hidden markov model

35
1 Hidden Markov Model Observation : O1,O2, . . . States in time : q1, q2, . . . All states : s1, t O O O O , , , , 3 2 1 t q q q q , , , , 3 2 1 Si S j ji a ij a

Upload: barr

Post on 22-Feb-2016

50 views

Category:

Documents


0 download

DESCRIPTION

Hidden Markov Model. Observation : O1,O2, . . . States in time : q1, q2, . . . All states : s1, s2, . . ., sN. Sj. Si. Hidden Markov Model (Cont’d). Discrete Markov Model. Degree 1 Markov Model. Hidden Markov Model (Cont’d). : Transition Probability from Si to Sj , . - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Hidden Markov Model

1

Hidden Markov Model

Observation : O1,O2, . . .

States in time : q1, q2, . . .

All states : s1, s2, . . ., sN

tOOOO ,,,, 321

tqqqq ,,,, 321

Si Sjjiaija

Page 2: Hidden Markov Model

2

Hidden Markov Model (Cont’d)

Discrete Markov Model

)|(

),,,|(

1

121

itjt

zktitjt

sqsqP

sqsqsqsqP

Degree 1 Markov Model

Page 3: Hidden Markov Model

3

Hidden Markov Model (Cont’d)

)|( 1 itjtij sqsqPa

ija : Transition Probability from Si to Sj ,

Nji ,1

Page 4: Hidden Markov Model

4

Discrete Markov Model Example

S1 : The weather is rainyS2 : The weather is cloudyS3 : The weather is sunny

8.01.01.02.06.02.03.03.04.0

}{ ijaA

rainy cloudy sunnyrainycloudy

sunny

Page 5: Hidden Markov Model

5

Hidden Markov Model Example (Cont’d)

Question 1:How much is this probability:Sunny-Sunny-Sunny-Rainy-Rainy-Sunny-Cloudy-Cloudy

22311333 ssssssss

22321311313333 aaaaaaa

87654321 qqqqqqqq410536.1

Page 6: Hidden Markov Model

6

Hidden Markov Model Example (Cont’d)

Question 2:The probability of staying in state Si for d days if we are in state Si?

NisqP ii 1),( 1The probability of being in state i in time t=1

)()1()( 1 dPaassssP iiidiiijiii

d Days

Page 7: Hidden Markov Model

7

Discrete Density HMM Components

N : Number Of StatesM : Number Of OutputsA (NxN) : State Transition Probability MatrixB (NxM): Output Occurrence Probability in each state (1xN): Initial State Probability

),,( BA : Set of HMM Parameters

Page 8: Hidden Markov Model

8

Three Basic HMM ProblemsRecognition Problem:

Given an HMM and a sequence of observations O,what is the probability ? State Decoding Problem:

Given a model and a sequence of observations O, what is the most likely state sequence in the model that produced the observations?Training Problem:

Given a model and a sequence of observations O, how should we adjust model parameters in order to maximize ?

)|( OP

)|( OP

Page 9: Hidden Markov Model

9

First Problem Solution

)(),|(),|(11 tq

T

ttt

T

tObqOPqOP

t

TT qqqqqqq aaaqP132211

)|(

)()|(),( yPyxPyxP )|(),|()|,( zyPzyxPzyxP

We Know That:

And

Page 10: Hidden Markov Model

10

First Problem Solution (Cont’d)

)|(),|()|,( qPqOPqOP

)()()()|,(

122111 21 Tqqqqqqqq ObaObaObqOP

TTT

T

TTTqqq

Tqqqqqqqq

q

ObaObaOb

qOPOP

21

122111)()()(

)|,()|(

21

Computation Order : )2( TTNO

Page 11: Hidden Markov Model

11

Forward Backward Approach

)|,,,,()( 21 iqOOOPi ttt

NiObi ii 1),()( 11

Computing )(it

1) Initialization

Page 12: Hidden Markov Model

12

Forward Backward Approach (Cont’d)

NjTt

Obaij tjij

N

itt

1,11

)(])([)( 11

1 2) Induction :

3) Termination :

N

iT iOP

1

)()|(

Computation Order : )( 2TNO

Page 13: Hidden Markov Model

13

Backward Variable

),|,,,()( 21 iqOOOPi tTttt

NiiT 1,1)(1) Initialization

2)Induction

NiTTt

jObaiN

jttjijt

1 and 1,,2,1

)()()(1

11

Page 14: Hidden Markov Model

14

Second Problem SolutionFinding the most likely state sequence

N

itt

ttN

it

t

ttt

ii

ii

iqOP

iqOPOP

iqOPOiqPi

11

)()(

)()(

)|,(

)|,()|(

)|,(),|()(

Individually most likely state :Ttiq t

it 1)],([maxarg*

Page 15: Hidden Markov Model

15

Viterbi Algorithm

Define :

Ni

OOOiqqqqP

i

tttqqq

t

t

1

]|,,,,,,,,[max

)(

21121,,, 121

P is the most likely state sequence with this conditions : state i , time t and observation o

Page 16: Hidden Markov Model

16

Viterbi Algorithm (Cont’d)

)(].)(max[)( 11 tjijtit Obaij 1) Initialization

0)(1),()(

1

11

iNiObi ii

)(it Is the most likely state before state i at time t-1

Page 17: Hidden Markov Model

17

Viterbi Algorithm (Cont’d)

NjTt

aij

Obaij

ijtNi

t

tjijtNit

1,2

])([maxarg)(

)(])([max)(

11

11

2) Recursion

Page 18: Hidden Markov Model

18

Viterbi Algorithm (Cont’d)

)]([maxarg

)]([max

1

*

1

*

iq

ip

TNi

T

TNi

3) Termination:

4)Backtracking:

1,,2,1),( *11

* TTtqq ttt

Page 19: Hidden Markov Model

19

Third Problem SolutionParameters Estimation using Baum-Welch Or Expectation Maximization (EM) Approach

Define:

N

i

N

jttjijt

ttjijt

tt

ttt

jObai

jObaiOP

jqiqOPOjqiqPji

1 111

11

1

1

)()()(

)()()()|(

)|,,(),|,(),(

Page 20: Hidden Markov Model

20

Third Problem Solution (Cont’d)

N

jtt jii

1

),()(

1

1

)(T

tt i

T

tt ji

1

),(

: Expected value of the number of jumps from state i

: Expected value of the number of jumps from state i to state j

Page 21: Hidden Markov Model

21

Third Problem Solution (Cont’d)

)(1 ii

1

1

1

)(

),(

T

tt

T

tt

ij

i

jia

T

tt

Vo

T

tt

j

j

j

kb kt

1

1

)(

)(

)(

Page 22: Hidden Markov Model

22

Baum Auxiliary Function

q

qOPqOPQ )|,(log)'|,()|( '

)'|()|()|()|(: '

OPOPQQif

By this approach we will reach to a local optimum

Page 23: Hidden Markov Model

23

Restrictions Of Reestimation Formulas

11

N

ii

NiaN

jij

1,11

NjkbM

kj

1,1)(1

Page 24: Hidden Markov Model

24

Continuous Observation Density

We have amounts of a PDF instead of

We have

)|()( jqVOPkb tktj

1)(,),,()(1

ttj

M

kjkjktjktj dOObOCOb

Mixture Coefficients

Average Variance

Page 25: Hidden Markov Model

25

Continuous Observation Density

Mixture in HMM

),,()( jkjktjkktj OCMaxOb

M2|1M1|1

M4|1M3|1

M2|3M1|3

M4|3M3|3

M2|2M1|2

M4|2M3|2

S1 S2 S3Dominant Mixture:

Page 26: Hidden Markov Model

26

Continuous Observation Density (Cont’d)

Model Parameters:

),,,,( CA

N×N N×M×K×KN×M×KN×M1×N

N : Number Of StatesM : Number Of Mixtures In Each StateK : Dimension Of Observation Vector

Page 27: Hidden Markov Model

27

Continuous Observation Density (Cont’d)

T

t

M

kt

T

tt

jk

kj

kjC

1 1

1

),(

),(

T

tt

t

T

tt

jkkj

okj

1

1

),(

),(

Page 28: Hidden Markov Model

28

Continuous Observation Density (Cont’d)

T

tt

jktjkt

T

tt

jk

kj

ookj

1

1

),(

)()(),(

),( kjt Probability of event j’th state and k’th mixture at time t

Page 29: Hidden Markov Model

29

State Duration Modeling

Si Sj

Probability of staying d times in state i :

)1()( 1ii

diii aadP

jia

ija

Page 30: Hidden Markov Model

30

State Duration Modeling (Cont’d)

Si Sjjia

……. …….

HMM With clear duration

ija )(dPj)(dPi

Page 31: Hidden Markov Model

31

State Duration Modeling (Cont’d)

HMM consideration with State Duration :– Selecting using ‘s– Selecting using– Selecting Observation Sequence

using in practice we assume the following

independence:

– Selecting next state using transition probabilities . We also have an additional constraint:

),(),,,(1

1

11 121 tq

d

tdq OtbOOOb

iiq 1

dOOO ,,, 21 )(

1dPq1d

21qqa

),,,(11 21 dq OOOb

jq 2

011qqa

Page 32: Hidden Markov Model

32

Training In HMM

Maximum Likelihood (ML)

Maximum Mutual Information (MMI)

Minimum Discrimination Information (MDI)

Page 33: Hidden Markov Model

33

Training In HMM

Maximum Likelihood (ML)

)|( 1oP)|( 2oP)|( 3oP

)|( noP

.

.

.

)]|([*V

rOPMaximumP

ObservationSequence

Page 34: Hidden Markov Model

34

Training In HMM (Cont’d)

Maximum Mutual Information (MMI)

)()()|,(log),(

POPOPOI

v

ww

v

wPwOP

OPOI

1

)(),|(log

)|(log),(

Mutual Information

}{, v

Page 35: Hidden Markov Model

35

Training In HMM (Cont’d)Minimum Discrimination Information (MDI)

dooPoqoqPQI )|(

)(log)():(

),,,( 21 TOOOO

),,,( 21 tRRRR

Observation :

Auto correlation :

):(inf),( PQIPR )(RQ