hfi/nqi 2010 (september 14, 2010, geneva)

33
HFI/NQI 2010 (September 14, 2010, Genev Investigations on Thin Fe Films and Heusler Alloy Films Using Synchrotron-Radiation-Based Mössbauer Spectroscopy K. Mibu Nagoya Institute of Technology JANAN

Upload: maida

Post on 16-Jan-2016

28 views

Category:

Documents


0 download

DESCRIPTION

HFI/NQI 2010 (September 14, 2010, Geneva). Investigations on Thin Fe Films and Heusler Alloy Films Using Synchrotron-Radiation-Based Mössbauer Spectroscopy. K. Mibu Nagoya Institute of Technology JANAN. Three world centers for synchrotron-based Mössbauer spectroscopy. ESRF. APS. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: HFI/NQI 2010 (September 14, 2010, Geneva)

HFI/NQI 2010 (September 14, 2010, Geneva)

Investigations on Thin Fe Films and Heusler Alloy Films

Using

Synchrotron-Radiation-Based Mössbauer Spectroscopy

K. Mibu

Nagoya Institute of Technology

JANAN

Page 2: HFI/NQI 2010 (September 14, 2010, Geneva)

SPring-8APS

ESRF

Three world centers for synchrotron-based Mössbauer spectroscopy

Page 3: HFI/NQI 2010 (September 14, 2010, Geneva)

CREST project for synchrotron-based Mössbauer spectroscopy

FY 2005 ~ 2010 (~ JPY 400,000,000 / 5.5 years)

M. Seto, Kyoto UniversityProject Leader

Y. Yoda, JASRI/SPring-8Methodological improvements on the beam line (@BL09XU)

T. Mitsui, Japan Atomic Energy AgencyMethodological improvements on the beam line (@BL11XU)

S. Kishimoto, High Energy Accelerator Research Institute (KEK)Improvements of detector systems

H. Kobayashi, Hyogo Prefectural UniversityApplications to material research (High pressures)

K. Mibu, Nagoya Institute of TechnologyApplications to material research (Thin films & Nano-structures)

(CREST = Core Research for Evolutional Science and Technology)

Page 4: HFI/NQI 2010 (September 14, 2010, Geneva)

Outline

Introduction

* Quick introduction to synchrotron-radiation-based Mössbauer spectroscopy

* Conventional Mössbauer spectroscopy for thin films and nano-structures

* Background of the test samples (Fe films & Co2MnSn films)

Results on Synchrotron-Radiation-Based Mössbauer Spectroscopy

* Measurements in time domains for Fe films and Co2MnSn films

* Measurements in energy domains using a nuclear Bragg monochromator for Fe films

* Measurements in energy domains using a standard absorber for Co2MnSn films

Conclusion

- Focusing on the measurements of hyperfine fields for thin films -

Page 5: HFI/NQI 2010 (September 14, 2010, Geneva)

Advantages and disadvantages of synchrotron radiation as a source for Mössbauer spectroscopy

* Small beam size

(Around 1 mm without focusing devices,10 m or less with focusing devices)

* Low angular divergence

* High intensity

* Polarization

* Pulse structures

* Energy selectivity

Special techniques are required to use synchrotron radiation

as a source for Mössbauer spectroscopy.

* Broad energy bandwidth (Wider than 1 meV even after monochromatization in general)

Advantages

Disadvantages

Page 6: HFI/NQI 2010 (September 14, 2010, Geneva)

Historical Backgrounds

* Proposal for the use of synchrotron radiation as a Mössbauer source S. L. Ruby Journal de Physique, Colloq. 35, C6 - 209 (1974)

* Conclusive observation of Mössbauer spectra using synchrotron radiation and nuclear Bragg monochromator E. Gerdaw, R. Rüffer, H. Winkler, W. Tolksdorf, C. P. Klages, J. P. Hannon Phys. Rev. Lett. 54, 835 (1985)

* Observation of time spectra for nuclear forward scattering (NFS) of synchrotron radiation J. B. Hastings, D. P. Siddons, U. van Bürck, R. Hollatz, U. Bergmann Phys. Rev. Lett. 66, 770 (1991)

* Development of new method to measure Mössbauer spectra in energy domain using synchrotron radiation M. Seto, R. Masuda, S. Higashitaniguchi, S. Kitao. Y. Kobayashi, C. Inaba, T. Mitsui, Y. Yoda Phys. Rev. Lett. 102, 217602 (2009)

Page 7: HFI/NQI 2010 (September 14, 2010, Geneva)

Conventional Mössbauer spectroscopic setups for for thin films and nano-structures on single crystal substrates

Low-temperature CEMS system~ 70 K (w/ He+2%CH4 gas)~ 30 K (w/ H2 gas)

Doppler velocity (mm/s)(Energy of -rays)

Cou

nts

Scattering geometry (CEMS geometry)

Transmission geometry

Oscillation

Radioactivesource

-raysSample

Proportional counter

Internal conversion electronse-

Proportionalcounter

Sample

Oscillation

Radioactivesource

-rays

* Small sample house full of counter gas

- rays

14.4 keV for 57Fe or

23.8 keV for 119Sn

Conversion electrons

7.3 keV for 57Feor

19.4 keV for 119Sn

(@ Nagoya Inst. Tech.)

Page 8: HFI/NQI 2010 (September 14, 2010, Geneva)

Advantages of synchrotron-radiation-based Mössbauer spectroscopyfor the investigations on thin films and nano-structures

1. Easier to measure at low temperatures, in magnetic fields, with electric fields,

and under other special sample conditions

2. Possible to detect in-plane magnetic anisotropy using the polarization characters

3. Not necessary to maintain radioactive sources, and applicable to

all the Mössbauer nuclei in principle

☞   Large potential needs from the field of material science

But ・・・  Difficult to get sufficient number of probe nuclei in the narrow beam path in comparison with the case of bulk powder or single crystal samples

  ☞  Required to measure in an oblique incidence (or grazing angle) geometry

  ☞  Sometimes necessary to enrich probe nuclei in the sample appropriately

Magnetic field

Sample Detector

Cryostat

N S

Magnet

Beam

- In comparison with conversion electron Mössbauer spectroscopy (CEMS)

using a radioactive source and a proportional gas counter –

Page 9: HFI/NQI 2010 (September 14, 2010, Geneva)

Test samples and Mössbauer nuclei

(1) Fe firms, nano-structures, monatomic layers

(2) Co2MnSn Heusler alloy films

For 57Fe Mössbauer spectroscopy

For 119Sn Mössbauer spectroscopy

-rays 23.8 keV

2

1I

2

3I

119Sn nuclear energy levels

-rays

14.4 keV

2

1I

2

3I

57Fe nuclear energy levels

CoMnSn

-15 -10 -5 0 5 10 15

Velocity (mm/s)

A

bsor

ptio

n

Doppler velocity (mm/s)(Energy of -rays)

Cou

nts

0 T

5 T

10 T

15 T

Calculated CEMS spectrafor various hyperfine fields

Doppler velocity (mm/s)(Energy of -rays)

Cou

nts

Calculated CEMS spectrum

33 T

Fe

Page 10: HFI/NQI 2010 (September 14, 2010, Geneva)

Background of the test samples

Preparation of L21-type alloy films by atomically controlled alternate deposition

* Control of local crystallographic structures

* Control of interfacial atomic species

* Stabilization of non-equilibrium phases (Top view)

Co2MnSn(Tc = 811 K, 5 B)

* Theoretically predicted to be “half metallic” (or w/ highly spin-polarized conduction electrons)

* Promising materials for spin-electronics devices

Heusler alloys with an L21-type structure

X (Co etc.)

Y (Mn etc.)

Z (Sn etc.)

Strategy

S N

N S

電子流

D↓ D↑

F

D↓ D↑

F

Page 11: HFI/NQI 2010 (September 14, 2010, Geneva)

Mössbauer spectra for Co2MnSn measured using a radioactive source

CoMnSn

Bulk Co2MnSn alloy prepared by arc-melting (Long range L21 order parameter = 0.9)

L21

B2

Anti-site

Similar spectra:

J. M. Williams et al., J. Phys. C, 1 (1968) 473, etc. R. A. Dunlap et al., Can. J. Phys. 59 (1981) 1577, etc. A. G. Gavriliuk et al., J. Appl. Phys. 77 (1995) 2648.

Page 12: HFI/NQI 2010 (September 14, 2010, Geneva)

Co2MnSn(40.2 nm) film prepared by atomically controlled alternate deposition( Tsub = 500 ℃ )

Mössbauer spectra for Co2MnSn measured using a radioactive source

Sharp distribution !!

CoMnSn

Bulk Co2MnSn alloy prepared by arc-melting (Long range L21 order parameter = 0.9)

L21

B2

Anti-site

☞   Available to investigate magnetic interface effect or size effect of Co2MnSn!!

Page 13: HFI/NQI 2010 (September 14, 2010, Geneva)

Outline

Introduction

* Quick introduction to synchrotron-radiation-based Mössbauer spectroscopy

* Conventional Mössbauer spectroscopy for thin films and nano-structures

* Background of the test samples (Fe films & Co2MnSn films)

Results on Synchrotron-Radiation-Based Mössbauer Spectroscopy

* Measurements in time domains for Fe films and Co2MnSn films

* Measurements in energy domains using a nuclear Bragg monochromator for Fe films

* Measurements in energy domains using a standard absorber for Co2MnSn films

Conclusion

- Focusing on the measurements of hyperfine fields for thin films -

Page 14: HFI/NQI 2010 (September 14, 2010, Geneva)

Setups of synchrotron-based Mössbauer spectroscopy

Energy spectra

Monochromator

Standard absorber(eg. CaSnO3 )

Thin film sample

Detector

PulsedX-rays Oscillation

ResonantX-rays

High-resolutionmonochromator

Energy spectra

( Energy dip in neV order

+ Doppler shift )

Monochromator Thin film sample

Detector

PulsedX-rays

High-resolutionmonochromator E meV Time spectra

High efficiencyWide element-applicabilityDifficult distribution analysis

For the investigations on thin films

High efficiencyLimited element-applicability (57Fe only)Easy distribution analysis

Medium efficiencyWide element-applicabilityEasy distribution analysis

Detector

Monochromator

Nuclear Braggmonochromator

57FeBO3

Thin film sample

PulsedX-rays

Oscillation

High-resolutionmonochromator

E neV

(Super-monochromatization

+ Doppler shift)

H

Page 15: HFI/NQI 2010 (September 14, 2010, Geneva)

Time

Intensity (log. Scale)

Dependence of the “quantum beat” patterns on the direction of magnetic hyperfine field

(rel. to the beam polarization)

Measurements of nuclear resonant time spectra

14.4 keV

57Fe nuclei

14.4 keV

100 ns

Resonantly scatteredX-rays

(“delayed” signal)

PulsedX-rays

Monochromator Thin film sample

Detector

PulsedX-rays

High-resolutionmonochromator E meV Time spectra

Cited from R. Röhlsberger et al., J. Magn. Magn. Mater. 282, 329 (2004).

* Interference beat frequency => Inversely proportional to the hyperfine field* Interference beat pattern => Dependent on the direction of hyperfine field

Page 16: HFI/NQI 2010 (September 14, 2010, Geneva)

Nuclear resonant time spectra for Fe nanowires

30 nm

X-rays (Parallel)

X-rays (Perpendicular)

57Fe wire ( 30 nm wide, 30 nm thick )

@ BL11XU, SPring-8

Excellent works on the determination of magnetization direction in thin film samples have been published by:

ESRF group (e.g., R. Röhlsberger et al., Phys. Rev. Lett. 89, 237201 (2002)) APS group (e.g., C. L’abbé et al., Phys. Rev. Lett. 93, 037201 (2004))

Quantum beat+

Dynamical beat

Page 17: HFI/NQI 2010 (September 14, 2010, Geneva)

119Sn 23.87 keV

Time spectrum

5 hrs.

CEMS spectrum

(w/ source)

External field

Cryostat

N S

Magnet

119Sn nuclei

Life time 18 ns

23.87 keV

PulsedX-rays

23.87 keV

Co2MnSn ( 40.2 nm ) w/ 119Sn 50%

(Prep. by atomically controlled alternate deposition)

Nuclear resonant time spectrum for a “thick” Co2MnSn film

Monochromator

sample

Detector

PulsedX-rays

High-resolutionmonochromator E meV Time spectra

ResonantlyScattered X-rays

Page 18: HFI/NQI 2010 (September 14, 2010, Geneva)

x 4

Cr

Cr Cr Cr Cr

Cr

Cr Cr Cr Cr

Co Mn Sn& Co Mn Sn& Co

Cr

Cr Cr Cr Cr

Cr

Cr Cr Cr Cr

Mn Sn& Co Mn Sn& Co Mn Sn&

Cr

Cr Cr Cr Cr

Cr

Cr Cr Cr Cr

Co Mn Sn& Co

Cr

Cr Cr Cr Cr

Cr

Cr Cr Cr Cr

Mn Sn& Co Mn Sn&

x 6

x 6x 12@ 400oC

119Sn total 1.2 nm ( ~ 6 atomic layers )

“Ultra-thin” Co2MnSn films for Mössbauer measurements

Page 19: HFI/NQI 2010 (September 14, 2010, Geneva)

Co Mn Sn& Co Mn Sn& Co

Mn Sn& Co Mn Sn& Co Mn Sn&

Co Mn Sn& Co

Mn Sn& Co Mn Sn&

119Sn total 1.2 nm ( ~ 6 atomic layers )

Nuclear resonant time spectrum for “ultra-thin” Co2MnSn films

Measurement time ~ 3 hrs./ each

Smaller hyperfine fields

Page 20: HFI/NQI 2010 (September 14, 2010, Geneva)

Setups of synchrotron-based Mössbauer spectroscopy

Monochromator Thin film sample

Detector

PulsedX-rays

High-resolutionmonochromator E meV Time spectra

Energy spectra

Monochromator

Standard absorber(eg. CaSnO3 )

Thin film sample

Detector

PulsedX-rays Oscillation

ResonantX-rays

High-resolutionmonochromator

Energy spectra

( Energy dip in neV order

+ Doppler shift )

High efficiencyWide element-applicabilityDifficult distribution analysis

For the investigations on thin films

High efficiencyLimited element-applicability (57Fe only)Easy distribution analysis

Medium efficiencyWide element-applicabilityEasy distribution analysis

Detector

Monochromator

Nuclear Braggmonochromator

57FeBO3

Thin film sample

PulsedX-rays

Oscillation

High-resolutionmonochromator

E neV

(Super-monochromatization

+ Doppler shift)

H

Page 21: HFI/NQI 2010 (September 14, 2010, Geneva)

57FeBO3

single crystal

Monochromatized incident beam

ΔE > meVSuper-monochromatized

beamΔE ~ 10 neV

Ee1

Eg

14.4keV

G. V. Smirnov et al., JETP Lett. 43, 352(1986). A. I. Chumakov et al., Phys. Rev. B 41, 9545(1990). G. V. Smirnov et al., Phys. Rev. B 55, 5811(1997). G. V. Smirnov, Hyperfine Interactions 125, 91(2000).

Single-line Mössbauer source using nuclear Bragg reflection

Use of electronically forbidden but nuclear allowed Bragg reflection from an antiferromagnetic single crystal kept near the Néel temperature

(Available only for 57Fe)

+ Doppler shift with oscillating the 57FeBO3 or the sample

Spectrum in energy domain

Page 22: HFI/NQI 2010 (September 14, 2010, Geneva)

Strategy for the use of nuclear Bragg monochromator for the studies on thin films and nano-structures

Key techniques:

T. Mitsui, M. Seto, R. Masuda, Jpn. J. Appl. Phys. 46 L930 (2007)

1. Use of a top-quality 57FeBO3 single crystal for intense super-monochromatized beams

2. Realization of energetically-modulated monochromatized beams at a fixed angle and position

Detector

Monochromator

Nuclear Braggmonochromator

57FeBO3

Thin film sample

PulsedX-rays

Oscillation

High-resolutionmonochromator

E neV

(Super-monochromatization

+ Doppler shift)

H

Page 23: HFI/NQI 2010 (September 14, 2010, Geneva)

Measurements of 57Fe monolayer using a radioactive source

0 10 20 30 40

0.0

0.1

Hyperfine field (T)

Dis

trib

utio

n

MgO(001)/Cr(1.0 nm)/ 56Fe(10.0 nm)/ 57Fe(0.2 nm)/Cr(1.0 nm)

Cr

57Fe

MgO(001)

56Fe

CEMS w/ a radioactive source(46 mCi (1.7 GBq), 7 days, RT)

Effect = 0.36%

Page 24: HFI/NQI 2010 (September 14, 2010, Geneva)

Measurements of 57Fe monolayer using nuclear Bragg monochnomator

MgO(001)/Cr(1.0 nm)/ 56Fe(10.0 nm)/ 57Fe(0.2 nm)/Cr(1.0 nm)

Cr

57Fe

MgO(001)

56Fe

CEMS w/ a radioactive source(46 mCi (1.7 GBq), 7 days, RT)

Effect = 0.36%

Synchrotron w/ nuclear Bragg monochnomator

(Incident angle ~ 1.6o, Measurement ~ 3 hrs)

Velocity (mm/s)

Cou

nts

Detector

Monochromator

Nuclear Braggmonochromator

57FeBO3

Thin film sample

PulsedX-rays

Oscillation

High-resolutionmonochromator

E neV

(Super-monochromatization

+ Doppler shift)

H

Page 25: HFI/NQI 2010 (September 14, 2010, Geneva)

Setups of synchrotron-based Mössbauer spectroscopy

Monochromator Thin film sample

Detector

PulsedX-rays

High-resolutionmonochromator E meV Time spectra

Energy spectra

High efficiencyWide element-applicabilityDifficult distribution analysis

For the investigations on thin films

High efficiencyLimited element-applicability (57Fe only)Easy distribution analysis

Monochromator

Standard absorber(eg. CaSnO3 )

Thin film sample

Detector

PulsedX-rays Oscillation

ResonantX-rays

High-resolutionmonochromator

Energy spectra

( Energy dip in neV order

+ Doppler shift )

Medium efficiencyWide element-applicabilityEasy distribution analysis

Detector

Monochromator

Nuclear Braggmonochromator

57FeBO3

Thin film sample

PulsedX-rays

Oscillation

High-resolutionmonochromator

E neV

(Super-monochromatization

+ Doppler shift)

H

Page 26: HFI/NQI 2010 (September 14, 2010, Geneva)

New method for SR Mössbauer spectroscopy in energy domain

Transmitter Scatterer

Detector

Cou

nts

Relative velocity M. Seto, et al., Phys. Rev. Lett. 102, 217602 (2009) * The transmitter can be a sample and the scatterer can be a standard absorber, or vice versa

Page 27: HFI/NQI 2010 (September 14, 2010, Geneva)

Transmitter Scatterer

Detector

Cou

nts

Relative velocity

New method for SR Mössbauer spectroscopy in energy domain

M. Seto, et al., Phys. Rev. Lett. 102, 217602 (2009) * The transmitter can be a sample and the scatterer can be a standard absorber, or vice versa

Page 28: HFI/NQI 2010 (September 14, 2010, Geneva)

New method for SR Mössbauer spectroscopy in energy domain

Transmitter Scatterer

Detector

Cou

nts

Relative velocity* The transmitter can be a sample and the scatterer can be a standard absorber, or vice versa

M. Seto, et al., Phys. Rev. Lett. 102, 217602 (2009)

Page 29: HFI/NQI 2010 (September 14, 2010, Geneva)

Monochromator

Standard absorber(eg. CaSnO3 )

Thin film sample

Detector

PulsedX-rays Oscillation

ResonantX-rays

High-resolutionmonochromator

New method for SR Mössbauer spectroscopy in energy domain

Setups for thin films

Page 30: HFI/NQI 2010 (September 14, 2010, Geneva)

Cr

Cr Cr Cr Cr

Cr

Cr Cr Cr Cr

Co Mn Sn& Co

x 12or

x 24

SR Mössbauer spectrum of a ultra-thin Co2MnSn film in energy domain

Time spectraEnergy spectrum

( @ 300 K )

35 hrs.

119Sn total 1.2 nm

(~ 6 atomic layer)or

2.4 nm(~ 12 atomic layer)

~ 3 hrs.

Monochromator

Standard absorber(eg. CaSnO3 )

Thin film sample

Detector

PulsedX-rays Oscillation

ResonantX-rays

High-resolutionmonochromator

-15 -10 -5 0 5 10 1535,500

36,000

36,500

37,000

37,500

38,000

38,500

Velocity (mm/s)

C

ou

nts

Page 31: HFI/NQI 2010 (September 14, 2010, Geneva)

Cr

Cr Cr Cr Cr

Cr

Cr Cr Cr Cr

Co Mn Sn& Co

x 12or

x 24

SR Mössbauer spectrum of a ultra-thin Co2MnSn film in energy domain

Time spectraEnergy spectrum

( @ 20 K )

34 hrs.

119Sn total 1.2 nm

(~ 6 atomic layer)or

2.4 nm(~ 12 atomic layer)

~ 3 hrs.

Monochromator

Standard absorber(eg. CaSnO3 )

Thin film sample

Detector

PulsedX-rays Oscillation

ResonantX-rays

High-resolutionmonochromator

-15 -10 -5 0 5 10 15

20,200

20,400

20,600

20,800

21,000

21,200

21,400

21,600

21,800

Velocity (mm/s)

C

ou

nts

Still necessary to be improved for thin films

Page 32: HFI/NQI 2010 (September 14, 2010, Geneva)

From

the development and demonstration phase 

to

the application phase for material researches

Conclusion

Synchrotron-radiation-based Mössbauer spectroscopy in energy domain

for the studies on thin films and nano-structures

Page 33: HFI/NQI 2010 (September 14, 2010, Geneva)

Thank  you