?

100

200

300

400

500

600

1 10 102

Hig

gs m

ass

(GeV

)

Λ (TeV)

Vacuum Stability

Triviality

Electroweak

10%

1%

Λ→ scale of new physics

amount of fine tuning =

2Λ2

M2H

nmax∑

n=0

cn(λi) logn(Λ/MH)

←− nmax = 1

(C. Kolda and H. Murayama, JHEP 0007:035,2000)

Light Higgs consistent with low Λ: new physics at the TeV scale.

Page 10: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Beyond SM: new physics at the TeV scale can be a better fit

Ex. 1: MSSM

(M. Carena et al.)160 165 170 175 180 185

mt [GeV]

80.20

80.30

80.40

80.50

80.60

80.70

MW

[GeV

]

SM

MSSM

MH = 114 GeV

MH = 400 GeV

light SUSY

heavy SUSY

SMMSSM

both models

Heinemeyer, Hollik, Stockinger, Weber, Weiglein ’07

experimental errors: LEP2/Tevatron (today)

68% CL

95% CL

⊲ a light scalar Higgs boson, along with a heavier scalar, a pseudoscalar and a

charged scalar;

⊲ similar although less constrained pattern in any 2HDM;

⊲ MSSM main uncertainty: unknown masses of SUSY particles.

Page 11: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Beyond SM: new physics at the TeV scale can be a better fit

Ex. 2: “Fat Higgs” models

800

600

400

200

0

mas

s (G

eV)

h0SM

H±N0

H0

A0

h0

H±N0H0A0

h0H±H0

SM

N0A0

λ=3tanβ=2ms=400GeVm0=400GeV

λ=2tanβ=2ms=200GeVm0=200GeV

λ=2tanβ=1ms=200GeVm0=200GeV

I II III

−0.2

0

0.2

T

−0.4 0−0.2−0.4

68%

99%

S

0.6

0.2

0.4

0.4 0.6

ms=200 GeV, tanβ=2

210

525

350

sm =400 GeV, tanβ=2

sm =200 GeV, tanβ=1

263

360

SM Higgs

mh0=235

(Harnik, Kribs, Larson, and Murayama, PRD 70 (2004) 015002)

⊲ supersymmetric theory of a composite Higgs boson;

⊲ moderately heavy lighter scalar Higgs boson, along with a heavier scalar, a

pseudoscalar and a charged scalar;

⊲ consistent with EW precision measurements without fine tuning.

Page 12: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Tevatron: great potential for a light SM-like Higgs boson

σ(pp_→H+X) [pb]

√s = 2 TeV

Mt = 175 GeV

CTEQ4Mgg→H

qq→Hqqqq

_’→HW

qq_→HZ

gg,qq_→Htt

_

gg,qq_→Hbb

_

MH [GeV]

10-4

10-3

10-2

10-1

1

10

10 2

80 100 120 140 160 180 200

Several channels used:

gg → H, qq → q′q′H,

qq′ →WH, qq, gg → ttH

with

H → bb, τ+τ−, W+W−, γγ

BR(H)

bb_

τ+τ−

cc_

gg

WW

ZZ

tt-

γγ Zγ

MH [GeV]50 100 200 500 1000

10-3

10-2

10-1

1

(M. Spira, Fortsch.Phys. 46 (1998) 203)

1

10

100 110 120 130 140 150 160 170 180 190 200

1

10

mH(GeV/c2)

95%

CL

Lim

it/S

M

Tevatron Run II Preliminary, L=0.9-4.2 fb-1

ExpectedObserved±1σ Expected±2σ Expected

LEP Exclusion TevatronExclusion

SMMarch 5, 2009

Page 13: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

. . . and first constraints on MSSM parameters from Higgs physics

(GeV) Am80 100 120 140

βta

n

20

40

60

80

100 DØMSSM Higgs bosons = h, H, Aφ), b b→(φbb

Exc

lud

ed a

t L

EP

No mixingMax. mixing

(GeV) Am80 100 120 140

βta

n

20

40

60

80

100

mA (GeV/c2)

tan

β

CDF Run II Preliminary (1.9/fb)

mh max scenario, µ = -200 GeV

Higgs width included

expected limit1σ band2σ bandobserved limit

95% C.L. upper limits

0

20

40

60

80

100

120

140

160

180

200

100 120 140 160 180 200

(D∅, PRL 95 (2005) 151801) (CDF, Note 9284, 2008)

gMSSM

bbh0,H0 =(− sinα, cosα)

cosβgbbH and gMSSM

bbA0 = tanβ gbbH

where gbbH = mb/v ≃ 0.02 (Standard Model) and tanβ = v1/v2 (MSSM).

Page 14: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

The LHC: unveiling the nature of EWSB

Page 15: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

LHC: entire SM Higgs mass range accessible

σ(pp→H+X) [pb]√s = 14 TeV

Mt = 175 GeV

CTEQ4Mgg→H

qq→Hqqqq

_’→HW

qq_→HZ

gg,qq_→Htt

_

gg,qq_→Hbb

_

MH [GeV]0 200 400 600 800 1000

10-4

10-3

10-2

10-1

1

10

10 2 Many channels have been studied:

Below 130-140 GeV:

gg → H , H → γγ, WW, ZZ

qq → qqH , H → γγ, WW, ZZ, ττ

qq, gg → ttH , H → γγ, bb, ττ

qq′ →WH , H → γγ, bb

BR(H)

bb_

τ+τ−

cc_

gg

WW

ZZ

tt-

γγ Zγ

MH [GeV]50 100 200 500 1000

10-3

10-2

10-1

1

Above 130-140 GeV:

gg → H , H →WW, ZZ

qq → qqH , H → γγ, WW, ZZ

qq, gg → ttH , H → γγ, WW

qq′ →WH , H →WW

(M. Spira, Fortsch.Phys. 46 (1998) 203)

Page 16: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

LHC: discovery reach for a SM Higgs boson

1

10

10 2

100 120 140 160 180 200

mH (GeV)

Sig

nal s

igni

fica

nce

H → γ γ ttH (H → bb) H → ZZ(*) → 4 l H → WW(*) → lνlν qqH → qq WW(*)

qqH → qq ττ

Total significance

∫ L dt = 30 fb-1

(no K-factors)

ATLAS

1

10

10 2

102

103

mH (GeV) S

igna

l sig

nifi

canc

e

H → γ γ + WH, ttH (H → γ γ ) ttH (H → bb) H → ZZ(*) → 4 l

H → ZZ → llνν H → WW → lνjj

H → WW(*) → lνlν

Total significance

5 σ

∫ L dt = 100 fb-1

(no K-factors)

ATLAS

⊲ Low mass region difficult at low luminosity: need to explore as many channels

as possible. Indications from the Tevatron most valuable!

⊲ high luminosity reach needs to be updated;

⊲ identifying the SM Higgs boson requires high luminosity, above 100 fb−1: very

few studies exist above 300 fb−1 (per detector).

Page 17: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

LHC: discovery reach in the MSSM parameter space

Low luminosity, CMS only High luminosity, ATLAS+CMS

Page 18: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

SM Higgs boson: mass, width, spin and more

• Color and charge are given by the measurement of a given

(production+decay) channel.

• The Higgs boson mass will be measured with 0.1% accuracy in

H → ZZ∗→ 4l±, complemented by H → γγ in the low mass region. Above

MH ≃ 400 GeV precision deteriorates to ≃ 1% (lower rates).

• The Higgs boson width can be measured in H → ZZ∗→ 4l± above

MH ≃ 200 GeV. The best accuracy of ≃ 5% is reached for MH ≃ 400 GeV.

• The Higgs boson spin could be measured through angular correlations

between fermions in H → V V → 4f : need for really high statistics.

Page 19: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

LHC: can measure most SM Higgs couplings at 10-30%

gg→ HWBFttHWH

● ττ ● bb● ZZ ● WW● γγ

MH (GeV)

∆σH/σ

H (

%)

0

5

10

15

20

25

30

35

40

110 120 130 140 150 160 170 180

Consider all “accessible” channels:

• Below 130-140 GeV

gg → H , H → γγ, WW, ZZ

qq → qqH , H → γγ, WW, ZZ, ττ

qq, gg → ttH , H → γγ, bb, ττ

qq′ →WH , H → γγ, bb

• Above 130-140 GeV

gg → H , H →WW, ZZ

qq → qqH , H → γγ, WW, ZZ

qq, gg → ttH , H → γγ, WW

qq′ →WH , H →WW

Observing a given production+decay (p+d) channel gives a relation:

(σp(H)Br(H → dd))exp =σth

p (H)

Γthp

ΓdΓp

ΓH

(D. Zeppenfeld, PRD 62 (2000) 013009; A. Belyaev et al., JHEP 0208 (2002) 041)

Page 20: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Associate to each channel (σp(H)×Br(H → dd))

Z(p)d =

ΓpΓd

Γ

{

Γp ≃ g2Hpp = y2

p → production

Γd ≃ g2Hdd = y2

d → decay

From LHC measurements, with given simulated accuracies and theoretical

systematic errors (GF: 20%, WBF: 4%, ttH: 15%, WH: 7%):

• Determine in a model independent way ratios of couplings at the

10− 20% level, for example:

yb

yτ←−

Γb

Γτ=

Z(t)b

Z(t)τ

yt

yg←−

Γt

Γg=

Z(t)τ Z

(WBF)γ

Z(WBF)τ Z

(g)γ

orZ

(t)W

Z(g)W

crucial to have many decay channels for the same production channel.

• determine individual couplings at the 10-30% level, assuming:

ΓH ≃ Γb + Γτ + ΓW + ΓZ + Γg + Γγ , ΓW

ΓZ= ΓW

ΓZ

SMand Γb

Γτ= Γb

Γτ

SM

Page 21: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Along these lines, exploring higher luminosity:

0

0.1

0.2

0.3

120 140 160 180

ΓW/ΓZ (indirect)ΓW/ΓZ (direct)

ATLAS + CMS∫ L dt = 300 fb-1 and ∫ L dt = 3000 fb-1

mH (GeV)

∆(Γ W

/ΓZ)/

(ΓW

/ΓZ)

0

0.2

0.4

0.6

0.8

100 150 200

ΓW/Γt (indirect)ΓW/Γt (indirect)ΓW/Γb (indirect)ΓW/Γτ (direct)

ATLAS + CMS∫ L dt = 300 fb-1 and ∫ L dt = 3000 fb-1

mH (GeV)

∆(Γ V

/Γf)/

(ΓV/Γ

f)(F. Gianotti, M. Mangano, and T. Virdee, hep-ph/02040887)

where the “indirect” ratios are obtained under some assumptions:

ΓW

ΓZ=

Z(g)γ

Z(g)Z

,ΓW

Γt=

Z(WH)γ

Z(g)γ

orZ

(WH)W

Z(g)W

(assuming gg → H is t-dominated)

ΓW

Γb=

Z(t)γ

Z(t)b

(assuming H → γγ is W -dominated)

Page 22: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Toward a more model independent determination of Higgscouplings and width

Consider both a χ2(x) and a likelihood function L(x) over a parameter space (x)

made of all partial widths plus Γinv, Γγ(new), and Γg(new).

[GeV]Hm110 120 130 140 150 160 170 180 190

(pre

dic

ted

(new

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1HΓ / inv.Γ

(W,t)γΓ(new) / γΓ

(t)gΓ(new) / gΓ

2 Experiments

-1 L dt=2*30 fb∫

[GeV]Hm110 120 130 140 150 160 170 180 190

(pre

dic

ted

(new

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1HΓ / inv.Γ

(W,t)γΓ(new) / γΓ

(t)gΓ(new) / gΓ

2 Experiments

-1 L dt=2*300 fb∫-1WBF: 2*100 fb

(M. Duhrssen et al., PRD 70 (2004) 113009)

with the only assumption that: g2(H, V ) < 1.05 · g2(H, V, SM) (V = W, Z)

Page 23: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

[GeV]Hm110 120 130 140 150 160 170 180 190

(H,X

)2

g(H

,X)

2 g∆

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(H,Z)2g

(H,W)2g

)τ(H,2g

(H,b)2g

(H,t)2g

without Syst. uncertainty

2 Experiments-1

L dt=2*30 fb∫

[GeV]Hm110 120 130 140 150 160 170 180 190

(H,X

)2

g(H

,X)

2 g∆

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1(H,Z)2g

(H,W)2g

)τ(H,2g

(H,b)2g

(H,t)2g

without Syst. uncertainty

2 Experiments-1

L dt=2*300 fb∫-1WBF: 2*100 fb

(M. Duhrssen et al., PRD 70 (2004) 113009)

⊲ Most coupling within 10-40% at high luminosity (for light MH);

⊲ notice the impact of systematic uncertainties;

⊲ of course, adding assumptions considerably lower the errors.

−→ New study by Lafaye, Plehn, Rauch, Zerwas, and Duhrssen (arXiv:0904:3866)

Page 24: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Looking for footprints of new physics:

0.0 0.2 0.4 0.6 0.8 1.0

02

46

810

SM+Singlet

δ

χ2

5 10 15 20

−0.

50.

00.

51.

0 2HDM−I

tanβ

δ

5 10 15 20

−0.

50.

00.

51.

0 2HDM−II

tanβ

δ

5 10 15 20−

0.5

0.0

0.5

1.0 Flipped 2HDM

tanβ

δ

5 10 15 20

−0.

50.

00.

51.

0 Lepton−specific 2HDM

tanβ

δ

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0 3HDM−D

cos2θ

ω

Consider all extended Higgs sectors

− involving SU(2)L doublets and

singlets;

− with natural flavor conservation;

− without CP violation.

15 models have different footprints!

δ −→ decoupling parameter

(δ = 0: SM)

(V. Barger, H. Logan, G. Shaughnessy,

arXiv:0902.0170)

Page 25: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

ILC: ultimate precision

• Higgs boson mass within δMH = 50 MeV;

• Model independent determination of Higgs boson couplings

• All Higgs boson couplings known within few percents (but top Yukawa

coupling!)

• Measure 3H coupling with high luminosity (ab−1): first direct test of Higgs

boson potential, impossible at the LHC.

Ex.: SM Higgs boson,√

s=500 GeV, 1 ab−1

Coupling: Hbb Hτ+τ− Hcc HWW HZZ Htt HHH

(MH =120 GeV) 2.2% 3.3% 3.7% 1.2% 1.2% 25% 17%

(MH =140 GeV) 2.2% 4.8% 10% 2.0% 1.3% 23%

Theory 1.4% 2.3% 23% 2.3% 2.3% 5%

• Higgs boson quantum numbers, spin, . . .

Page 26: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

How good are our theoreticalpredictions?

Page 27: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

SM Higgs-boson production: theoretical precision at a glance.

QCD predictions for total hadronic cross sections of Higgs-boson production

processes are under good theoretical control:

NLO, gg; qq ! tthNLO, qq ! Zh; �(pp! h+X) [pb℄NLO, qq0 !WhNLO, qq ! qqhNNLO, gg ! h

LHC, ps = 14TeV;Mh=2 < � < 2MhMh [GeV℄ 200190180170160150140130120

10001001010:1

NNLO,0 b tagged, (0:1; 0:7)Mh0 b tagged, (0:2; 1)�02 bs tagged, (0:5; 2)�01 b tagged, (0:2; 1)�0NNLO, b�b! h�(pp! h+X) [pb℄

NLO, gg; qq ! bbhLHC, ps = 14TeV; �0 = mb +Mh=2

Mh [GeV℄ 2001901801701601501401301201010:10:01

Caution: in these plots uncertainties only include µR/µF scale dependence,

PDF’s uncertainties are not included.

Page 28: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Ex. 1: gg → H, the main production mode

Harlander,Kilgore (03); Anastasiou,Melnikov,Petriello (03)

Ravindran,Smith,van Neerven (04)

1

10

100 120 140 160 180 200 220 240 260 280 300

σ(pp→H+X) [pb]

MH [GeV]

LONLONNLO

√ s = 14 TeV

• dominant production mode in association with H → γγ or H →WW or

H → ZZ;

• dominated by soft dynamics: effective ggH vertex can be used (3 → 2-loop);

• perturbative convergence LO → NLO (70%) → NNLO (30%):

residual 15% theoretical uncertainty.

Page 29: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Inclusive cross section, resum effects of soft radiation:

large qTqT >MH−→

perturbative expansion in αs(µ)

small qTqT ≪MH−→

need to resum large ln(M2H/q2

T )

Bozzi,Catani,De Florian,Grazzini (04-08)

Update: Going from MRST2002 to MSTW2008 greatly affects the Tevatron/LHCcross section: from 9%/30% (MH = 115 GeV) to -9%/+9% (MH = 200/300 GeV) !

De Florian,Grazzini (09)

Exclusive NNLO results: e.g. gg → H → γγ, WW, ZZ

Extension of (IR safe) subtraction method to NNLO:

−→ HNNLO (Catani,Grazzini)

−→ FEHiP (Anastasiou,Melnikov,Petriello)

Page 30: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Ex. 2: pp→ ttH, crucial to explore Higgs couplings.

0.2 0.5 1 2 4µ/µ0

200

400

600

800

1000

1200

1400

σ LO,N

LO (

fb)

σLO

σNLO

√s=14 TeVMh=120 GeV

µ0=mt+Mh/2

CTEQ5 PDF’s

100 120 140 160 180 200Mh (GeV)

0

200

400

600

800

1000

1200

1400

σ LO,N

LO (

fb)

σLO , µ=µ0

σNLO , µ=µ0

σLO , µ=2µ0

σNLO , µ=2µ0

√s=14 TeV

µ0=mt+Mh/2

CTEQ5 PDF’s

Dawson, Jackson, Orr, L.R., Wackeroth (01-03)

• Fully massive 2→ 3 calculation: testing the limit of FD’s approach

(pentagon diagrams with massive particles).

• Independent calculation: Beenakker et al., full agreement.

• Theoretical uncertainty reduced to about 15%

• Several crucial backgrounds: tt + j (NLO, Dittmaier,Uwer,Weinzierl), ttbb,

tt + 2j, V V + bb.

Page 31: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Ex. 3: pp→ bbH, hint of enhanced b-quark Yukawa coupling

MSSM, tan� = 40�0 = mb +Mh0=20:2�0 < � < �0NLO MCFM, gb! bh0NLO, gg; qq ! b(b)h0Tevatron, ps = 1:96 TeV

Mh0 [GeV℄

�NLO [pb℄

13012512011511010510010

1 MSSM, tan� = 40�0 = mb +MH0=20:2�0 < � < �0NLO MCFM, gb! bH0NLO, gg; qq ! b(b)H0LHC, ps = 14 TeV

MH0 [GeV℄

�NLO [pb℄

5004504003503002502001501000100101

MSSM, tan � = 40NNLO, 5FNS, bb! h0NLO, 5FNS, bb! h0NLO, 4FNS, gg; qq ! (bb)h0Tevatron, ps = 1:96 TeV

Mh0 [GeV℄

�NLO [pb℄

130125120115110105100100

101 MSSM, tan� = 40

NNLO, 5FNS, bb! H0NLO, 5FNS, bb! H0NLO, 4FNS, gg; qq ! (bb)H0LHC, ps = 14 TeVMH0 [GeV℄

�NLO [pb℄

400350300250200150100

10

Dawson, Jackson, L.R., Wackeroth (05)

Page 32: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Ex. 4: pp→ bbW/Z, crucial but not well-understood background.

−→ V −→ 4 partons (1-loop massless amplitudes) (Bern, Dixon, Kosower (97))

−→ pp, pp→ V bb (at NLO, 4FNS, mb = 0) (Campbell, Ellis (99))

−→ pp, pp→ V b + j (at NLO, 5FNS) (Campbell, Ellis, Maltoni,Willenbrock

(05,07))

−→ pp, pp→Wbb (at NLO, 4FNS, mb 6= 0) (Febres Cordero, L.R., Wackeroth

(06))

−→ pp, pp→ Zbb (at NLO, 4FNS, mb 6= 0) (Febres Cordero, L.R., Wackeroth (08))

−→ pp, pp→W + 1 b-jet (at NLO, 5FNS+4FNS with mb 6= 0) (Campbell,

Ellis, Febres Cordero, Maltoni, L.R., Wackeroth, Willenbrock (08))

Page 33: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

NLO: Recently completed calculations (since Les Houches 2005):all relevant to Higgs-boson physics!

Process (V ∈ {Z, W, γ}) Comments

pp → V +2 jets(b) Campbell,Ellis,Maltoni,Willenbrock (06)

pp → V bb Febres Cordero,Reina,Wackeroth (07-08)

pp → V V +jet Dittmaier,Kallweit,Uwer (WW+jet) (07)

Campbell,Ellis,Zanderighi (WW+jet+decay) (07)

Binoth,Karg,Kauer,Sanguinetti (in progress)

pp → V V +2 jets Bozzi,Jager,Oleari,Zeppenfeld (via WBF) (06-07)

pp → V V V Lazopoulos,Melnikov,Petriello (ZZZ) (07)

Binoth,Ossola,Papadopoulos,Pittau (WWZ,WZZ,WWW ) (08)

Hankele,Zeppenfeld (WWZ → 6 leptons, full spin correlation) (07)

pp → H+2 jets Campbell,Ellis,Zanderighi (NLO QCD to gg channel)(06)

Ciccolini,Denner,Dittmaier (NLO QCD+EW to WBF channel) (07)

pp → H+3 jets Figy,Hankele,Zeppenfeld (large Nc) (07)

pp → tt+jet Dittmaier,Uwer,Weinzierl (07)

Ellis,Giele,Kunszt (in progress)

pp → ttZ Lazopoulos,Melnikov,Petriello (08)

gg → WW Binoth,Ciccolini,Kauer,Kramer (06)

gg → HH, HHH Binoth,Karg,Kauer,Ruckl (06)

Page 34: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Process Comments

(V ∈ {Z, W, γ})

NLO calculations remaining at Les Houches 2007

pp → tt bb relevant for ttH (1)

pp → tt+2jets relevant for ttH

pp → V V bb, relevant for WBF → H → V V , ttH

pp → V V +2jets relevant for WBF → H → V V (2)

pp → V +3jets various new physics signatures (3)

pp → bbbb Higgs and new physics signatures (4)

Calculations beyond NLO added at Les Houches 2007

gg → W∗W∗ O(α2α3

s) backgrounds to Higgs (5)

NNLO pp → tt normalization of a benchmark process (6)

NNLO to WBF and Z/γ+jet Higgs couplings and SM benchmark (7)

(1) qq → ttbb calculated by A. Bredenstein, A. Denner, S. Dittmaier, and S. Pozzorini (08).

(2) WBF contributions calculated by G. Bozzi, B. Jager, C. Oleari, and D. Zeppenfeld (06-07).

(3) leading-color contributions calculated by: R. K. Ellis, et al. (08-09); Z. Bern et al. (08-09).

(4) T. Binoth et al., in progress.

(5) qq → WW calculated by G. Chachamis, M. Czakon, and D. Eiras (08) (small MW ).

(6) M. Czakon, A. Mitov, and S. Moch (06-08) (analytical for m2

Q ≪ s, exact numerical estimate).

(7) A. Gehrmann-De Ridder, T. Gehrmann, et al., work in progress.

Page 35: Higgs searches within and beyond the Standard Modelapps3.aps.org/aps/meetings/april09/presentations/reina.pdf · 2009. 6. 24. · experimental errors: LEP2/Tevatron (today) 68% CL

Conclusions and Outlook

• The Tevatron is breaking new ground and meeting new challenges: exploring

the Higgs low mass region, possible 2σ − 3σ evidence.

• The LHC will cover the whole Higgs mass range and with high luminosity will

have access to Higgs-boson precision physics.

• Using the SM as a “template”, we can test our ability to pinpoint the

properties of to-be-discovered scalar and pseudoscalar particles:

⊲ revisit existing studies;

⊲ identify main sources of systematic uncertainty;

⊲ work at reducing them, both theoretically and experimentally.

• Building on solid SM ground, start exploring beyond SM scenarios in as much

generality as possible, looking for most distinctive patterns and signatures of

various realizations of EWSB.