higgs production at the lhc - rwth aachen...

81
Theorie-Seminar Universit ¨ at Bielefeld, Mai 2005 Higgs Production at the LHC Michael Kr ¨ amer (RWTH Aachen) Introduction: from WW -scattering to the Higgs boson Higgs-boson searches at the LHC Higher-order corrections to signal and background processes Michael Kr ¨ amer Page 1 Universit ¨ at Bielefeld, Mai 2005

Upload: others

Post on 14-Feb-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Theorie-Seminar Universität Bielefeld, Mai 2005

    Higgs Production at the LHC

    Michael Krämer

    (RWTH Aachen)

    Introduction: from WW -scattering to the Higgs boson

    Higgs-boson searches at the LHC

    Higher-order corrections to signal and background processes

    Michael Krämer Page 1 Universität Bielefeld, Mai 2005

  • Introduction: from WW -scattering to the Higgs boson

    Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ− → e−ν̄eνµ

    L = GF√2

    [ν̄µγλ(1 − γ5)µ][ēγλ(1 − γ5)νe]

    with GF ≈ 1.17 × 10−5 GeV−2 (Fermi coupling)

    Fermi theory at high energies: M[ν̄µe− → µ−νe] ∼ GF2√

    2πs

    ⇒ violates unitarity

    Solution: interaction mediated by heavy vector boson W±

    M[ν̄µe− → µ−νe] →GF s

    2√

    M2WM2W − s

    (with MW ≈ 100 GeV)

    Michael Krämer Page 2 Universität Bielefeld, Mai 2005

  • Introduction: from WW -scattering to the Higgs boson

    Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ− → e−ν̄eνµ

    L = GF√2

    [ν̄µγλ(1 − γ5)µ][ēγλ(1 − γ5)νe]

    with GF ≈ 1.17 × 10−5 GeV−2 (Fermi coupling)

    Fermi theory at high energies: M[ν̄µe− → µ−νe] ∼ GF2√

    2πs

    ⇒ violates unitarity

    Solution: interaction mediated by heavy vector boson W±

    M[ν̄µe− → µ−νe] →GF s

    2√

    M2WM2W − s

    (with MW ≈ 100 GeV)

    Michael Krämer Page 2 Universität Bielefeld, Mai 2005

  • Introduction: from WW -scattering to the Higgs boson

    Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ− → e−ν̄eνµ

    L = GF√2

    [ν̄µγλ(1 − γ5)µ][ēγλ(1 − γ5)νe]

    with GF ≈ 1.17 × 10−5 GeV−2 (Fermi coupling)

    Fermi theory at high energies: M[ν̄µe− → µ−νe] ∼ GF2√

    2πs

    ⇒ violates unitarity

    Solution: interaction mediated by heavy vector boson W±

    M[ν̄µe− → µ−νe] →GF s

    2√

    M2WM2W − s

    (with MW ≈ 100 GeV)

    Michael Krämer Page 2 Universität Bielefeld, Mai 2005

  • Introduction: from WW -scattering to the Higgs boson

    Fermi: weak interactions described by effective Lagrangian eg. for µ decay µ− → e−ν̄eνµ

    L = GF√2

    [ν̄µγλ(1 − γ5)µ][ēγλ(1 − γ5)νe]

    with GF ≈ 1.17 × 10−5 GeV−2 (Fermi coupling)

    Fermi theory at high energies: M[ν̄µe− → µ−νe] ∼ GF2√

    2πs

    ⇒ violates unitarity

    Solution: interaction mediated by heavy vector boson W±

    � ���� � �

    � �� �

    � ���� � �

    � �

    M[ν̄µe− → µ−νe] →GF s

    2√

    M2WM2W − s

    (with MW ≈ 100 GeV)

    Michael Krämer Page 2 Universität Bielefeld, Mai 2005

  • Introduction: from WW -scattering to the Higgs boson

    Consider WW → WW

    �� �

    � �

    � ��

    M[WLWL →WLWL] ∝ s ⇒ violates unitarity

    Solution: − strong WW interaction at high energies or− new scalar particle H with gWWH ∝ MW

    M → GFM2H

    4√

    Unitarity ⇒ properties of H : − coupling gXXH ∝ particle mass MX− MH ∼< 1 TeV

    Michael Krämer Page 3 Universität Bielefeld, Mai 2005

  • Introduction: from WW -scattering to the Higgs boson

    Consider WW → WW

    �� �

    � ��

    � ��

    M[WLWL →WLWL] ∝ s ⇒ violates unitarity

    Solution: − strong WW interaction at high energies or− new scalar particle H with gWWH ∝ MW

    �� �

    � M → GFM2H

    4√

    Unitarity ⇒ properties of H : − coupling gXXH ∝ particle mass MX− MH ∼< 1 TeV

    Michael Krämer Page 3 Universität Bielefeld, Mai 2005

  • Introduction: from WW -scattering to the Higgs boson

    Consider WW → WW

    �� �

    � ��

    � ��

    M[WLWL →WLWL] ∝ s ⇒ violates unitarity

    Solution: − strong WW interaction at high energies or− new scalar particle H with gWWH ∝ MW

    �� �

    � M → GFM2H

    4√

    Unitarity ⇒ properties of H : − coupling gXXH ∝ particle mass MX− MH ∼< 1 TeV

    Michael Krämer Page 3 Universität Bielefeld, Mai 2005

  • Introduction: The ABEGHHK’tH Mechanism(Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, ’t Hooft)

    Spontaneous symmetry breaking through scalar isodoublet φ

    Lφ = |Dµφ|2 + gdf ψ̄dLφfdR + guf ψ̄dLφ̃fuR − V (φ)

    scalar potential V = µ2|φ|2 + λ|φ|4 � �� �

    �� �

    � �� �

    introduce Higgs field H : φ →(

    0(v+H)/

    √2

    )(unitary gauge)

    Goldstone bosons → longitudinal components of W, Z

    ⇒ SM is renormalisable gauge field theory including W and Z boson massesand a physical Higgs particle

    Michael Krämer Page 4 Universität Bielefeld, Mai 2005

  • Introduction: The Higgs boson

    The Higgs mechanism is testable becauseall couplings are known:

    − fermions: gffH =√

    2mf/v

    − gauge bosons: gV V H = 2MV /v

    with vacuum expectation value

    v2 = 1/√

    2GF ≈ (246 GeV)2

    The Higgs sector and the properties of theHiggs particle (lifetime, decay branching ratios,cross sections) are fixed in terms of theHiggs boson mass MH .Express Higgs potential in terms of (µ, λ) → (v2, MH)

    Michael Krämer Page 5 Universität Bielefeld, Mai 2005

  • Introduction: The Higgs boson

    The Higgs mechanism is testable becauseall couplings are known:

    − fermions: gffH =√

    2mf/v

    − gauge bosons: gV V H = 2MV /v

    with vacuum expectation value

    v2 = 1/√

    2GF ≈ (246 GeV)2

    The Higgs sector and the properties of theHiggs particle (lifetime, decay branching ratios,cross sections) are fixed in terms of theHiggs boson mass MH .Express Higgs potential in terms of (µ, λ) → (v2, MH)

    Michael Krämer Page 5 Universität Bielefeld, Mai 2005

  • Introduction: The Higgs boson

    The Higgs mechanism is testable becauseall couplings are known:

    − fermions: gffH =√

    2mf/v

    − gauge bosons: gV V H = 2MV /v

    with vacuum expectation value

    v2 = 1/√

    2GF ≈ (246 GeV)2

    The Higgs sector and the properties of theHiggs particle (lifetime, decay branching ratios,cross sections) are fixed in terms of theHiggs boson mass MH .Express Higgs potential in terms of (µ, λ) → (v2, MH)

    Michael Krämer Page 5 Universität Bielefeld, Mai 2005

  • Higgs boson hunting: indirect searches

    Quantum corrections to precision observables

    !

    "�

    ∝ m2t ∝ logMH

    140

    160

    180

    200

    10 102

    103

    mH [GeV]

    mt

    [GeV

    ]

    Excluded Preliminary (a)

    High Q2 except mt68% CL

    mt (TEVATRON)

    ⇒ Experimental data consistent with SM

    ⇒MH < 260 GeV (95% CL) (LEPEWWG)

    Note:

    − Precision data also consistent with SUSY models− No evidence for ESWB through new strong

    interactions (eg. technicolour)

    Michael Krämer Page 6 Universität Bielefeld, Mai 2005

  • Higgs boson hunting: indirect searches

    Quantum corrections to precision observables

    #

    $%

    #

    &#

    ∝ m2t ∝ logMH

    140

    160

    180

    200

    10 102

    103

    mH [GeV]

    mt

    [GeV

    ]

    Excluded Preliminary (a)

    High Q2 except mt68% CL

    mt (TEVATRON)

    ⇒ Experimental data consistent with SM

    ⇒MH < 260 GeV (95% CL) (LEPEWWG)

    Note:

    − Precision data also consistent with SUSY models− No evidence for ESWB through new strong

    interactions (eg. technicolour)

    Michael Krämer Page 6 Universität Bielefeld, Mai 2005

  • Higgs boson hunting: indirect searches

    Quantum corrections to precision observables

    '

    ()

    '

    *'

    ∝ m2t ∝ logMH

    140

    160

    180

    200

    10 102

    103

    mH [GeV]

    mt

    [GeV

    ]

    Excluded Preliminary (a)

    High Q2 except mt68% CL

    mt (TEVATRON)

    ⇒ Experimental data consistent with SM

    ⇒MH < 260 GeV (95% CL) (LEPEWWG)

    Note:

    − Precision data also consistent with SUSY models− No evidence for ESWB through new strong

    interactions (eg. technicolour)

    Michael Krämer Page 6 Universität Bielefeld, Mai 2005

  • Higgs boson hunting: indirect searches

    Quantum corrections to precision observables

    +

    ,-

    +

    .+

    ∝ m2t ∝ logMH

    140

    160

    180

    200

    10 102

    103

    mH [GeV]

    mt

    [GeV

    ]

    Excluded Preliminary (a)

    High Q2 except mt68% CL

    mt (TEVATRON)

    ⇒ Experimental data consistent with SM

    ⇒MH < 260 GeV (95% CL) (LEPEWWG)

    Note:

    − Precision data also consistent with SUSY models− No evidence for ESWB through new strong

    interactions (eg. technicolour)

    Michael Krämer Page 6 Universität Bielefeld, Mai 2005

  • Higgs boson hunting

    To establish the Higgs mechanism we need to

    – discover the Higgs boson directly at a high-energy collider

    – measure the couplings gXXφ ∝ MX– reconstruct the Higgs potential

    Michael Krämer Page 7 Universität Bielefeld, Mai 2005

  • Higgs boson hunting: collider searches

    Higgs decay modes and branching ratios

    [HDECAY: M. Spira et al.]

    BR(H)

    bb_

    τ+τ−

    cc_

    gg

    WW

    ZZ

    tt-

    γγ Zγ

    MH [GeV]50 100 200 500 1000

    10-3

    10-2

    10-1

    1

    102

    103

    ⇒ dominant decay into

    bb̄ for MH ∼< 130 GeV

    WW, ZZ for MH ∼> 130 GeV

    Michael Krämer Page 8 Universität Bielefeld, Mai 2005

  • Higgs boson hunting: past and present colliders

    search at the CERN LEP2 (e+e− collider with√s ∼< 200 GeV)

    e+e− −→/ ZH ⇒ MH > 114.4 GeV (95% CL) (LEPHIGGSWG)

    search at the Fermilab Tevatron (pp̄ collider with√s = 2 TeV)

    current∫L = 0.7 fb−1

    expectation in 2008:∫L = 4 − 6 fb−1

    Michael Krämer Page 9 Universität Bielefeld, Mai 2005

  • Higgs boson hunting: past and present colliders

    search at the CERN LEP2 (e+e− collider with√s ∼< 200 GeV)

    e+e− −→/ ZH ⇒ MH > 114.4 GeV (95% CL) (LEPHIGGSWG)

    search at the Fermilab Tevatron (pp̄ collider with√s = 2 TeV)

    current∫L = 0.7 fb−1

    expectation in 2008:∫L = 4 − 6 fb−1

    Michael Krämer Page 9 Universität Bielefeld, Mai 2005

  • The Large Hadron Collider LHC

    − pp collider located at CERN− circumference 27 km−√s = 14 TeV− ∫L = 10 − 100 fb−1/year− in operation from April 2007

    Michael Krämer Page 10 Universität Bielefeld, Mai 2005

  • We will start in 2007We will start in 2007

    CMS HB-1 CMS HB+1

    Installation of readout boxes started

    source calibration in 2005.

    Insertion in vacuum tank: Summer 2005.

    Michael Krämer Page 11 Universität Bielefeld, Mai 2005

  • Higgs boson search at the LHC

    The days of the Higgs boson are numbered!

    1

    10

    10 2

    102

    103

    mH (GeV)

    Sig

    nal s

    igni

    fican

    ce H → γ γ ttH (H → bb) H → ZZ(*) → 4 l

    H → ZZ → llνν H → WW → lνjj

    H → WW(*) → lνlν

    Total significance

    5 σ

    ∫ L dt = 30 fb-1

    (no K-factors)

    ATLAS

    Michael Krämer Page 12 Universität Bielefeld, Mai 2005

  • Higgs boson searches at the LHC

    0.1 1 1010-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    102

    103

    104

    105

    106

    107

    108

    109

    σjet(ETjet > √s/4)

    LHCTevatron

    σttbar

    σHiggs(MH = 500 GeV)

    σZ

    σjet(ETjet > 100 GeV)

    σHiggs(MH = 150 GeV)

    σW

    σjet(ETjet > √s/20)

    σbbar

    σtot

    σ (n

    b)

    √s (TeV)

    even

    ts/s

    ec f

    or L

    = 1

    033 c

    m-2

    s-1

    −→ QCD background: σbb̄ ≈ 108 pb

    −→ Higgs signal: σH+X ≈ 10 pb↪→≈ 3 × 105 Higgs bosons/year

    (∫L = 30 fb−1)

    −→ Higgs-search through associate production or/and through rare decays

    Michael Krämer Page 13 Universität Bielefeld, Mai 2005

  • Higgs boson searches at the LHC: cross section predictions

    σ(pp → H + X) [pb]√s = 14 TeVNLO / NNLO

    MRST

    gg → H (NNLO)

    qq → Hqqqq

    _' → HW

    qq_ → HZ

    gg/qq_ → tt

    _H (NLO)

    MH [GeV]

    10-4

    10-3

    10-2

    10-1

    1

    10

    10 2

    100 200 300 400 500 600 700 800 900 1000

    /01

    1

    2 34

    55

    55

    2 34 /

    2 3 4

    565

    7 89/

    11

    060

    /

    Michael Krämer Page 14 Universität Bielefeld, Mai 2005

  • Higgs boson searches at the LHC: signal significance

    1

    10

    10 2

    100 120 140 160 180 200 mH (GeV/c

    2)

    Sig

    nal s

    igni

    fican

    ce H → γ γ ttH (H → bb) H → ZZ(*) → 4 l H → WW(*) → lνlν qqH → qq WW(*)

    qqH → qq ττ

    Total significance

    5 σ

    ∫ L dt = 30 fb-1

    (no K-factors)ATLAS

    MH ∼< 2MZ →

    gg → H (H → γγ, ZZ∗,WW (∗))gg/qq̄ → tt̄H (H → bb̄, ττ)qq → qqH (H → γγ,WW ∗, ττ)qq̄′ →WH (H → γγ)

    MH ∼> 2MZ →{

    gg → H (H → ZZ,WW )qq → qqH (H → ZZ,WW )

    [ + diffractive Higgs production]

    Michael Krämer Page 15 Universität Bielefeld, Mai 2005

  • Higgs boson searches at the LHC: why precision calculations?

    Higgs discovery through resonance peak, eg. H → γγ

    10000

    12500

    15000

    17500

    20000

    105 120 135mγγ (GeV)

    Eve

    nts

    / 2 G

    eV

    0

    500

    1000

    1500

    105 120 135mγγ (GeV)

    Sign

    al-b

    ackg

    roun

    d, e

    vent

    s / 2

    GeV

    However, need precision calculations for signal and background processes

    – for Higgs discovery in WW decay channels (no reconstruction of mass peak possible)

    – for a reliable determination of the discovery/exclusion significance

    – for a precise measurement of the Higgs couplings

    ↪→ test of the Higgs mechanism↪→ discrimination between SM and BSM (eg. SUSY)

    Michael Krämer Page 16 Universität Bielefeld, Mai 2005

  • Higgs boson searches at the LHC: why precision calculations?

    Higgs discovery through resonance peak, eg. H → γγ

    10000

    12500

    15000

    17500

    20000

    105 120 135mγγ (GeV)

    Eve

    nts

    / 2 G

    eV

    0

    500

    1000

    1500

    105 120 135mγγ (GeV)

    Sign

    al-b

    ackg

    roun

    d, e

    vent

    s / 2

    GeV

    However, need precision calculations for signal and background processes

    – for Higgs discovery in WW decay channels (no reconstruction of mass peak possible)

    – for a reliable determination of the discovery/exclusion significance

    – for a precise measurement of the Higgs couplings

    ↪→ test of the Higgs mechanism↪→ discrimination between SM and BSM (eg. SUSY)

    Michael Krämer Page 16 Universität Bielefeld, Mai 2005

  • Higgs boson searches at the LHC: why precision calculations?

    Example: MSSM Higgs sector

    two Higgs doublets to give mass to up- and down-quarks → 5 physical states: h, H , A, H±

    MSSM Higgs sector determined by tanβ = v2/v1 and MA

    Consider

    σMSSM(gg→h→γγ)

    σSM(gg→h→γγ)

    → differences ∼< 10%

    Needs precision measure-

    ments & calculations for

    production cross sections

    and branching ratios

    [Dedes, Heinemeyer, Su, Weiglein]

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    10

    20

    30

    40

    50

    60

    MA (GeV)

    tanβ

    mSUGRA gg−>h−>γγ

    < 0.50.5−0.80.8−1.01.0−1.21.2−1.5>1.5

    Michael Krämer Page 17 Universität Bielefeld, Mai 2005

  • Higgs boson searches at the LHC: why precision calculations?

    Example: MSSM Higgs sector

    two Higgs doublets to give mass to up- and down-quarks → 5 physical states: h, H , A, H±

    MSSM Higgs sector determined by tanβ = v2/v1 and MA

    Consider

    σMSSM(gg→h→γγ)

    σSM(gg→h→γγ)

    → differences ∼< 10%

    Needs precision measure-

    ments & calculations for

    production cross sections

    and branching ratios

    [Dedes, Heinemeyer, Su, Weiglein]

    0 200 400 600 800 1000 1200 1400 1600 1800 20000

    10

    20

    30

    40

    50

    60

    MA (GeV)

    tanβ

    mSUGRA gg−>h−>γγ

    < 0.50.5−0.80.8−1.01.0−1.21.2−1.5>1.5

    Michael Krämer Page 17 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Example: Drell-Yan process

    :;=< ;?>

    @@

    ABDCB

    EEC F=GHI JK FH JLM N N

    Cross section: σpp→l+l− =∑

    q

    dx1dx2 fq(x1) fq̄(x2) σ̂qq̄→l+l−

    − fq,q̄(x) dx: probability to find (anti)quark with momentum fraction x→ process independent, measured in DIS

    − σ̂qq̄→l+l− : hard scattering cross section→ calculable in perturbation theory

    Michael Krämer Page 18 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Example: Drell-Yan process

    OP=Q P?R

    SS

    TUDVU

    WWV X=YZ[ \] XZ \^_ ` `

    Cross section: σpp→l+l− =∑

    q

    dx1dx2 fq(x1) fq̄(x2) σ̂qq̄→l+l−

    − fq,q̄(x) dx: probability to find (anti)quark with momentum fraction x→ process independent, measured in DIS

    − σ̂qq̄→l+l− : hard scattering cross section→ calculable in perturbation theory

    Michael Krämer Page 18 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Example: Drell-Yan process

    ab=c b?d

    ee

    fgDhg

    iih j=klm no jl npq r r

    Cross section: σpp→l+l− =∑

    q

    dx1dx2 fq(x1) fq̄(x2) σ̂qq̄→l+l−

    − fq,q̄(x) dx: probability to find (anti)quark with momentum fraction x→ process independent, measured in DIS

    − σ̂qq̄→l+l− : hard scattering cross section→ calculable in perturbation theory

    Michael Krämer Page 18 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Example: Drell-Yan process

    st=u t?v

    ww

    xyDzy

    {{z |=}~ |~

    Cross section: σpp→l+l− =∑

    q

    dx1dx2 fq(x1) fq̄(x2) σ̂qq̄→l+l−

    − fq,q̄(x) dx: probability to find (anti)quark with momentum fraction x→ process independent, measured in DIS

    − σ̂qq̄→l+l− : hard scattering cross section→ calculable in perturbation theory

    Michael Krämer Page 18 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Factorization is non-trivial beyond leading order

    − virtual corrections

    → UV divergences→ IR divergences

    − real corrections

    → IR divergences→ collinear divergences

    UV divergences → renormalization (αs(µren) etc.)IR divergences → cancel between virtual and real (KLN)collinear initial state divergences → can be absorbed in pdfs

    Michael Krämer Page 19 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Factorization is non-trivial beyond leading order

    − virtual corrections

    → UV divergences→ IR divergences

    − real corrections

    → IR divergences→ collinear divergences

    UV divergences → renormalization (αs(µren) etc.)IR divergences → cancel between virtual and real (KLN)collinear initial state divergences → can be absorbed in pdfs

    Michael Krämer Page 19 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Factorization is non-trivial beyond leading order

    − virtual corrections

    → UV divergences→ IR divergences

    − real corrections

    → IR divergences→ collinear divergences

    UV divergences → renormalization (αs(µren) etc.)IR divergences → cancel between virtual and real (KLN)collinear initial state divergences → can be absorbed in pdfs

    Michael Krämer Page 19 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Factorization is non-trivial beyond leading order

    − virtual corrections

    → UV divergences→ IR divergences

    − real corrections

    → IR divergences→ collinear divergences

    UV divergences → renormalization (αs(µren) etc.)IR divergences → cancel between virtual and real (KLN)collinear initial state divergences → can be absorbed in pdfs

    Michael Krämer Page 19 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Initial state collinear singularities,eg.

       ¡

    ¢£ ¤

    − process independent divergence in ∫ dk2T as k2T → 0

    → absorb singularity in parton densities:

    fq(x, µfac) = fq(x) +{

    divergent part of∫ µ2fac0 dk

    2T

    }

    Hadron collider cross section

    σ =∫

    dx1fPi (x1, µF )

    dx2fPj (x2, µF )

    ×∑

    n

    αns (µR) Cn(µR, µF ) + O(ΛQCD/Q)

    (Collins, Soper, Sterman ’82-’84 and many others)

    Michael Krämer Page 20 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Initial state collinear singularities,eg.

    ¥

    ¦¦¦§

    ¨© ª

    − process independent divergence in ∫ dk2T as k2T → 0→ absorb singularity in parton densities:

    fq(x, µfac) = fq(x) +{

    divergent part of∫ µ2fac0 dk

    2T

    }

    Hadron collider cross section

    σ =∫

    dx1fPi (x1, µF )

    dx2fPj (x2, µF )

    ×∑

    n

    αns (µR) Cn(µR, µF ) + O(ΛQCD/Q)

    (Collins, Soper, Sterman ’82-’84 and many others)

    Michael Krämer Page 20 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Initial state collinear singularities,eg.

    «

    ¬¬¬

    ®¯ °

    − process independent divergence in ∫ dk2T as k2T → 0→ absorb singularity in parton densities:

    fq(x, µfac) = fq(x) +{

    divergent part of∫ µ2fac0 dk

    2T

    }

    Hadron collider cross section

    σ =∫

    dx1fPi (x1, µF )

    dx2fPj (x2, µF )

    ×∑

    n

    αns (µR) Cn(µR, µF ) + O(ΛQCD/Q)

    (Collins, Soper, Sterman ’82-’84 and many others)

    Michael Krämer Page 20 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Scale dependence

    σ =

    dx1fPi (x1, µF )

    dx2fPj (x2, µF )

    ×∑

    n

    αns (µR)Cn(µR, µF )

    finite order in perturbation theory

    → artificial µ-dependence:

    dσd ln µ2

    R

    =

    N∑

    n=0

    αns (µR) Cn(µR, µF )

    = O(αs(µR)N+1)

    ⇒ scale dependence ∼ theoreticaluncertainty due to HO corrections

    Example: rapidity distribution in pp→W +X[Anastasiou, Dixon, Melnikov, Petriello ’03]

    ⇒ significant reduction of µ dependence at(N)NLO

    Michael Krämer Page 21 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Scale dependence

    σ =

    dx1fPi (x1, µF )

    dx2fPj (x2, µF )

    ×∑

    n

    αns (µR)Cn(µR, µF )

    finite order in perturbation theory

    → artificial µ-dependence:

    dσd ln µ2

    R

    =

    N∑

    n=0

    αns (µR) Cn(µR, µF )

    = O(αs(µR)N+1)

    ⇒ scale dependence ∼ theoreticaluncertainty due to HO corrections

    Example: rapidity distribution in pp→W +X[Anastasiou, Dixon, Melnikov, Petriello ’03]

    ⇒ significant reduction of µ dependence at(N)NLO

    Michael Krämer Page 21 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    pdf uncertainties

    [Martin, Roberts, Stirling, Thorne ’03]

    2.50

    2.55

    2.60

    2.65

    2.70

    2.75

    2.80

    W @ Tevatron

    NLO

    Q2cut = 7 GeV2

    Q2cut = 10 GeV2

    NNLO

    xcut = 0 0.0002 0.001 0.0025 0.005 0.01

    σ W .

    Blν

    (nb)

    MRST NLO and NNLO partons

    → ∆ pdf ∼< 5% (CTEQ, MRST, Alekhin,...)

    Michael Krämer Page 22 Universität Bielefeld, Mai 2005

  • Particle production at hadron colliders

    Precision physics at hadron colliders requires

    – the calculation of QCD corrections at (N)NLO;

    – the precision determination of input pdfs;

    – the resummation of large logarithmic corrections;

    – matching of fixed order calculations with parton showers & hadronization;

    – the inclusion of electroweak corrections.

    Michael Krämer Page 23 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Higgs production in gluon-gluon fusion

    ±²

    ³³

    − NLO corrections: KNLO ≈ 1.7[Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman]

    − NNLO corrections:KNNLO(mtop �MH) ≈ 2[Harlander, Kilgore; Anastasiou, Melnikov ’02; Ravindran et al. ’03]

    consistent with calculations based on soft/collinear gluon

    approximations [MK, Laenen, Spira; Catani et al.]

    → NNLO scale dependence ∼< 15%

    [Harlander, Kilgore ’02]

    1

    10

    102

    100 120 140 160 180 200 220 240 260 280 300

    σ(pp → H+X) [pb]

    MH [GeV]

    LONLONNLO

    √s = 14 TeV

    Michael Krämer Page 24 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Higgs production in gluon-gluon fusion

    ´µ

    ¶¶

    − NLO corrections: KNLO ≈ 1.7[Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman]

    − NNLO corrections:KNNLO(mtop �MH) ≈ 2[Harlander, Kilgore; Anastasiou, Melnikov ’02; Ravindran et al. ’03]

    consistent with calculations based on soft/collinear gluon

    approximations [MK, Laenen, Spira; Catani et al.]

    → NNLO scale dependence ∼< 15%

    [Harlander, Kilgore ’02]

    1

    10

    102

    100 120 140 160 180 200 220 240 260 280 300

    σ(pp → H+X) [pb]

    MH [GeV]

    LONLONNLO

    √s = 14 TeV

    Michael Krämer Page 24 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Higgs production in gluon-gluon fusion

    ·¸

    ¹¹

    − NLO corrections: KNLO ≈ 1.7[Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman]

    − NNLO corrections:KNNLO(mtop �MH) ≈ 2[Harlander, Kilgore; Anastasiou, Melnikov ’02; Ravindran et al. ’03]

    consistent with calculations based on soft/collinear gluon

    approximations [MK, Laenen, Spira; Catani et al.]

    → NNLO scale dependence ∼< 15%

    [Harlander, Kilgore ’02]

    1

    10

    102

    100 120 140 160 180 200 220 240 260 280 300

    σ(pp → H+X) [pb]

    MH [GeV]

    LONLONNLO

    √s = 14 TeV

    Michael Krämer Page 24 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Higgs production in gluon-gluon fusion

    º»

    ¼¼

    − NLO corrections: KNLO ≈ 1.7[Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman]

    − NNLO corrections:KNNLO(mtop �MH) ≈ 2[Harlander, Kilgore; Anastasiou, Melnikov ’02; Ravindran et al. ’03]

    consistent with calculations based on soft/collinear gluon

    approximations [MK, Laenen, Spira; Catani et al.]

    → NNLO scale dependence ∼< 15%

    [Harlander, Kilgore ’02]

    1

    10

    102

    100 120 140 160 180 200 220 240 260 280 300

    σ(pp → H+X) [pb]

    MH [GeV]

    LONLONNLO

    √s = 14 TeV

    Michael Krämer Page 24 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Higgs production in gluon-gluon fusion

    ½¾

    ¿¿

    − NLO corrections: KNLO ≈ 1.7[Spira, Djouadi, Graudenz, Zerwas; Dawson, Kauffman]

    − NNLO corrections:KNNLO(mtop �MH) ≈ 2[Harlander, Kilgore; Anastasiou, Melnikov ’02; Ravindran et al. ’03]

    consistent with calculations based on soft/collinear gluon

    approximations [MK, Laenen, Spira; Catani et al.]

    → NNLO scale dependence ∼< 15%

    [Harlander, Kilgore ’02]

    1

    10

    102

    100 120 140 160 180 200 220 240 260 280 300

    σ(pp → H+X) [pb]

    MH [GeV]

    LONLONNLO

    √s = 14 TeV

    Michael Krämer Page 24 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Vector boson fusion

    À Á?Â

    ÃÃ

    ÃÃ

    À Á? Ä

    − discovery channel & measurement ofHiggs couplings[Kauer, Plehn, Rainwater, Zeppenfeld]

    − NLO QCD corrections (cf DIS) ≈ +10%[Han, Valencia, Willenbrock]

    Associated VH production

    − crucial for Tevatron search (MH ∼< 130 GeV)− NLO QCD corrections ≈ +(30 − 40)%

    [Han, Willenbrock]

    − NNLO QCD corrections ≈ +10%[Brein, Djouadi, Harlander ’03]

    − NLO electroweak corrections ≈ −10%[Ciccolini, Dittmaier, MK ’03]

    Michael Krämer Page 25 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Vector boson fusion

    Å Æ?Ç

    ÈÈ

    ÈÈ

    Å Æ?Ç É

    − discovery channel & measurement ofHiggs couplings[Kauer, Plehn, Rainwater, Zeppenfeld]

    − NLO QCD corrections (cf DIS) ≈ +10%[Han, Valencia, Willenbrock]

    Associated VH production

    Ê ËÍÌ

    ÎÏÎ

    Ð ÑÓÒÔ

    − crucial for Tevatron search (MH ∼< 130 GeV)− NLO QCD corrections ≈ +(30 − 40)%

    [Han, Willenbrock]

    − NNLO QCD corrections ≈ +10%[Brein, Djouadi, Harlander ’03]

    − NLO electroweak corrections ≈ −10%[Ciccolini, Dittmaier, MK ’03]

    Michael Krämer Page 25 Universität Bielefeld, Mai 2005

  • Associated WH and ZH production: QCD + EW corrections

    1

    1.05

    1.1

    1.15

    1.2

    1.25

    1.3

    1.35

    80 100 120 140 160 180 200MH[GeV]

    KW

    H(L

    HC

    )

    QCD+EW

    QCD

    NNLO

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    80 100 120 140 160 180 200MH[GeV]

    KW

    H(T

    evat

    ron)

    QCD+EW

    QCD

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    80 100 120 140 160 180 200MH[GeV]

    KZ

    H(L

    HC

    )

    QCD+EW

    QCD

    1

    1.1

    1.2

    1.3

    1.4

    1.5

    1.6

    80 100 120 140 160 180 200MH[GeV]

    KZ

    H(T

    evat

    ron)

    QCD+EW

    QCD

    Michael Krämer Page 26 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Higgs production in association with top quarks

    ÕÕ

    Ö×Ö

    Ø

    − σ(tt̄H) ∼< 1 pb (LHC, MH > 115 GeV)but: distinctive final state:

    pp→ t(→W+b) t̄(→W−b̄) H(→ bb̄)→ important contribution to 5σ discovery

    for MH ∼< 130 GeV

    − cross section ∝ g2ttH⇒ direct measurement of top Yukawa coupling

    δgttH/gttH ≈ 15% (exp.)[Drollinger, Müller, Denegri]

    − NLO scale dependence ∼< 15%[Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas ’01;

    Dawson, Jackson, Orr, Reina, Wackeroth ’01-’03]

    [Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas]

    σ(pp → tt_ H + X) [fb]

    √s = 14 TeVMH = 120 GeV

    µ0 = mt + MH/2

    NLO

    LO

    µ/µ00.2 0.5 1 2 5

    200

    400

    600

    800

    1000

    1200

    1400

    1

    Michael Krämer Page 27 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Higgs production in association with top quarks

    ÙÙ

    ÚÛÚ

    Ü

    − σ(tt̄H) ∼< 1 pb (LHC, MH > 115 GeV)but: distinctive final state:

    pp→ t(→W+b) t̄(→W−b̄) H(→ bb̄)→ important contribution to 5σ discovery

    for MH ∼< 130 GeV

    − cross section ∝ g2ttH⇒ direct measurement of top Yukawa coupling

    δgttH/gttH ≈ 15% (exp.)[Drollinger, Müller, Denegri]

    − NLO scale dependence ∼< 15%[Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas ’01;

    Dawson, Jackson, Orr, Reina, Wackeroth ’01-’03]

    [Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas]

    σ(pp → tt_ H + X) [fb]

    √s = 14 TeVMH = 120 GeV

    µ0 = mt + MH/2

    NLO

    LO

    µ/µ00.2 0.5 1 2 5

    200

    400

    600

    800

    1000

    1200

    1400

    1

    Michael Krämer Page 27 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Higgs production in association with top quarks

    ÝÝ

    ÞßÞ

    à

    − σ(tt̄H) ∼< 1 pb (LHC, MH > 115 GeV)but: distinctive final state:

    pp→ t(→W+b) t̄(→W−b̄) H(→ bb̄)→ important contribution to 5σ discovery

    for MH ∼< 130 GeV

    − cross section ∝ g2ttH⇒ direct measurement of top Yukawa coupling

    δgttH/gttH ≈ 15% (exp.)[Drollinger, Müller, Denegri]

    − NLO scale dependence ∼< 15%[Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas ’01;

    Dawson, Jackson, Orr, Reina, Wackeroth ’01-’03]

    [Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas]

    σ(pp → tt_ H + X) [fb]

    √s = 14 TeVMH = 120 GeV

    µ0 = mt + MH/2

    NLO

    LO

    µ/µ00.2 0.5 1 2 5

    200

    400

    600

    800

    1000

    1200

    1400

    1

    Michael Krämer Page 27 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Higgs production in association with top quarks

    áá

    âãâ

    ä

    − σ(tt̄H) ∼< 1 pb (LHC, MH > 115 GeV)but: distinctive final state:

    pp→ t(→W+b) t̄(→W−b̄) H(→ bb̄)→ important contribution to 5σ discovery

    for MH ∼< 130 GeV

    − cross section ∝ g2ttH⇒ direct measurement of top Yukawa coupling

    δgttH/gttH ≈ 15% (exp.)[Drollinger, Müller, Denegri]

    − NLO scale dependence ∼< 15%[Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas ’01;

    Dawson, Jackson, Orr, Reina, Wackeroth ’01-’03]

    [Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas]

    σ(pp → tt_ H + X) [fb]

    √s = 14 TeVMH = 120 GeV

    µ0 = mt + MH/2

    NLO

    LO

    µ/µ00.2 0.5 1 2 5

    200

    400

    600

    800

    1000

    1200

    1400

    1

    Michael Krämer Page 27 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Higgs production in association with top quarks

    åå

    æçæ

    è

    − σ(tt̄H) ∼< 1 pb (LHC, MH > 115 GeV)but: distinctive final state:

    pp→ t(→W+b) t̄(→W−b̄) H(→ bb̄)→ important contribution to 5σ discovery

    for MH ∼< 130 GeV

    − cross section ∝ g2ttH⇒ direct measurement of top Yukawa coupling

    δgttH/gttH ≈ 15% (exp.)[Drollinger, Müller, Denegri]

    − NLO scale dependence ∼< 15%[Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas ’01;

    Dawson, Jackson, Orr, Reina, Wackeroth ’01-’03]

    [Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas]

    σ(pp → tt_ H + X) [fb]

    √s = 14 TeVMH = 120 GeV

    µ0 = mt + MH/2

    NLO

    LO

    µ/µ00.2 0.5 1 2 5

    200

    400

    600

    800

    1000

    1200

    1400

    1

    Michael Krämer Page 27 Universität Bielefeld, Mai 2005

  • Higgs production cross sections: theoretical status

    Recent progress for SM Higgs production includes

    – NNLO QCD calculations for pp → H[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven; Anastasiou, Melnikov, Petriello;Blümlein, Ravindran; . . . (02-05)]

    – NNLO QCD calculations for pp → HZ, HW[Brein, Djouadi, Harlander (04)]

    – (N)NLO QCD calculations for pp → QQ̄H[Beenakker, Dittmaier, MK, Plümper, Spira, Zerwas; Dawson, Jackson, Orr, Reina, Wackeroth; Harlander, Kilgore;Campbell, Ellis, Maltoni, Willenbrock; . . . (01-05)]

    – NLO QCD calculations for pp → qqH[Figy, Oleari, Zeppenfeld; Berger, Campbell (03-04)]

    – NLO EWK calculations for pp → HZ, HW[Ciccolini, Dittmaier, MK (03)]

    – (N)NLL resummation for pp → H[Kulesza, Sterman, Vogelsang; Berger, Qiu; Catani, de Florian, Grazzini; . . . (03-04)]

    – matching of NLO calculation with parton shower MC Herwig for pp → H[Frixione, Webber (04)];

    – NNLO splitting functions and PDF fits, error estimates for PDF fits[Moch, Vermaseren, Vogt; MRST; CTEQ (02-05)].

    Michael Krämer Page 28 Universität Bielefeld, Mai 2005

  • Higgs production in the MSSM: associated bb̄h production

    Associated bb̄h/H production is crucial for MSSM Higgs searches at large tan β

    Bottom-Higgs Yukawa coupling:

    gMSSMbbh = − sin αcos β gSMbbH

    gMSSMbbH =cos αcos β

    gSMbbH

    }

    tan β � 1-

    {

    tan β gSMbbH (Mh'MA'MZ)

    tan β gSMbbH (MH'MA�MZ)

    At tanβ � 1 associated bb̄h/H pro-duction becomes the dominant MSSM

    Higgs production mechanism

    [Spira]

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 3

    10 4

    102

    gg→H (SM)

    gg→H

    Hbb–

    Htt–

    Hqq

    HZ HW

    tan β = 30Maximal mixing

    Ù H

    Ù

    h

    mh/H (GeV)

    Cro

    ss-s

    ectio

    n (p

    b)

    Michael Krämer Page 29 Universität Bielefeld, Mai 2005

  • Higgs production in the MSSM: associated bb̄h production

    Associated bb̄h/H production is crucial for MSSM Higgs searches at large tan β

    Bottom-Higgs Yukawa coupling:

    gMSSMbbh = − sin αcos β gSMbbH

    gMSSMbbH =cos αcos β

    gSMbbH

    }

    tan β � 1-

    {

    tan β gSMbbH (Mh'MA'MZ)

    tan β gSMbbH (MH'MA�MZ)

    At tanβ � 1 associated bb̄h/H pro-duction becomes the dominant MSSM

    Higgs production mechanism

    [Spira]

    10-3

    10-2

    10-1

    1

    10

    10 2

    10 3

    10 4

    102

    gg→H (SM)

    gg→H

    Hbb–

    Htt–

    Hqq

    HZ HW

    tan β = 30Maximal mixing

    Ù HÙ

    h

    mh/H (GeV)

    Cro

    ss-s

    ectio

    n (p

    b)

    Michael Krämer Page 29 Universität Bielefeld, Mai 2005

  • Associated bb̄h production mechanism

    At leading order

    ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

    MQ � MH : ∼ α2s ln2(MH/MQ) ∼ α2s ln(MH/MQ) ∼ α2s

    Summation of ln(MH/MQ) terms by using heavy quark PDFs[Collins, Olness, Tung; Barnett, Haber, Soper; Dicus, Willenbrock,. . . ]

    MQ �MH-

    Michael Krämer Page 30 Universität Bielefeld, Mai 2005

  • Associated bb̄h production mechanism

    At leading order

    ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

    MQ � MH : ∼ α2s ln2(MH/MQ) ∼ α2s ln(MH/MQ) ∼ α2s

    Summation of ln(MH/MQ) terms by using heavy quark PDFs[Collins, Olness, Tung; Barnett, Haber, Soper; Dicus, Willenbrock,. . . ]

    MQ �MH-

    Michael Krämer Page 30 Universität Bielefeld, Mai 2005

  • Associated bb̄h production mechanism

    At leading order

    ︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

    MQ � MH : ∼ α2s ln2(MH/MQ) ∼ α2s ln(MH/MQ) ∼ α2s

    Summation of ln(MH/MQ) terms by using heavy quark PDFs[Collins, Olness, Tung; Barnett, Haber, Soper; Dicus, Willenbrock,. . . ]

    MQ �MH-

    Michael Krämer Page 30 Universität Bielefeld, Mai 2005

  • Associated bb̄h production: two calculational schemes

    4-flavour scheme

    + exact g → bb̄ splitting & mass effects

    − no summation of ln(MH/Mb) terms

    5-flavour scheme

    + summation of ln(MH/Mb) terms

    − LL approximation to g → bb̄ splitting

    The 4- and 5-flavour schemes

    – are both theoretically consistent & well-defined

    – represent different ways of ordering perturbation theory

    – should agree at sufficiently high order

    – do not match exactly at finite order

    Michael Krämer Page 31 Universität Bielefeld, Mai 2005

  • Associated bb̄h production: two calculational schemes

    4-flavour scheme

    + exact g → bb̄ splitting & mass effects

    − no summation of ln(MH/Mb) terms

    5-flavour scheme

    + summation of ln(MH/Mb) terms

    − LL approximation to g → bb̄ splitting

    The 4- and 5-flavour schemes

    – are both theoretically consistent & well-defined

    – represent different ways of ordering perturbation theory

    – should agree at sufficiently high order

    – do not match exactly at finite order

    Michael Krämer Page 31 Universität Bielefeld, Mai 2005

  • Associated bb̄h production: two calculational schemes

    4-flavour scheme

    + exact g → bb̄ splitting & mass effects

    − no summation of ln(MH/Mb) terms

    5-flavour scheme

    + summation of ln(MH/Mb) terms

    − LL approximation to g → bb̄ splitting

    The 4- and 5-flavour schemes

    – are both theoretically consistent & well-defined

    – represent different ways of ordering perturbation theory

    – should agree at sufficiently high order

    – do not match exactly at finite order

    Michael Krämer Page 31 Universität Bielefeld, Mai 2005

  • Associated bb̄h production: two calculational schemes

    4-flavour scheme

    + exact g → bb̄ splitting & mass effects

    − no summation of ln(MH/Mb) terms

    5-flavour scheme

    + summation of ln(MH/Mb) terms

    − LL approximation to g → bb̄ splitting

    The 4- and 5-flavour schemes

    – are both theoretically consistent & well-defined

    – represent different ways of ordering perturbation theory

    – should agree at sufficiently high order

    – do not match exactly at finite order

    Michael Krämer Page 31 Universität Bielefeld, Mai 2005

  • Associated bb̄h production: two calculational schemes

    Comparison at leading order

    → strong scale dependence

    → σ(bb̄→ H) � σ(gg → bb̄H) at µ = MH

    → discrepancy reduced at µF = MH/4 (→ Harlander, Kilgore)[see also Spira; Maltoni, Sullivan, Willenbrock; Boos, Plehn]

    Michael Krämer Page 32 Universität Bielefeld, Mai 2005

  • Associated bb̄h production: two calculational schemes

    Comparison at leading order

    → strong scale dependence

    → σ(bb̄→ H) � σ(gg → bb̄H) at µ = MH

    → discrepancy reduced at µF = MH/4 (→ Harlander, Kilgore)[see also Spira; Maltoni, Sullivan, Willenbrock; Boos, Plehn]

    Michael Krämer Page 32 Universität Bielefeld, Mai 2005

  • Associated bb̄h production: two calculational schemes

    Comparison at leading order

    → strong scale dependence

    → σ(bb̄→ H) � σ(gg → bb̄H) at µ = MH→ discrepancy reduced at µF = MH/4 (→ Harlander, Kilgore)

    [see also Spira; Maltoni, Sullivan, Willenbrock; Boos, Plehn]

    Michael Krämer Page 32 Universität Bielefeld, Mai 2005

  • Associated bb̄h production: (N)NLO corrections

    Comparison of 4- and 5-flavour schemes at (N)NLO (SM Higgs, LHC)

    [Harlander, Kilgore; Dittmaier, MK, Spira]

    σ(pp → bb_

    h + X) [fb]

    √s = 14 TeVµ = (2mb + Mh)/4

    Mh [GeV]

    bb_

    → h (NNLO)

    gg → bb_

    h (NLO)10

    10 2

    10 3

    100 150 200 250 300 350 400

    Michael Krämer Page 33 Universität Bielefeld, Mai 2005

  • Higgs background calculations

    Example: pp → H → γγ/WW backgrounds

    γγ background

    – NLO parton level MC program pp→ γγ (DIPHOX) [Binoth, Guillet, Heinrich, Pilon, Werlen]– gg → γγ at NLO (2-loop) [Bern, De Freitas, Dixon, Schmidt ’02]

    WW background

    – jet veto effects [Catani, De Florian, Grazzini]

    – NLO parton level MC program pp→W+W− [Frixione, Nason, Ridolfi; Baur, Han, Ohnemus]– NLO spin correlations in leptonic W decays [Dixon, Kunszt, Signer]

    – tt̄ backgrounds including finite width effects [Kauer, Zeppenfeld]

    – NLO parton level MC program pp→W/Z + bb̄ [Campbell, Ellis, Veseli]– gluon-gluon induced contributions to pp→WW → lνlν [Binoth, Ciccolini, Kauer, MK ’05]

    Michael Krämer Page 34 Universität Bielefeld, Mai 2005

  • WW production: a background to Higgs searches

    pp → H → WW → lν̄ l̄′ν ′ is an important Higgs search channel– WW pair production is the dominant background: σ× BR ≈ 5 times larger than signal

    – a Higgs mass peak cannot be reconstructed from leptonic W decays

    ⇒ theoretical control of the background is important (≈ 5%!)

    experimental selection cuts to enhance the signal/background ratio may amplifythe importance of higher-order corrections for background processes

    example: gg →WW → lν̄ l̄′ν′ [Binoth, Ciccolini, Kauer, MK (05)]

    W−

    νµ

    µ+

    W+

    e−

    ν̄e γ, Z

    ν̄e

    e−

    νµ

    µ+

    W+γ, Z, H

    g

    gq

    q

    q

    g

    gq

    q

    q

    g

    g W+

    νµ

    µ+

    e−

    ν̄e

    d

    d u

    W−d

    → formally NNLO→ but enhanced by Higgs search cuts

    gg qq̄ (NLO) corr.

    σtot 54 fb 1373 fb 4%

    σbkg 1.39 fb 4.8 fb 30%

    Michael Krämer Page 35 Universität Bielefeld, Mai 2005

  • WW production: a background to Higgs searches

    pp → H → WW → lν̄ l̄′ν ′ is an important Higgs search channel– WW pair production is the dominant background: σ× BR ≈ 5 times larger than signal

    – a Higgs mass peak cannot be reconstructed from leptonic W decays

    ⇒ theoretical control of the background is important (≈ 5%!)

    experimental selection cuts to enhance the signal/background ratio may amplifythe importance of higher-order corrections for background processes

    example: gg →WW → lν̄ l̄′ν′ [Binoth, Ciccolini, Kauer, MK (05)]

    W−

    νµ

    µ+

    W+

    e−

    ν̄e γ, Z

    ν̄e

    e−

    νµ

    µ+

    W+γ, Z, H

    g

    gq

    q

    q

    g

    gq

    q

    q

    g

    g W+

    νµ

    µ+

    e−

    ν̄e

    d

    d u

    W−d

    → formally NNLO→ but enhanced by Higgs search cuts

    gg qq̄ (NLO) corr.

    σtot 54 fb 1373 fb 4%

    σbkg 1.39 fb 4.8 fb 30%

    Michael Krämer Page 35 Universität Bielefeld, Mai 2005

  • WW production: a background to Higgs searches

    pp → H → WW → lν̄ l̄′ν ′ is an important Higgs search channel– WW pair production is the dominant background: σ× BR ≈ 5 times larger than signal

    – a Higgs mass peak cannot be reconstructed from leptonic W decays

    ⇒ theoretical control of the background is important (≈ 5%!)

    experimental selection cuts to enhance the signal/background ratio may amplifythe importance of higher-order corrections for background processes

    example: gg →WW → lν̄ l̄′ν′ [Binoth, Ciccolini, Kauer, MK (05)]

    W−

    νµ

    µ+

    W+

    e−

    ν̄e γ, Z

    ν̄e

    e−

    νµ

    µ+

    W+γ, Z, H

    g

    gq

    q

    q

    g

    gq

    q

    q

    g

    g W+

    νµ

    µ+

    e−

    ν̄e

    d

    d u

    W−d

    → formally NNLO→ but enhanced by Higgs search cuts

    gg qq̄ (NLO) corr.

    σtot 54 fb 1373 fb 4%

    σbkg 1.39 fb 4.8 fb 30%

    Michael Krämer Page 35 Universität Bielefeld, Mai 2005

  • Summary and Conclusions

    The LHC will find the (or a or various) Higgs boson(s) (or some new strong inter-

    actions in the gauge boson sector)

    Higgs physics is exciting:

    – reveals the mechanism of electroweak symmetry breaking

    – points towards physics beyond the SM (hierarchy problem)

    Exploring Higgs physics at the LHC needs precision measurements and precision

    calculations

    – signal cross sections are now known within 15% or better

    – more work is needed to improve prediction of background processes

    Exciting times ahead!

    Michael Krämer Page 36 Universität Bielefeld, Mai 2005

  • Summary and Conclusions

    The LHC will find the (or a or various) Higgs boson(s) (or some new strong inter-

    actions in the gauge boson sector)

    Higgs physics is exciting:

    – reveals the mechanism of electroweak symmetry breaking

    – points towards physics beyond the SM (hierarchy problem)

    Exploring Higgs physics at the LHC needs precision measurements and precision

    calculations

    – signal cross sections are now known within 15% or better

    – more work is needed to improve prediction of background processes

    Exciting times ahead!

    Michael Krämer Page 36 Universität Bielefeld, Mai 2005

  • Summary and Conclusions

    The LHC will find the (or a or various) Higgs boson(s) (or some new strong inter-

    actions in the gauge boson sector)

    Higgs physics is exciting:

    – reveals the mechanism of electroweak symmetry breaking

    – points towards physics beyond the SM (hierarchy problem)

    Exploring Higgs physics at the LHC needs precision measurements and precision

    calculations

    – signal cross sections are now known within 15% or better

    – more work is needed to improve prediction of background processes

    Exciting times ahead!

    Michael Krämer Page 36 Universität Bielefeld, Mai 2005

  • Summary and Conclusions

    The LHC will find the (or a or various) Higgs boson(s) (or some new strong inter-

    actions in the gauge boson sector)

    Higgs physics is exciting:

    – reveals the mechanism of electroweak symmetry breaking

    – points towards physics beyond the SM (hierarchy problem)

    Exploring Higgs physics at the LHC needs precision measurements and precision

    calculations

    – signal cross sections are now known within 15% or better

    – more work is needed to improve prediction of background processes

    Exciting times ahead!

    Michael Krämer Page 36 Universität Bielefeld, Mai 2005

  • Summary and Conclusions

    The LHC will find the (or a or various) Higgs boson(s) (or some new strong inter-

    actions in the gauge boson sector)

    Higgs physics is exciting:

    – reveals the mechanism of electroweak symmetry breaking

    – points towards physics beyond the SM (hierarchy problem)

    Exploring Higgs physics at the LHC needs precision measurements and precision

    calculations

    – signal cross sections are now known within 15% or better

    – more work is needed to improve prediction of background processes

    Exciting times ahead!

    Michael Krämer Page 36 Universität Bielefeld, Mai 2005