hereditary relatively;injective subquivers and equivalence modulo preprojectives

38
This article was downloaded by: [Universitaets und Landesbibliothek] On: 03 September 2013, At: 17:47 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Communications in Algebra Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lagb20 Hereditary relatively;injective subquivers and equivalence modulo preprojectives Héctor A. Merklen a a Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brasil Published online: 27 Jun 2007. To cite this article: Hctor A. Merklen (1990) Hereditary relatively;injective subquivers and equivalence modulo preprojectives, Communications in Algebra, 18:9, 3145-3181, DOI: 10.1080/00927879008824065 To link to this article: http://dx.doi.org/10.1080/00927879008824065 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions

Upload: hector-a

Post on 13-Dec-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

This article was downloaded by: [Universitaets und Landesbibliothek]On: 03 September 2013, At: 17:47Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: MortimerHouse, 37-41 Mortimer Street, London W1T 3JH, UK

Communications in AlgebraPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/lagb20

Hereditary relatively;injective subquivers andequivalence modulo preprojectivesHéctor A. Merklen aa Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP,BrasilPublished online: 27 Jun 2007.

To cite this article: Hctor A. Merklen (1990) Hereditary relatively;injective subquivers and equivalence modulopreprojectives, Communications in Algebra, 18:9, 3145-3181, DOI: 10.1080/00927879008824065

To link to this article: http://dx.doi.org/10.1080/00927879008824065

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”)contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensorsmake no representations or warranties whatsoever as to the accuracy, completeness, or suitabilityfor any purpose of the Content. Any opinions and views expressed in this publication are the opinionsand views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy ofthe Content should not be relied upon and should be independently verified with primary sources ofinformation. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands,costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly orindirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial orsystematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution inany form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

COMMUNICATIONS IN ALGEBRA, 1 8 ( 9 ) , 3145-3181 (1990)

HEREDITARY RELATIVELY INJECTIVE SUBQUIVERS

AND EQUIVALENCE MODULO PREPROJECTIVES

~ e c t o r A, Merklen I n s t i t u t o de ~ a t e m a t i c a e ~ s t a t I s t i c a

Un ive r s idade de S ~ O Paulo S ~ O P a u l o , SP, B r a s i l

An a r t i n a l g e b r a A i s s a i d t o be e q u i v a l e n t t o a n

a l g e b r a A ' modulo p r e p r o j e c t i v e s up t o t h e l e v e l n

if t h e c a t e g o r i e s mod A/add p n ( A ) and mod A1 /add ~ ( A ' I

a r e e q u i v a l e n t , Necessary and s u f f i c i e n t c o n d i t i o n s f o r

t h i s a r e g iven i n t h e c a s e when A ' i s h e r e d i t a r y o f

i n f i n i t e r e p r e s e n t a t i o n t y p e , assuming c e r t a i n p r o p e r -

t i e s f o r t h e p r e p r o j e c t i v e modules i n g n ( n ) .

1. I n t r o d u c t i o n and s t a t e m e n t o f t h e r e s u l t .

I n t h i s a r t i c l e we c o n t i n u e t h e r e s e a r c h begun i n

[ 4 ] . Given an a r t i n a l g e b r a A and a n a t u r a l number n ,

(Pm(A)), i s t h e p r e p r o j e c t i v e p a r t i t i o n o f i n d A ( s e e

[ 31 ) and p n ( h ) d e n o t e s t h e subca t ego ry d e f i n e d by t h e

Copyright @ 1990 by Marcel Dekker, Inc.

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

modules i n { !,CAI / 0 9 m < n ) . By d e f i n i t i o n , A

i s s a i d t o be e q u i v a l e n t t o a n o t h e r a r t i n a l g e b r a A '

modulo p r e p r o j e c t i v e s up t o t h e l e v e l n i f mod A

a d d P " ( A )

and " a r e e q u i v a l e n t c a t e g o r i e s . The c;se add p n ( ~ ' - I

n = 0 i s t h e c a s e o f t h e u s u a l s t a b l e e q u i v a l e n c e ,

The prob lem of c h a r a c t e r i z i n g s t a b l e e q u i v a l e n c e

w i t h a h e r e d i t a r y a l g e b r a was s t a t e d a n d s o l v e d by Aus-

l a n d e r and R e i t e n i n [ l ] , 1972. The c o n d i t i o n s o b t a i n e d

t h e r e were t h a t , f i r s t , e v e r y indecomposable non p r o j e c -

t i v e submodule o f a p r o j e c t i v e module i s s i m p l e a n d , s e -

c o n d l y , t h a t t h o s e s i m p l e a r e q u o t i e n t s o f i n j e c t i v e

modules . E q u i v a l e n t l y , e v e r y indecomposable q u o t i e n t o f

a n indecomposable i n j e c t i v e module i s i n j e c t i v e o r s i m -

p l e a n d , i n t h e l a t t e r c a s e , i s c o n t a i n e d i n a p r o j e c -

t i v e module. T h i s work was ba sed main ly on t h e t h e o r y o f

c a t e g o r i e s o f f u n c t o r s . The g e n e r a l i z a t i o n o f t h i s q u e s t i o n a p p e a r e d i n a

n a t u r a l way a f t e r t h e d i s c o v e r y o f t h e p r e p r o j e c t i v e mo-

d u l e s i n [ 3 1 , 1980. I n [ 4 ] , 1986 , we o b t a i n e d some ne-

c e s s a r y and some s u f f i c i e n t c o n d i t i o n s f o r A t o be

e q u i v a l e n t t o a h e r e d i t a r y a l g e b r a A ' modulo p r e p r o -

j e c t i v e s up t o t h e l e v e l n , Our s t u d y was o b v i o u s l y li-

mi t ed t o t h e i n f i n i t e r e p r e s e n t a t i o n t y p e c a s e and was

based main ly on t h e e x i s t e n c e and ~ r o ~ k r t i e s o f Auslan- Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3147

de r -Re i t en s equences . Let us r e c a l l some te rminology and

some f a c t s from [ 41 . We deno te by 1 ( r e s p . y ' ) t h e c a t e g o r y add p n ( ~ )

( r e s p . add E " ( A ' 1) . I f t h e above mentioned e q u i v a l e n c e

e x i s t s , t h e A-modules which co r r e spond t o i n j e c t i v e A ' -

modules a r e t h e ! - i n j ec t ive A-modules, whose c a t e g o r y

o f indecomposables i s denoted by I. i s t h e p a r t o f -

indVA c o n s i s t i n g o f i n j e c t i v e modules, o f modules I - -

such t h a t TrD I i s i n and of modules I such t h a t - every a r row o f t h e Aus lander -Rei ten q u i v e r T,, c o r r e s -

ponding t o an i r r e d u c i b l e map o f t h e form I -+ X has

X i n y. The V - i n j e c t i v e s - o f t h e l a t t e r k ind a r e s a i d . -

t o be y-simple, -

I n g e n e r a l , we u s e t h e same n o t a t i o n f o r a s u b c a t e -

gory o f indecomposable modules and f o r t h e co r r e spond ing

subqu ive r of t h e Aus lander -Rei ten q u i v e r , This p e r m i t s

s imp le s t a t e m e n t s f o r t h e two p r o p e r t i e s o f I - which

a r e c r u c i a l t o o u r q u e s t i o n .

1) I i s open t o t h e r i g h t i n r A \ p n ( h ) , -

2 ) I - h a s no o r i e n t e d c y c l e s and c o n t a i n s t h e left- - boundary o f -

Here , t h e f i r s t p r o p e r t y means t h a t eve ry a r row 1 4 X

w i t h I i n and X n o t i n has n e c e s s a r i l y X - -

i n I . - The l a s t p a r t o f t h e second p r o p e r t y means t h a t -

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

3148 MERKL EN

eve ry a r row X + P w i t h P i n p n ( h ) - and X n o t i n

h a s n e c e s s a r i l y X i n 5 ,

When 1) and 2) a r e s a t i s f i e d , Comod(add x / y ) - - ( s e e

s e c t i o n 3 f o r a d e f i n i t i o n ) i s a c a t e g o r y of t h e form

mod A:';, where A?: i s a h e r e d i t a r y a l g e b r a . For t h i s f

r e a s o n . we w i l l a p p l y t o o b j e c t s I -a J o f Comod(

add I/!) t h e u s u a l t e rmino logy and t h e w e l l known pro- -

p e r t i e s o f modules o f a h e r e d i t a r y a l g e b r a . I n c a s e t h a t

A i s e q u i v a l e n t t o a h e r e d i t a r y a l g e b r a A' modulo

p r e p r o j e c t i v e s u p t o t h e l e v e l n , and when A h a s no

r i n g components of f i n i t e r e p r e s e n t a t i o n t y p e , it was

shown i n I 4 1 t h a t A ' i s Mor i t a e q u i v a l e n t t o A?:.

A l l t h i s s u g g e s t s a s a n a t u r a l c o n t i n u a t i o n o f t h i s work

t o pe r fo rm a c l o s e r s t u d y o f c a t e g o r i e s o f t h e form Co-

rnod(add S / V ) , - - and t h i s i s what we b e g i n i n t h e p r e s e n t

p a p e r ,

As i t t u r n s o u t , t h e r e i s a c l o s e r e l a t i o n between

Comod(add I) - and Como?(add I / y ) when a l l a r rows I + J - -

o f co r r e spond t o i r r e d u c i b l e maps which a r e epirnor-

phisms ( i n t h i s c a s e we w i l l s ay t h a t A h a s t h e *-pro-

p e r t y ) . On t h e o t h e r hand, we have n o t been a b l e t o f i n d

a n example where A i s e q u i v a l e n t t o A ' ( h e r e d i t a r y ,

indecomposable , o f i n f i n i t e r e p r e s e n t a t i o n t y p e ) modulo

p r e p r o j e c t i v e s up t o t h e l e v e l n and where A f a i l s

t o s a t i s f y t h e * - p r o p e r t y .

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3149

I t s h o u l d be n o t e d a l s o t h a t t h e " -p rope r ty i s a lways

t r u e i n t h e c l a s s i c a l c a s e o f n = 0 ,

We d e f i n e I t o be h e r e d i t a r y i f t h e p r o p e r t i e s 1) - and 2 ) above and t h e * - p r o p e r t y a r e s a t i s f i e d ( c f . s e c -

t i o n 2 , Def .l) a If I i s h e r e d i t a r y , mod A/! i s e q u i - - - v a l e n t t o a c a t e g o r y o f t h e form mod A:':/!>':. I f , f u r - - t h e rm ore , t h e r e a r e no i n j e c t i v e modules i n Y, t h e n A

i s e q u i v a l e n t t o A" modulo p r e p r o j e c t i v e s up t o t h e

l e v e l n. We can a l s o c h a r a c t e r i z e t h i s s i t u a t i o n by

means o f c o n d i t i o n s which a r e ve ry s i m i l a r t o t h e Aus-

l a n d e r - R e i t e n c o n d i t i o n s of f 1 1 .

THEOREM. L e t A b e an a r t i n a l g e b r a s u c h t h a t t h e r e are

no i n j e c t i v e modules i n P"(A) and l e t I m ( f o ) d e n o t e - t h e f u l l s u b c a t e g o r y o f i q d A d e f i n e d by t h e indecom-

p o s a b l e q u o t i e n t s o f i n j e c t i v e .A-modules. Then t h e f o l -

l owing s t a t e m e n t s a r e e q u i v a l e n t ,

1) I - i s h e r e d i t a r y .

2 1 The f o l l o w i n g two c q n d i t i o n s a r e s a t i s f i e d .

f 2al If I --+ X i s a A-homomorphism w i t h I i n

a n d X i ndecomposab l e , t h e n f # 0 i f - - - a n d o n l y i f f i s a n epimorphism,

2b) Im(So) c o n s i s t s o f t h e indecomposable i n j e c -

t i v e modules and o f t h e indecomposable compo-

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

MERKLEN

n e n t s o f modules o f t h e form r a d P , w i t h P

i n y, which a r e n o t i n y . - - -

Let us assume f u r t h e r t h a t A ha s t h e f o l l o w i n g p rope r -

L Y " - f

I f M --+ N i s a A-epimorphism w i t h M i n modVA, - - - t h e n f # 0, - -

I n t h i s c a s e , i f A i s e q u i v a l e n t modulo p r e p r o j e c t i v e s

up t o t h e l e v e l n t o a h e r e d i t a r y a l g e b r a w i t h no r i n g

components o f f i n i t e r e p r e s e n t a t i o n t y p e , t h e n I - - i s

h e r e d i t a r y , Converse ly , i f - i s h e r e d i t a r y , , t h e n A

i s e q u i v a l e n t modulo p r e p r o j e c t i v e s up t o t h e l e v e l n

t o a h e r e d i t a r y a l g e b r a and A ha s t h e above s t a t e d

p r o p e r t y , F i n a l l y , i t i s always t r u e t h a t i f I - - i s he-

r e d i t a r y t h e n I - = Im( :o ) .

The pape r i s o rgan ized a s f o l l o w s . I n s e c t i o n 2 , un-

d e r t h e assumpt ion t h a t A i s e q u i v a l e n t modulo p rep ro -

j e c t i v e s up t o t h e l e v e l n t o a h e r e d i t a r y a l g e b r a A '

w i t h no r i n g components o f f i n i t e r e p r e s e n t a t i o n t y p e ,

and s u p o s i n g t h a t A s a t i s f i e s t h e p r o p e r t y s t a t e d i n

t h e Theorem, i t i s proved t h a t E - i s h e r e d i t a r y ( s e e

Prop. 2 . 2 ) , Some o t h e r p r o p e r t i e s a r e o b t a i n e d which a r e

imp l i ed by t h e f a c t t h a t - i s h e r e d i t a r y , and t h e no-

t i o n o f 2 - r e p r e s e n t a t i v e , - f o r a morphism o f add I / y , - - Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVEE 3151

i s i n t r o d u c e d , The p r e p a r a t i o n 1-emma (P rop . 2,6) p l a y s

an i m p o r t a n t r o l e i n p r o v i n g t h e c l o s e c o n n e c t i o n b e t -

ween Comod(add & ) and Comod(add I/Y) when I i s - - - h e r e d i t a r y . In s e c t i o n 3 , t h i s c o n n e c t i o n i s e s t a b l i s h e d

i n Prop. 3 . 3 . The s i g n i f i c a n c e o f t h e f a c t t h a t A h a s

no i n j e c t i v e modules i n 1 i s a l s o examined. I n Prop .

3 . 7 it i s shown t h a t i t i m p l i e s t h a t i s e q u a l t o

I m ( I o ) , F i n a l l y , s e c t i o n 4 i s devo t ed t o t h e p roo f o f

t h e main theorem and t o p r e s e n t a n example t o show t h a t ,

even in t h e c a s e of o u r theorem, t h e r e a r e i n s t a n c e s of

e q u i v a l e n c e modulo p r e p r o j e c t i v e s which do n o t be long

t o t h e c l a s s i c a l c a s e o f s t a b l e e q u i v a l e n c e .

2, I n t r o d u c t i o n of t h e h e r e d i t a r y ! - i n j e c t i v e q u i v e r s . ---'

We keep t h e n o t a t i o n s of [ 41, some o f which have

been a l r e a d y r e c a l l e d i n t h e i n t r o d u c t i o n . Through most

o f t h i s s e c t i o n we w i l l assume t h a t A i s e q u i v a l e n t ,

modulo p r e p r o j e c t i v e s up t o t h e l e v e l n , t o a h e r e d i -

t a r y a l g e b r a A' w i t h no r i n g components of f i n i t e r e -

p r e s e n t a t i o n t y p e , Thus, t h e ! - i n j e c t i v e q u i v e r & i s

open t o t h e r i g h t i n r A \ p n ( n ) , ha s no o r i e n t e d c y c l e s

and c o n t a i n s t h e l e f t boundary of y . - I t h a s been

shown i n [ 4 ] t h a t eve ry i r r e d u c i b l e map I -t J , c o r - Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

MERKLEN 3152

r e spond ing t o an arrow of 2 , - i s such t h a t f i s a n

epimorphism, On t h e o t h e r hand , mod A ' , which i s ob-

v i o u s l y e q u i v a l e n t t o C o m ~ d ( a d d ( ~ ~ ( A ' ) ) v i a t h e k e r -

n e l f u n c t o r , i s a l s o e q u i v a l e n t t o Comod(add I/y). - - To

s i m p l i f y o u r w r i t i n g , i f we want t o r e f e r t o t h i s s i t u a -

t i o n , we w i l l merely s ay t h a t A i s e q u i v a l e n t t o A' ,

We beg in by f i n d i n g o t h e r ways o f s t a t i n g t h a t A

has t h e " -p rope r ty (assuming t h a t it i s e q u i v a l e n t t o

A , Let us r e c a l l t h a t , f o r a A-module P, T (P ) de-

n o t e s t h e t r a c e o f indVA i n P , i , e . t h e sum o f a l l - -

images o f morphisms M -+ P f o r M i n modyA. - -

P r o p o s i t i o n 2 . lo Let A be e q u i v a l e n t t o A . The f o l -

lowing a r e e q u i v a l e n t ,

(1) I f P i s i n y, T(P) i s c o n t a i n e d i n t h e - - r a d i c a l o f P a

f (2) Every i r r e d u c i b l e map I + J w i t h I i n

2 and J i n modVA i s a n epimorphism. - - - ( 3 ) Every non z e r o epimorphism M + N w i t h M

i n modVA i s non z e r o modulo - - - - ( 4 ) Every i r r e d u c i b l e map I -+ P w i t h I i n

J and P i n f ( ~ ) h a s i t s image i n r a d P . -

PROOF, We show t h e i m p l i c a t i o n s (1) = > ( 3 ) = > ( 2 ) => Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3153

use Prop , 3 , s of [ 41 1. (2) => ( 4 ) , Let us c o n s i d e r t h e

Aus lander -Rei ten sequence beg inn ing a t I .

Here, P ( r e s p . J) d e n o t e s t h e !-part ( r e s p a t h e mod A- !

p a r t ) o f t h e middle t e rm. We say t h a t i I r e s p . f ) i s

t h e !-component ( r e s p . t h e I-component) of t h e minimal

l e f t a lmos t s p l i t map going o u t from I . S i n c e when P i s

p r o j e c t i v e i ( I ) i s c o n t a i n e d i n r a d P , w e c a n proceed b y

i n d u c t i o n on t h e minimal l e n g t h o f a p a t h o f 5 l i n k i n g - a s o u r c e t o I , by assuming t h a t i ( I ) i s c o n t a i n e d i n

r a d P. Then, J = I = p i i s c o n t a i n e d i n r a d

Q. ( 4 ) => ( l ) , It i s e a s y t o s e e , by i n d u c t i o n , t h a t a

!-envelope o f I , f o r I i n I , i s o f t h e form

where each i s o b t a i n e d i n t h e f o l l o w i n g way. For each

p a t h T o f 2 , s t a r t i n g a t I and end ing up a t some

e lement K o f I t h a t i s n o t i n j e c t i v e , we choose

a map f T , a composi te o f i r r e d u c i b l e maps one f o r e a c h

ar row o f T I f iT i s t h e !-component o f t h e minimal - l e f t a lmos t s p l i t map going o u t from K , t h e n @ i s

t h e composi te i f Th i s shows t h a t , f o r eve ry I i n

2, t h e image o f t h e !-envelope o f I i s c o n t a i n e d i n - -

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

MERKLEN 3154

t h e r a d i c a l o f t h e c o r r e s p o n d i n g module o f Y. S i n c e ,

by [ 4 1 , T (P ) i s i n a d d z, - ( 1 ) f o l l o w s e a s i l y .

By Theorem 1 o f [ 4 ] and P rop . 2 , 1 , we have t h e

f o l l o w i n g r e s u l t .

P r o p o s i t i o n 2 . 2 . Le t A b e e q u i v a l e n t t o A ' a nd l e t

us assume t h a t A h a s t h e " -p rope r ty and t h a t no i n j e c -

t i v e A-module i s i n y, - Then t h e q u i v e r I - of the- - i n j e c t i v e A-modules s a t i s f i e s t h e f o l l o w i n g p r o p e r t i e s .

1 ) I - i s open t o t h e r i g h t i n ~ * \ E " ( A ) , "aS

no o r i e n t e d c y c l e s and c o n t a i n s t h e l e f t

boundary o f y . -

2 ) Every i r r e d u c i b l e map I -+ J w i t h I i n I - and J i n modVA is a n ep imorphism,

- -

D e f i n i t i o n 1. The ! - i n j e c t i v e q u i v e r I i s s a i d t o b e - - h e r e d i t a r y when t he -_p rope r t i e s 1) and 2 ) o f Prop . 2.2

a r e s a t i s f i e d , I t i s e a s y t o s e e t h a t t h e h y p o t h e s i s o f

Prop. 2 . 1 may b e s u b s t i t u t e d by p r o p e r t y 1) o f P rop .2 .2 .

Hence, i n t h i s d e f i n i t i o n , one may s u b s t i t u t e any o f

t h e c o n d i t i o n s ( 1 1 , ( 3 ) , ( 4 ) o f Prop . 2 . 1 f o r p r o p e r t y

2 ) (which i s t h e same a s ( 2 ) o f P r o p , 2 . 1 ) .

The f o l l o w i n g lemma i m p l i e s t h a t , i f i s h e r e d i -

t a r y , t h e 1-component - o f t h e minimal a l m o s t s p l i t map

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3155

going o u t from a n indecomposable i n I i s computed a s

i f t h i s indecomposable were a n i n j e c t i v e module.

Lemma. Let A be an a r t i n a l g e b r a and M a n indecompo-

s a b l e A-module such t h a t t h e minimal l e f t a lmos t s p l i t --

map g o i n g o u t frpm- M has t h e f o l l a w i n g form.

i ,77 L

M / i ( M ) i s c o n t a i n e d i n r a d L

\ 63 where

f \N f(M) = N

a n - isomorphism u

such t h a t f = ug, where g i s t h e n a t u r a l epimorphism

from M o n t o M/soc M .

PROOF. Le t S be a s i m p l e submodule o f M and g t h e n a t -

u r a l map M -+ M/S. Then g f a c t o r s i n t h e form g = f ' f

+ i ' i , from which it f o l l o w s t h a t f ' f ( M ) = f l ( N ) = M/S.

T h i s i m p l i e s , c l e a r l y , t h a t f ' i s an isomorphism and ,

s i n c e f i s f i x e d , S = k e r f i s e q u a l t o s o c M .

I n a l l t h e r e s t o f t h i s s e c t i o n we w i l l suppose t h a t

I i s h e r e d i t a r y . S i n c e add I/! may be though t a s t h e - - - c a t e g o r y o f t h e i n j e c t i v e modules o f a h e r e d i t a r y a l g e -

f b r a , e v e r y morphism I J i n t h i s c a t e g o r y h a s an e s -

s e n t i a l l y unique f a c t o r i z a t i o n = & where h - i s an

epimorphism and where g i s s p l i t monic. I n p a r t i c u l a r ,

i f J i s indecomposable , e i t h e r f i s an epimorphism

o r f = O ,

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

3156 MERKLEN

We w i l l s a y t h a t f i s an & - r e p r e s e n t a t i v e - o f f

i f f admi t s a f a c t o r i z a t i o n f = gh where h i s an

epimorphism and g i s s p l i t monic. I t i s c l e a r t h a t i f

$ i s a morphism o f t h e c a t e g o r y add I/! - t h e n $ has

an I - r e p r e s e n t a t i v e f . I t i s e a s y t o s e e a l s o t h a t , - g iven two f a c t o r i z a t i o n s f = gh = g ' h ' where h , h '

a r e epimorphisms and g , g ' a r e s p l i t monic, t h e r e i s

- 1 an isomorphism u such t h a t h ' = uh and g ' = gu

f P r o p o s i t i o n 2 . 3 . Le t I be h e r e d i t a r y and I + J - a -

morphism w i t h I i n add 2. Then, f i s a n epimor- - phism i f and o n l y i f f i s an epimorphism. If t h i s i s

t h e c a s e , J i s a l s o i n add I , -

PROOF. We o b s e r v e f i r s t t h a t , s i n c e Prop . 2 . 1 , ( 3 ) i s

s a t i s f i e d when 4 i s h e r e d i t a r y , A-epimorphisms go ing - from modules o f modVA a r e n o t z e r o modulo y. I t f o l -

- - lows t h a t i f f i s a n epimorphism, s i n c e cok f = 0,

cok f = 0 and f i s a n epimorphism. For t h e c o n v e r s e ,

we proceed by i n d u c t i o n on t h e l e n g t h o f I , % ( I ) . I t is

c l e a r t h a t we can assume t h a t I i s o f t h e form I1 @

I2 ( i t may happen t h a t I2 = 0 1 , w i t h I1 indecompo-

s a b l e and f l = f l I l i s n o t a n isomorphism. I f f l i s

1 g s p l i t monic, f h a s t h e form f = ( O h):Il@ I2 ---t I1 @

J2 a n d , i f f is a n epimorphism, h i s a n epimorphism

t o o , By t h e i n d u c t i o n h y p o t h e s i s , 5 i s an epimorphism

and , t h e r e f o r e , f i s a n e p i m o r p h i ~ r n , I f f l i s n o t

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROSECTIVES 31 51

s p l i t monic, f f a c t o r s through a map of t h e form ( i l

0 Il @ I2 + t Ii @ 12, where tl is t h e minimal

l e f t almost s p l i t map going o u t from 11, so t h a t we

have, say , f = f ' t . By t h e induc t ion hypo thes i s , f'

i s an epimorphism and, hence f i s an epimorphism.a -

We have mentioned a l r e a d y t h a t i f I i s h e r e d i t a r y - t h e Asmodules I i n add T / y may be thought a s t h e - - i n j e c t i v e modules of some h e r e d i t a r y a lgebra A*. I n

what fo l lows , 1 ( I ) w i l l denote t h e l eng th o f I a s an - i n j e c t i v e A*-module and, i f - f : I ---t J i s a morphism

of add x/y, k e r f w i l l denote i t s k e r n e l a s a morphism - - - of A*-modules ,

Propos i t ion 2 . 4 . Let be h e r e d i t a r y . I f I i s i n - add H, - then L(I) = b(I), -

PROOF, We proceed by induc t ion on l ( 1 ) . By Prop. 2 . 3

and by t h e lemma above, I i s simple i f and only i f it

i s g-simple and i f and only i f ( 2 ) = 1 I n t h e gene-

r a l c a s e , l e t I 5 J be t h e I-component of t h e minimal

l e f t almost s p l i t map going o u t from I (assuming,

wi thout l o s s o f g e n e r a l i t y , t h a t I i s indecomposable).

Since f is t h e minimal l e f t almost s p l i t of mod A9:

going o u t from I , l ( 2 ) = R ( J ) + 1. On t h e o t h e r

hand, by t h e l e m m a , [ ( I ) = L ( J ) + 1. [I

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

MERKLEN

f C o r o l l a r y , I f I -+ J i s a morphism o f add 2 - which i s

an 1 - r e ~ r e s e n t a t i v e o f f, thfn $ ( k e r f ) = l(ker 1). - -

P r o p o s i t i o n 2 , s . Let be h e r e d i t a r y and l e t I f J

be a morphism o f add 1 - which i s an i - r e p r e s e n t a t i v e - of f . I f I ' i s a d i r e c t summand o f I such t h a t

PROOF. We can assume t h a t J i s indecomposable and ,

t h e n , t h a t f and f a r e epimorphisms. Le t us proceed

by i n d u c t i o n on l ( I ) , t h e s t a t e m e n t b e i n g vacuous ly

t r u e i n c a s e t h a t $ ( I ) = R ( J ) . W r i t i n g I = I1 @ I '

and , a c c o r d i n g l y , f = ( f l , f 1 ) , we have t h a t fl and

hence f l a r e epimorphisms. If f l i s i n j e c t i v e , f

i s s p l i t e p i c and ~ ( 1 ' ) = & ( k e r f ) , S i n c e k e r f h a s

t o be a d i r e c t summand o f k e r f, it fo l lows from t h e

Coro l l a ry t o Prop . 2 . 4 t h a t k e r f = I t , I f f l i s no t

i n j e c t i v e , f f a c t o r s t h rough I l / k e r f l @ I and t h e

r e s u l t f o l l ows from t h e i n d u c t i o n h y p o t h e s i s ,

i o n 2 , 6 . ( P r e p a r a t i o n lemma) Let I - be h e r e d i -

t a r y and l e t i, g , & be morphisms o f add I/! - - such

t h a t f = p, 2. If f , h a r e I - r e p r e s - e n t a t i v e s o f f , G , - - - - r e s p e c t i v e l y , t h e n t h e r e e x i s t s an 4 - r e p r e s e n t a t i v e - g

o f g such t h a t f = gh, - -

PROOF. We c o n s i d e r f i r s t t h e c a s e when h i s an epimor-

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3159

phism, h = t : I -+ K , whose k e r n e l i s s i m p l e , C l e a r l y ,

i t i s enough t o prove t h e s t a t e m e n t when K i s indecom-

p o s a b l e , I f f = 0, f = 0 and we can t a k e g = 0, - Otherwise , f and f a r e epimorphisms, I f we c o n s i - - d e r t a s a homomorphism between i n j e c t i v e A*-modules, - we s e e t h a t 2 i s o f t h e form

where I1 i s an indecomposable d i r e c t summand o f I

and where tl i s t h e minimal l e f t a lmos t s p l i t map go-

i n g o u t from 11, S ince t h e r e s t r i c t i o n o f f t o I1

cannot be an isomorphism, f f a c t o r s a s f = g ' t . But

t h e n g = , s o t h a t t h e s t a t e m e n t i s proved i n t h i s

c a s e . I n t h e g e n e r a l c a s e , l e t us assume f i r s t t h a t h

i s a s p l i t monomorphismo Then we have e x p r e s s i o n s o f t h e

1 form h = (0) , g = (g1 ,g2) , imply ing t h a t gh = gl ,

gh = f = gl, and o u r problem i s s o l v e d by t a k i n g gl = - - f and g2 = 0, I f h i s n o t s p l i t monic, we have a

f a c t o r i z a t i o n h = h't where t i s a s i n t h e f i r s t - p a r t of t h e p r o o f . Using t h i s , we know t h a t t h e r e e x i s t

morphisrns f ' , h ' such t h a t f = f ' t , h h ' t and

which a r e I - r e p r e s e n t a t i v e s - o f f', h', r e s p e c t i v e l y ,

Then, from f = f't = gh't we deduce t h a t f ' = @' - and t h e p roo f i s completed by induction o n R(I)

( n o t e t h a t , when L ( I ) = L ( K ) , f i s an isomorphism and

I h i s s p l i t mon ic ) , 0

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

3160 MERKLEN

Corollary, Let 2 - be hereditary and let f, g be mor-

phisms from I to J in add 2 . - - If f g are &-representatives, - a necessary and sufficient condition

for the equality f = g is that there exists an auto-

morphism u of 3 such that g = uf $ 5 = I..

Proposition 2.7. Let & be her,e-ditary, The following

properties hold - 1) - If I f 3, J 5 K are morphisms of add I which

are 4-representatives, then gf is an $-re- - presentative,

f 2 ) Let I -+ J be a morphism of add & and let I

= r i , 3 = @ J ~ be decompositions into direct I 3

sums of indecomposable A-modules, Finally, let

f j i : I i J j - be the r~rrespondingfomponents of f. The_n, f is an J-representative if and - only if all the fji's are &-representatives.

PROOF, 1) It is enough to examine the case when f is

split monic and g is epic. Let K 2 Kl @ K2, where

K1 is the image of gf, and let p:K --+ K 2 be the

corresponding projection, We have that pg is an &-re-

presentative and that ~ g ( f (11) = 0 . By Prop. 2 - 5 ,

pg(f(1) = 0 and it follows that gf(I) = K1, showing

that gf is an &-representative. 21 Let li:Ii + I

(respa n :J + J ) be the ith-injection (resp. the j t h 3

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3161

projection) associated to the given decomposition of I

(resp, of J), By l), if f is an 2-representative, - fji = ".fli

J is also an 2-representative, Conversely,

given morphisms fji:Ii + J which are I-representa- j -

tives, let f = 1 ajfjini. Next, let us consider a de- i,j

composition J = J1 83 J2, where J1 is the image of I, and let n be the corresponding projection of J onto

J2. By 11, at jfji~i is an I-representative and, -

since injLijlli = 0, vxjfjini = 0. This means that ~f

= 0, so that f(1) = J1 and f is an J-representa-

tive. 0

Corollary. Let i :I + J be a A-monomorphism with I, J

in add 2 and let us assume that 2 is hereditary, A - - - necessary and sufficient condition for i to be split

is that for every projection T of J onto an indecom-

posable direct summand of J, either ai = 0 or +#0.

3 , The category Comod(add z/Y) when I is hereditary, - - - =

In this section we use the results of section 2 to

obtain a nice description of the category Comod(add I/ -

y ) when I is hereditary. We keep our general nota- - -

tions and assume throughout the section that I is he- - 1

reditary,

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

MERKLEN

We r e c a l l t h a t Comod(add I/Y) - - i s t h e c a t e g o r y f

whose o b j e c t s a r e t h e morphlsms I J o f add I / y - -

and whose morphisms a r e d e f i n e d a s f o l l o w s , I n t h i s ca- f '

t e g o r y , t h e group o f morphisms from - f t o I' > J' i s t h e q u o t i e n t o f t h e group o f p a i r s o f morphisms (a,g) (where 2 i s a morphism from I t o I ' and - B a mor-

phism from J t o J ' ) s a t i s f y i n g f'a = Bf modulo t h e

subgroup o f t h e p a i r s (3,6) such t h a t - n f a c t o r s

t h rough f, i . e , t h e r e e x i s t s a morphism o such t h a t

n = af. The c a t e g o r y Comod(add 1) i s d e f i n e d s i m i l a r - - -

l y and it i s c l e a r t h a t we have an obvious q u o t i e n t

f u n c t o r from Comod(add I) t o Comod(add &/U). - A s we

show n e x t , t h e r e s u l t s a t t h e end o f s e c t i o n 2 imply

t h a t t h i s f u n c t o r has a r i g h t q u a s i - i n v e r s e .

Let - C be the subca t ego ry o f Comod(add 2 ) whose

ob , jec ts a r e d e f i n e d by morphisms f which a r e $ - r ep re -

s e n t a t i v e s and whose morphisms a r e g iven by p a i r s ( a , @ )

such t h a t a and 6 a r e I - r e p r e s e n t a t i v e s , Then, t h e

r e s t r i c t i o n t o C of t h e a b v e mentioned q u o t i e n t func-

t o r i s an e q u i v a l e n c e o f c a t e g o r i e s , S i n c e every o b j e c t

of Comod(add & / v ) - has an & - r e p r e s e n t a t i v e , t h e func -

t o r i s d e n s e , But it i s a l s o f u l l because , g iven a mor-

phism ( g , g ) from t o L' i n Comod(add I / Y ) - - and

choos ing a , f , f ' , i t f o l l o w s from Props . 2 . 6 and 2,7

t h a t t h e r e e x i s t s an I - r e p r e s e n t a t i v e - B o f - B such

t h a t f'a = Bf, It i s a l s o c l e a r from t h e p r e p a r a t i o n

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 31 63

lemma that (r),i) is equivalent to zero if and only if

( ~ ~ 6 ) is equivalent to zero, hence our functor is also

faithful, ending the proof that it is an equivalence of

categories,

Up to isomorphism, any object of Comod(add I/!) is - - f

given by an epimorphism I 2 J, so that it may be re-

presented by an epimorphism I $ J o As a matter of

fact, we would rather represent f by the exact sequen-

ce defined by f : 0 + ker f -+ I f J -+ 0, Accordingly,

a morphism (g,B) from f to f' will be represented - - by a morphism between the corresponding exact sequences,

i,e, by a commutative diagram with exact rows as fol-

lows, where a, B are &-representatives,

Given 2 and B such that f a = Q, our repre- - - sentation procedure determines all objects in the dia-

gram above up to isomorphism, It is easy to see also

that (2,g) is an epimorphism (resp. a monomorphism) of

Comod(add I/y) if and only if 4 is an epimorphism - -

(resp. a monomorphism), Also, if (2,g) is split epic

(resp, monic), then 4 is split epic (resp, manic), The

converse of the first alternative is true when one deals

I with morphisms f which, in some sense, are minimal.

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

MERKLEN 3164

Let us assume t h a t 2 i s such t h a t i t s k e r n e l , i , i s t h e minimal i - enve lope - o f M ( s e e diagram a b o v e ) .

Then we c l a i m t h a t i s s p l i t e p i c i f and o n l y i f

4 i s s p l i t e p i c . I n f a c t , i f M = M1 @ M 2 t h e n I i s

t h e d i r e c t sum I1 @ I p o f t h e minimal 1-envelope of -

M l , 11, and t h e minimal 2-envelope - of M 2 , 12.

T h e r e f o r e , i decomposes i n t h e form il B i2 and f

i n t h e form f l B f 2 . Now, i f $ i s s p l i t e p i c , s o

t h a t M = M' @ M" and 4 = (1,O ) , t h e n we have t h a t

I = I @ I and a has t h e m a t r i x form ( 1 , a " ) . Th i s

e a s i l y i m p l i e s t h a t i s s p l i t e p i c ,

1

P r o p o s i t i o n 3.1. Let M 1 ' be a A-homomorphism

where M i s i n modvA - - and I ' i s i n add 2. -

1) I n o r d e r t h a t i ' be t h e minimal I - enve lope

o f M it i s neces sa ry and s u f f i c i e n t t h a t I '

- M c I " c I ' w i t h I" i n

add I - i m p l i e s I" = - 1'.

be i d i r e c t decomposi t ion o f I ' 2) Let I ' = @ I j - J

i n t o indecomposables and l e t i j :M + I be t h e j -

co r r e spond ing component o f i ' , i ' i s t h e

minimal I -envelope - o f M y t h e n i j f 0 foy -

a 1 1 j; c o n v e r s e l y , i f t h i s c o n d i t i o n i s s a t i s -

f i e d , t h e n i ' i s an ;-envelope o f M .

PROOF. 1) ~~t M .& 1 be t h e minimal &-envelope of M .

Then we have a commutative d iagram w i t h e x a c t rows a s

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIYES 3165

fo l lows , where f is t h e cokerne l of i and f ' i s the

cokernel o f i'.

I f I ' i s minimal, a is s u r j e c t i v e and so i s 6.

Since i i s a minimal morphism, t h e gene-

r a l remarks preceding t h e p r o p o s i t i o n show t h a t a i s

an isomorphism. The converse i s obvious by d e f i n i t i o n

o f minimal envelope. 2 ) L e t us suppose t h a t , f o r some j,

i is 0 modulo 1. Then, i f a c t o r s through some j j

module P i n and, s i n c e T(P) i s conta ined i n - r a d P , we see t h a t I T is no t minimal. Conversely, i f

a l l t h e components i a r e d i f f e r e n t from O modulo y, j -

it i s easy t o conclude, from t h e c o r o l l a r y to Prop. 2 . 7 ,

t h a t t h e minimal 2-envelope - o f M i s a d i r e c t summand

of 1'.

Propos i t ion 3 . 2 . Given an indecomposable module M t h a t

i s n o t i n , let i be t h e minimal &-envelope of M

and l e t f be t h e cokerne l o f i. Then t h e e x a c t se -

quence de f ined by these two ma-ps i s a l s o exac t modulo y. -

i f O + M - - - . , I - J + O

PROOF. We know from [ 41 t h a t i f P is i n Y, - t h e n -

T(P) i s i n add 5 . - It fol lows t h a t M i s con ta ined i n

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

3166 MERKLEN

some module o f add I - and , hence , i i s monic, On t h e

o t h e r hand , we know t h a t f i s e p i c and we can show

t h a t it i s i n f a c t t h e c o k e r n e l of Le t us c o n s i -

d e r t h e f o l l o w i n g commutative d iagram where j i s t h e

y-envelope o f M and where X i s t h e pushou t o f j - and i ,

t h e o t h e r hand , s i n c e j f a c t o r s t h rough i , t h e up-

p e r row s p l i t s and t h e r e f o r e g = f o We show n e x t t h a t , -

d given N ---L I, i f 3 = 0, f a c t o r s t h rough i. We

can assume t h a t $ # 0 and t h a t N i s i n modVA. Let - -

N I1 be t h e I - enve lope o f N and l e t f l=cok i - 1'

Then f a c t o r s a s a and , i f a i s an I - r e p r e -

s e n t a t i v e o f a ' , t h e r e i s an & - r e p r e s e n t a t i v e B such

t h a t f a = @fig ( I n f a c t , (&)il = 0 i m p l i e s t h a t fa - f a c t o r s t h rough f l and w e g e t B u s i n g t h e p r e p a r a - - t i o n lemma.) Then, f a i l = 0 i m p l i e s t h a t a i l f a c t o r s

t h rough i: a = i F i n a l l y , 9 = s'il = - a i l = - +'i - -

a s we wanted t o prove . To comple te t h e p r o o f , it i s ne-

c e s s a r y t o show t h a t i i s monic, For t h i s we show

f i r s t an a u x i l i a r y f a c t ,

Let I ' be a module i n add 2 - which i s c o n t a i n e d

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3167

i n I and such t h a t t h e i n c l u s i o n j o f I ' i n t o I

i s z e r o modulo y o Then, we c l a i m , I ' i s c o n t a i n e d i n - M, I n o r d e r t o prove t h i s we show t h a t M # M + I ' i m -

p l i e s j # 0. Let us c o n s i d e r t h e f o l l o w i n g d iagram - w i t h obvious maps,

I t fo l lows t h a t T # 0 , because fi' = 0 i m p l i e s a - f a c t o r i z a t i o n o f t h e form L' = i b and , s i n c e i = i ' a , - i t ( l - 0 6 ) = 0 ; b u t , s i n c e M c anno t be a d i r e c t summand

o f M + I 1 , 1-06 i s a n automorphism o f M + I 1 , imply ing

t h e c o n t r a d i c t i o n i t = 0, Hence, l e t us s u b s t i t u t e t h e - t o p row o f t h e d iagram above by t h e row 0 + I ' I -

4 cok j , and a by t h e i n c l u s i o n CY o f I' i n t o

S i n c e i s e p i c and t h i s , t oge -

t h e r w i t h t h e f a c t t h a t # 0 , i m p l i e s j # 0. - Now we u s e t h i s a u x i l i a r y f a c t t o prove t h a t i i s -

manic. We remark f i r s t t h a t , g iven a d iagram M I 2 J

where i i s t h e &-envelope o f M , where J i s i n

add I - and where a i s an & - r e p r e s e n t a t i v e and M i s

i n modVA, t h e n ai = 0 i m p l i e s a i = 0, I n f a c t , i f - -

f = cok A , t h e g i v e n r e l a t i o n i m p l i e s a f a c t o r i z a t i o n - cu_ = af where, by t h e p r e p a r a t i o n lemma, a may be cho-

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

31 68 MERKLEW

s e n s o t h a t a = o f , hence ai = a f i = 0 . On t h e o t h e r

f hand, we r e c a l l t h a t i f I + N i s a A-homomorphism

where I is i n add 4 and where N h a s no d i r e c t sum-

mand i n add ;, - t h e n f = O o F o r p rov ing t h a t i is

m o n i c w e can assume t h a t M does not be long t o I. - Let

g us be given a map N - M w i t h g f 0 such t h a t i g = - - k

0, We can assume t h a t N i s i n modVA. C a l l i n g N +- K - - t h e &-envelope - of N , we have t h a t i g f a c t o r s i n t h e

form a k . Let I1 be t h e image of 2 and l e t I = I1

al 8 I?, a = ( ) be t h e co r re spond ing decomposi t ions o f a 2

I and a . Then, al i s a n $ - r e p r e s e n t a t i v e and t2 i 1 = 0, I f ( i 1 i s t h e co r re spond ing decomposition of

2 i, t h e r e l a t i o n = ilg = 0 i m p l i e s a lk = 0 and ,

hence, i l g = 0, On t h e o t h e r hand, by t h e a u x i l i a r y

f a c t , a 2 ( K ) i s a module i n add I_ - which i s con ta ined

i n M. There fo re , t h e i n c l u s i o n o f a 2 ( K ) i n t o M i s

0 modulo y. - But, from what we have a l r e a d y s e e n , g

f a c t o r s t h rough t h i s map and we g e t t h e d e s i r e d conclu-

s i o n t h a t g = 0 . - D

Coro l l a ry . L e t M N b e a morphism o f modVA and l e t - -

us assume t h a t ; i s hered- i ta ry , - i s a n epimorphism, i f and o n l y

b ) i s a n epimorphism i f and o n l y i f is a n - - epimorphism,

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3169

PROOF, P a r t a ) i s e s s e n t i a l l y ( 3 ) o f Prop , 2-1, which i s

t r u e i n o u r c a s e ( s e e remark f o l l o w i n g Def, I), The

proof t h a t 4 e p i c i m p l i e s e p i c i s t h e same a s i n - t h e proof o f Prop. 2 , 3 , F i n a l l y , t h e proof t h a t i f 4

i s a n epimorphism t h e n 4 i s a n epimorphism i s an ea- - sy consequence o f Prop , 3 , 2 and i s l e f t a s an e x e r c i s e ,

An i n t e r e s t i n g consequence o f t h i s C o r o l l a r y is

t h a t , i f t h e r e i s an e q u i v a l e n c e moduLo p r e p r o j e c t i v e s

up t o t h e l e v e l n between A and a h e r e d i t a r y a i g e -

b r a A , i f - i s h e r e d i t a r y t h e e q u i v a l e n c e f u n c t o r

c a r r i e s P n + l ( A ) o n t o En+ l A Hence, by i n d u c t i o n ,

t h e r e i s such an e q u i v a l e n c e up t o t h e l e v e l m , f o r

any m g r e a t e r t h a n n o 'This poses t h e i n t e r e s t i n g

q u e s t i o n of a n a l y s i n g p r o p e r t i e s o f t h e minimum o f t h e

numbers m w i t h t h i s p r o p e r t y ,

I n o r d e r t o s t a t e t h e f o l l o w i n g p r o p o s i t i o n , which

i s one of t h e main r e s u l t s of t h i s s e c t i o n , l e t us i n -

t r o d u c e some more t e rmino logy and n o t a t i o n , As it was

'po in ted o u t b e f o r e Prop , 2 , 4 , we can i d e n t i f y Comod(

add I/?) w i t h mod A$c , where A* i s a h e r e d i t a r y a l - - - g e b r a , and we saw a l s o , a t t h e beg inn ing o f t h i s sec-

t i o n , t h a t mod A:\ i s e q u i v a l e n t t o t h e subca t ego ry

of Comod(add E) d e f i n e d by morphisms f t h a t a r e 4- - - r e p r e s e n t a t i v e s and c o n s i d e r i n g a s morphisms o n l y t h o s e

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

31 70 MERKLEN

( a , B ) such t h a t cl and a r e 2 - r e p r e s e n t a t i v e s . -

The f u n c t o r H which g i v e s t h i s e q u i v a l e n c e i s t h e

r e s t r i c t i o n t o 2 of t h e q u o t i e n t f u n c t o r Comod(add I) -

Comod(add I/!), - - We w i l l d e n o t e by C/! t h e f u l l

subca t ego ry o f 2 d e f i n e d by epimorphisms f whose

k e r n e l i s t h e I - enve lope - o f a module i n modVA ( i n - -

o t h e r words, f co r r e sponds t o an e x a c t sequence o f i f

t h e form U + M + I + J + 0 where M h a s no indecom-

posab le summands i n V - and where i i s t h e minimal I- - - envelope o f M ) , Le t us i n t r o d u c e a l s o t h e c a t e g o r y y: t h e f u l l subca t ego ry o f mod A * c o r r e s p o n d i n g t o ob-

j e c t s - f o f Comod(add I/!) r e p r e s e n t e d by e x a c t s e - - - quences a s above where I i s i n I and i = 0, F i n a l - - l y , we w i l l d eno te by y9: t h e f u l l subca t ego ry of -

mod A:': d e f i n e d by modules which have a n epimorphism on-

t o an o b j e c t o f I t i s ea sy t o s e e t h a t !$: i s - 0

c l o s e d f o r submodules and , hence , t h a t mody,A5 i s -

e q u i v a l e n t t o mod A"/!*, - The f o l l o w i n g p r o p o s i t i o n i s

now a n easy consequence o f Prop , 3 , 2 ,

Proposition - -.- 3 , 3 , The f o l l o w i n g c a t e g o r i e s a r e equiva-

l e n t , when I i s h e r e d i t a r y , -

mod A 7'

mod A* V" -

PROOF, If H/y i s t h e r e s t r i c t i o n o f H t o C/V, - - - t h e n t h e image o f H / y i s t h e f u l l subca t ego ry o f -

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 31 7 1

mod A * g i v e n by t h e morphisms f which, w i t h o u r no-

t a t i o n s , a r e such t h a t i i s t h e minimal :-envelope -

of a module i n modVA, By P ropa 3 , 1 , t h i s happens i f - -

i and o n l y i f none o f t h e components o f M -+ I = @ I

j j (Ij indecomposable) i s 0 modulo y o On t h e o t h e r hand, - i f one o f t h e s e components, i were 0 modulo y , we

j -

would have an epimorphism

where, by d e f i n i t i o n , f . i s i n V k I0

Th i s shows t h a t -1

i f - f i s no t i n t h e image o f H / y , - t h e n f i s i n y;'2, -

Conver se ly , i f - f i s i n V " , - ( u s i n g o u r r e p r e s e n t a t i o n - by s h o r t e x a c t s equences ) we have a n epimorphism

w i t h f ' i n V*, I f it were t h a t a l l components i - = O j

o f i a r e d i f f e r e n t from O modulo P , - u s i n g Prop ,

3 , l and Prop , 3 , 2 , t h e f a c t t h a t a> z 0 would i m -

p l y t h a t (g,g) = 0, a c o n t r a d i c t i o n , Thus we have

t h a t H/Y - d e f i n e s a n e q u i v a l e n c e from C / y - t o r n ~ d ~ , f l ; ~ , - -

To comple te t h e p r o o f , l e t us c o n s i d e r t h e f o l l o w i n g

f u n c t o r from modVA t o C / y . Given an indecomposable - -

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

3172 MERKLEN

M i n mod,,ii, we a s s o c i a t e t o it t h e c o k e r n e l f o f - - $ f

t h e I -envelope - of M, Given a morphism M 7 M ' o f t h e

ca t ego ry modVA / y , we can b u i l t a commutative d i a - - - - gram w i t h e x a c t rows a s f o l l o w s o

Then, we choose & - r e p r e s e n t a t i v e s a , B , & of a ' , & ' , - r e s p e c t i v e l y such t h a t f 'a = p f , By d e f i n i t i o n , o u r

f u n c t o r a s s o c i a t e s w i t h ( a , @ ) . Le t u s remark t h a t

( a , B ) d e f m e s , by pas sage t o t h e k e r n e l s , a morphism

' such t h a t a i = i f $ Then, ( 2 - ' ) = 0 i m p l i e s

t h a t - $ = 2 and hence (%,&I d e f i n e s t h e same mor-

pF.ism a s (%' , D l ) I t i s easy t o s e e now t h a t t h i s func -

t o r i s f u l l and f a i t h f u l ,

According t o t h i s p r o p o s i t i o n , when I i s h e r e d i t a - - r y , a n e c e s s a r y and s u f f i c i e n t c o n d i t i o n f o r ii t o b e

e q u i v a l e n t , modulo p r e p r o j e c t i v e s up t o t h e Level n , t o

a h e r e d i t a r y a l g e b r a i s t h a t c o i n c i d e s w i t h

add pn(ii9:). The r e s t o f t h i s s e c t i o n i s e s s e n t i a l l y de- - vo ted t o g i v e some i n f o r m a t i o n abou t t h e r e l a t i o n be t -

ween t h e s e two c a t e g o r i e s , We w i l l d e n o t e by t h e .. f u l l subca t ego ry o f d e f i n e d by t h e indecomposable

modules P such t h a t P i s c o n t a i n e d i n some module

of add I - ( t h e s e a r e p r e c i s e l y t h e modules i n en ( i i ) -

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3173

whose 2-envelope - i s a monomorphism~, It should be re -

mbkeci t h a t P e q u a l s i f and on ly i f t h e r e a r e no - - i n j e c t i v e modules i n y o To each P i n w e asso- - -

f~ c i a t e t h e exact sequence 0 + P I --t J + 0, where i

i s t h e minimal I-envelope of P, -

P r o p o s i t i o n 3 , 4 . Given P in P , w i t h t h e n o t a t i o n s a- - bove (and assuming I - i s h e r e d i t a r y ) , if P is i n $,(A> t hen f p i s i n E m , < A a , , f o r some m t t h a t - - i s l e s s than o r equ g = y, m 1 = m. - -

PROOF, We proceed by i n d u c t i o n on m , i f m = 0, l e t

P be a n indecomposable p r o j e c t i v e which l i e s i n P - and

l e t (cx-,~) be an epimorphisrn onto f Using o u r r e - -P "

p r e s e n t a t i o n by exact sequences, we have a commutative

diagram wi th exact rows o f t h e fo l lowing form,

We observe t h a t i n a diagram of t h i s form, because i

i s a minimal 2-envelope, - i f i s a s p l i t epimorphism,

then (g ,g ) i s a s p l i t epimorphism. This i s a comple-

ment t o t h e remark preceding Prop, 3 , l t h a t fo l lows ea-

s y l y from t h e f a c t t h a t i f P t ' ~ ' i s such t h a t 4 + t =

1, then +' may be extended t o a morphism (a- ' ,gl)

from f p t o f' such t h a t ( ~ , ~ ) ( ~ ' , & ' > = 1. Hence,

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

3174 MERKLEN

s i n c e i s a s p l i t epimorphism, ((yl,g) i s s p l i t and

t h i s p roves t h a t f p i s p r o j e c t i v e a s a A"module, For

t h e i n d u c t i o n s t e p , t h e same argument i s used s t a r t i n g

from t h e same 'd iagram above where , now, it i s assumed

t h a t P i s i n E m ( A ) , t h a t (g,!) i s a n epimorphlsm

and P h a s no indecomposable summands i n pm-l ( A ) ,

The consequence i s t h a t ip l i e s i n e r n ( h * ) , - comple-

t i n g t h e proof o f t h e f i r s t p a r t o f o u r p r o p o s i t i o n , I n

t h e c a s e t h a t E = y , we can assume t h a t P' i s a - - cove r of P a n d , p roceed ing by i n d u c t i o n , t h a t it i s

i n add l?m-l(AA). Hence, i f i s o b t a i n e d s t a r -

t i n g from , w e g e t a non s p l i t epimorphism showing

t h a t ip i s n o t i n ( A ~ ) -

PROOF, We show f i r s t t h a t V" i s c o n t a i n e d i n - - add en() ,") o r , a s it i s enough, t h a t h a s t h i s - p r o p e r t y , Let f d e f i n e a n o b j e c t of Y: r e p r e s e n t e d - b y t h e e x a c t sequence 0 + M i I 5 J -+ 0, C l e a r l y ,

s i n c e A * i s h e r e d i t a r y , we c a n assume, w i t h o u t i o s s o f

g e n e r a l i t y , t h a t M i s maximal i n I such t h a t = 0'

Since i f a c t o r s t h r o u g h some P i n Y i n t h e form -

M 2 P I, it i s e a s y t o s e e t h a t I i s a component o f

i t t h e I - enve lope o f P, P + 1 . I n f a c t , c o n s i d e r i n g -

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3175

t h e f o l l o w i n g d iagram, where a i s such t h a t r = a i r ,

we s e e t h a t i s a n isomorphism o f Comod(add I/!), - -

A s a consequence , d e f i n e s a non-zero morphism from

f t o cok i t and t h i s , by Prop. 3 , 4 , i s i n add pn (Ae) , - -

I n o r d e r t o comple te t h e p r o o f , we show now t h a t indecom-

p o s a b l e A-modules o u t s i d e of y* do not be long t o

add pn(Ass) . Such a module may be r e p r e s e n t e d by an e x a c t

sequence o f t h e form 0 + M $ I 5 J -+ 0 w i t h M i nde -

composable and where i i s t h e minimal I - enve lope o f - M ( s e e Prop , 3 , 3 ) , Then, u s i n g a P (A)-cover o f M y - n

P + M y it i s p o s s i b l e t o d e f i n e a non s p l i t epimor-

phism from a module i n add E n ( A ) o n t o 2 , Hence, f - i s n o t i n add p n ( h 5 ) ,

Remark, I n t h e g e n e r a l c a s e , a n e c e s s a r y and s u f f i -

c i e n t c o n d i t i o n f o r y A - t o be composed o f p r e p r o j e c t i v e

modules i s t h a t a l l e x a c t sequences 0 + M 4 I 5 J + 0

w i t h M and I i n I, and M maximal under t h e s e - c o n d i t i o n s , r e p r e s e n t p r e p r o j e c t i v e A%-modules. I n

f a c t , w i t h t h e n o t a t i o n s o f t h e proof above , M = T T ( P )

i s i n T o - I t would b e i n t e r e s t i n g t o f i n d c o n d i t i o n s

f o r t h i s and , i n p a r t i c u l a r , t o c h a r a c t e r i z e when y7': -

i s of t h e form add pm(AA) f o r some m ,

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

P r o p o s i t i o n 306., Let 1 - be h e r e d i t a r y and l e t us assume

that component o f I -

If a l l indecomposable modules i n y* - a r e p r e p r o j e e t i v e ,

t h e n every I I n 3 is a q u o t i e n t o f a n i n j e c t i v e A-

module be long ing t o f o r o f a module of t h e form T ( P ) ,

where P i s a n indecomposable i n j e c t i v e A-module be-

l o n g i n g t o I n o t h e r words, t h e s o u r c e s o f 4 = i n j e c t i v e o r a r e o f t h e form T(P) , P indecomposable

i n j e c t i v e i n y. -

PROOF, Proceeding by c o n t r a d i c t i o n , l e t L be a n e l e -

ment o f I for which t h e s t a t e m e n t i s f a l s e and l e t u s - choose L o f maximal p o s s i b l e l e n g t h , I f I. i s t h e

i n j e c t i v e envelope o f L , t h e r e e x i s t s a module I',

belonging t o I, - such t h a t I ' l i e s i n between L and

I. and does no t c o i n c i d e w i t h L . L e t us choose I '

minimal under t h o s e c o n d i t i o n s and let us c o n s i d e r t h e

e x a c t sequence d e f i n e d by t h e i n c l u s i o n o f L i n t o I t ,

0 + L 4' I t 5' J q + 0 . By t h e h y p o t h e s i s , each r i n g

component o f A " i s of i n f i n i t e r e p r e s e n t a t i o n t y p e

and hence, s i n c e 0 + L 1 L + 0 -+ 0 r e p r e s e n t s an in -

j e c t i v e A:%-module, t h e r e is a n i n f i n i t y o f modules i n

modVgaA*, w i t h no indecomposable components i n common, - - having t h i s i n j e c t i v e a s image under a n epimorphism.

Those modules c a n be r e p r e s e n t e d by e x a c t sequences o f

t h e form 0 + M + I1 fL J1 -+ 0, s o t h a t t h e r e i s a n

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 3177

infinity of A-modules M, with no indecomposable sum-

mands in common, for which there are epimorphisms of

@ the form M 4 L, Let I' - be the subquiver of de-

fined by the modules which satisfy our statement (notice

that 1' is one of them), For each of the above mentio-

ned modules M, let i be the minimal if-envelope of - M , Using the epimorphism @ we obtain a commutative

diagram as follows,

By the choice of L, a (I) cannot be equal to L and,

therefore, has to be equal to I f , Then, for each M,

we have a non split epimorphism (k,g) onto f' , con-

tradiction to the fact that f' is preprojective in

mod A*,

Propositjon 3 , 7 , Let - be hereditary and let us as-

sume that there are no injective A-modules in y o Then - - I - = Im(&o)o r words the sources of 2 are in- - -

j ective A-modules - - ,

PROOF. We proceed in the same way as in the proof of

Prop. 3 , 6 up to the choice of I' , Let M L be the

Cn(A)-cover of L and let i be the injective envelope

of M. As in the proof of Prop, 3 , 6 , we can construct

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

3178 NERKLEN

now a non s p l i t automorphism o f f o n t o f' and t h i s

g i v e s a c o n t r a d i c t i o n t o P r o p , 3 , 5 ,

4 . P roof of t h e main t heo rem, An example.

Le t u s assume t h a t I i s h e r e d i t a r y and t h a t t h e r e

a r e no i n j e c t i v e A-modules i n y . Then P = and it - - -

f o l l o w s f rom P r o p , 3 , 3 and P r o p o 3 . 5 t h a t A i s equ iva -

l e n t , modulo p r e p r o j e c t i v e s up t o t h e l e v e l n , t o t h e

h e r e d i t a r y a l g e b r a A " , A l s o , by Prop . 2 . 1 , ( 3 ) , A s a -

t i s f i e s t h e p r o p e r t y s t a t e d i n t h e t heo rem ( c f , remark

f o l l o w i n g D e f , l ) , F i n a l l y , P r o p , 3 , 7 s a y s t h a t I = I m ( ~ o ) o -

Le t u s assume now t h a t A h a s t h e p r o p e r t y s t a t e d

i n t h e t heo rem and t h a t it i s e q u i v a l e n t , modulo p r e p r o -

j e c t i v e s up t o t h e l e v e l n , t o a h e r e d i t a r y a l g e b r a

w i t h no r i n g components of f i n i t e r e p r e s e n t a t i o n t y p e ,

Then Prop . 2 . 2 s a y s t h a t 2 - i s h e r e d i t a r y ,

Now w e go t o t h e proof t h a t s t a t e m e n t s 1) and 2 )

o f t h e main t heo rem a r e e q u i v a l e n t , L e t u s assume t h a t

5 - i s h e r e d i t a r y , Then 6 - = I m ( I o ) and we have Zb ) ,

On t h e o t h e r hand , 2a) i s a n e a s y consequence o f P r o p ,

3 .2 . Conve r se ly , l e t us assume t h a P 2a) and 2b) a r e

s a t i s f i e d , I f I i s i n I, - e i t h e r I i s i n j e c t i v e o r

t h e r e i s a n i r r e d u c i b l e map I -+ P w i t h P i n !j. - If

i t s image were n o t c o n t a i n e d i n r a d P, we would e a s i l y

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODULO PREPROJECTIVES 31 79

o b t a i n a c o n t r a d i c t i o n t o 2 a ) - Hence I i s a d i r e c t

summand o f r a d P and , by 2 b ) , it i s i n I m ( ~ o ) o I t

f o l l o w s from 2a) t h a t i r r e d u c i b l e maps between elem-

e n t s o f 2 a r e epimorphisms. Then, g i v e n I i n t h e - l e f t boundary of which i s n o t !-simple, it i s e a s y - - t o s e e t h a t t h e r e a r e i r r e d u c i b l e maps o f t h e form

I + J and J $ TrD I w i t h g a monomorphism. Hence,

I c o n t a i n s t h e l e f t boundary o f and , by what we - - have a l r e a d y e s t a b l i s h e d , 2 i s open t o t h e r i g h t i n - r A \ g n ( ~ ) and does n o t c o n t a i n o r i e n t e d c y c l e s . F i n a l -

l y , u s i n g 2a) once a g a i n , it f o l l o w s t h a t P rop , 2 . 1 ,

(1) i s s a t i s f i e d and I i s h e r e d i t a r y by t h e remark - f o l l o w i n g Def, 1,

EXAMPLE, Le t k b e a f i e l d and T = ki XI / (x3), We de-

n o t e by I t h e r a d i c a l o f T and by S i t s s i m p l e

module T / I , L e t u s c o n s i d e r t h e f o l l o w i n g f i n i t e d i -

mens iona l a l g e b r a o v e r k.

We s e e t h a t A c anno t b e e q u i v a l e n t t o a h e r e d i t a r y a l -

g e b r a modulo p r o j e c t i v e s b e c a u s e t h e non-simple indecom-

p o s a b l e p r o j e c t i v e , P L Y h a s a submodule i somorph ic t o

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

31 80 MEKKLEN

I which i s n e i t h e r p r o j e c t i v e n o r s imp le , Let us d e n o t e

S1, S 2 , P1, P2 t h e s imp le A-modules and t h e i r p r o j e c -

t i v e c o v e r s , r e s p e c t i v e l y , and l e t 11, I 2 b e t h e i n -

j e c t i v e enve lopes of Sly S 2 , r e s p e c t i v e l y o We c a n ea-

s i l y compute t h e f o l l o w i n g p o r t i o n of t h e Auslander-Rei-

t e n q u i v e r o f A .

Hence, f o r n = l , i s g e n e r a t e d by Ply P2, Q1 and Q 2 -

and I c o n s i s t s of I , I , I and S1, A s a conse- -

quence, A i s e q u i v a l e n t , modulo p r e p r o j e c t i v e s up t o

t h e l e v e l 1, t o A*, t h e p a t h a l g e b r a o f t h e q u i v e r

ACKNOWLEDGEMENT

P a r t o f t h i s work was done w h i l e t h e a u t h o r w a s v i s i -

t i n g t h e Mathematische I n s t i t u t d e r U n i v e r s i t a t , Zi ir ich

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13

INJECTIVE SUBQUIVERS AND EQUIVALENCE MODLnO PREPROJECTIVES 3181

w i t h p a r t i a l suppor t by t h e ~ u n d a g z o de Amparo Pesquisa

do Es tad0 de S ~ Q Paulo (FAPESP 1, Braz i l .

REFERENCES

111 - M. Auslander and I . Re i t en , Stable equivalence of

a r t i n a l g e b r a s , S p r i n ~ e r L. N. M. 353 (1972) 8-71.

[ 2 l - M, Auslander and I. Re i t en , Represen ta t ion theory

o f a r t i n a l g e b r a s , 111, Comrn. Algebra 3 (1975)

239-293.

1 3 1 - M. Auslander and S, 0. Smald, P r e p r o j e c t i v e mod-

u l e s o v e r a r t i n a l g e b r a s , J.Algebra 66 t19801 61-

122.

141 - H. Merklen, A r t i n a l g e b r a s which a r e e q u i v a l e n t t o

a h e r e d i t a r y a l g e b r a modulo p r e p r o j e c t i v e s , Sprin-

g e r L, M, M. 1 7 7 7 (19863 232-255.

Received: Juna 1989

Revised: January 1990

Dow

nloa

ded

by [

Uni

vers

itaet

s un

d L

ande

sbib

lioth

ek]

at 1

7:47

03

Sept

embe

r 20

13