heppell et al. 2000 elasticity analysis

Upload: icarus85

Post on 04-Feb-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    1/13

    Life Histories and Elasticity Patterns: Perturbation Analysis for Species with

    Minimal Demographic Data

    Selina S. Heppell; Hal Caswell; Larry B. Crowder

    Ecology, Vol. 81, No. 3. (Mar., 2000), pp. 654-665.

    Stable URL:

    http://links.jstor.org/sici?sici=0012-9658%28200003%2981%3A3%3C654%3ALHAEPP%3E2.0.CO%3B2-B

    Ecologyis currently published by Ecological Society of America.

    Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available athttp://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtainedprior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content inthe JSTOR archive only for your personal, non-commercial use.

    Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained athttp://www.jstor.org/journals/esa.html.

    Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printedpage of such transmission.

    The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academicjournals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community takeadvantage of advances in technology. For more information regarding JSTOR, please contact [email protected].

    http://www.jstor.orgTue Mar 11 22:47:55 2008

    http://links.jstor.org/sici?sici=0012-9658%28200003%2981%3A3%3C654%3ALHAEPP%3E2.0.CO%3B2-Bhttp://www.jstor.org/about/terms.htmlhttp://www.jstor.org/journals/esa.htmlhttp://www.jstor.org/journals/esa.htmlhttp://www.jstor.org/about/terms.htmlhttp://links.jstor.org/sici?sici=0012-9658%28200003%2981%3A3%3C654%3ALHAEPP%3E2.0.CO%3B2-B
  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    2/13

    Ecolog?, 81(3).

    2000,

    pp . 654-665

    2000 by the Ecological Society of America

    LIFE HISTORIES AND ELASTICITY PATTERNS: PERTURBATION

    ANALYSIS FOR SPECIES WITH MINIMAL DEMOGRAPHIC DATA

    S E L I N A . H E P P E L L , ' ,~

    AND

    L A R R Y . C R O W D E R ~A L C A S W E L L , ~

    'Dep artm ent of Zoology, Duke University Marine Lab, 1 35 Duke Marine Lab Ro ad,

    Beallfort, North Carolina 28516 USA

    ZBiology Departm ent, W oods Hole Oceanog raphic Institute, W ood s Hole, Massachusetts 02 543 U SA

    WNicholas School of the Environ men t, Duke Un iversity Marine Lab, 13 5 Dctke Marine Lab Roa d,

    Bea ~lfor t , or th Carolina 28516 USA

    Abstract

    Elast ici ty analysis is a useful tool in conservat ion biology. The relat ive

    impacts of proport ional c hanges in fert i l i ty , juveni le survival , an d adul t survival on as-

    ymptot ic popu lat ion gro wth h (wh ere ln(A) r the intrinsic rate of increase) are determine d

    by vi tal rates (survival , growth, and fert i l i ty), which also define the l i fe his tory character-

    i s t ics o f a species o r popula t ion . Be cause we d o no t have good demog raphic in format ion

    for most threatened populat ions, i t i s useful to categorize species according to their l i fe

    his tory characteris t ics and related elast ici ty pat terns. To do this , we compared the elast ici ty

    pat t erns genera ted by the l i fe t ab les o f 5 0 mam mal popula t ions . In age-c lass if i ed model s ,

    the su m of the fert i l i ty elast ici t ies and the sur viva l elast ici ty for each juveni le age-class

    are equal ; thus, age at maturi ty has a large impact on the contribut ion of juveni le survival

    to h . Mam mals tha t mature ear ly and have l arge l i tt e rs ( fas t mammals , such as rodent s

    and sma ller carnivores) also general ly have short l i fespans; these populat ions had relat ively

    high fert il i ty elast ici t ies and low er adul t surv ival elast ici t ies . Slow ma mm als (those that

    mature l a te) , hav ing few offspr ing and h igher adu l t surv ival ra tes (such as ungula tes and

    mar ine m ammals ) , had much lower fer t i li ty e las ti c i ti es and h igh adul t o r juveni le surv ival

    elast ici t ies . Although certain l i fe his tory characteris t ics are phylogenet ical ly constrained,

    we fou nd that elast ici ty pat terns within an order or family can be qu i te diverse, while s imilar

    elast ici ty pat terns can occur in dis tant ly related taxa.

    We extended our general izat ions by developing a s imple age-classified m ode l para m-

    eterized by juveni le survival , mean adul t survival , age at maturi ty, and mean ann ual fert i l ity .

    Th e elast ici ty pat terns of this model are determined by ag e at maturi ty, mean a dul t survival ,

    and h , and they compare favorab ly wi th the summed e las t i c i t i es o f fu l l Les l i e mat r i ces .

    Thus, elast ici ty pat terns can be predicted, even when complete l i fe table information is

    unavai lable. In addi t ion to classifying species for management purposes, the resul ts gen-

    erated by this s implified model show how elast ici ty pat terns may change i f the vi tal rate

    information is uncertain. Elast ici ty analysis can be a qual i tat ive guide for research and

    management , part icularly for poorly known species , and a useful f i rs t s tep in a larger

    model ing effort to determine populat ion viabi l i ty .

    Key wo rds: age-b ased nzodel; cons ervatio n; elu:i.ticity ana lysis; life lzistory; life table; murnm al,

    management; matrix model; population nlodel.

    I N T R O D U C T I O N

    venile surviva l , and adul t survival ; w hile, in plants , the

    Elast ici ty analysis

    can be

    used to

    categorize

    p o p u -

    categor ies a re o f ten growth , reproduct ion , and s tas is .

    lations

    accord ing

    to

    the response

    of

    populat ion growth

    Elast ici ty pat terns are s imilar for populat ions or species

    h to perturbat ions that affect vi tal rates . An elast ici ty

    that share l i fe his tory characteris t ics . Comparisons

    pattern

    is

    composed of

    the relat ive contribut ions

    of

    have been made across t axa for p lan t s (Si lver town e t

    mat r ix en t r i es to popula t ion growth that are g rouped

    al . 19 93, 19 96), birds (Ssether et al . 19 96, Saether and

    in b io log ically m eaningfu l ways for comparat ive anal -

    Bakke 2000) , and tu r t l es (Cunning ton and Brooks

    ys is . For exam ple , in an imal popula tions , we m ay w ant

    1996 , Heppell 1998) . These e las t ic i ty pat terns may pro-

    to compare the relat ive contribut ions of fert i l i ty , ju-

    vide general rules of thumb for categorizing popula-

    t ions according to their relat ive responses to pertur-

    Manuscript received 9 October 1998; revised 26 May 1999; bations

    part icular l i fe s tages. genera1 pat-

    accepted 29 Map 1999. For reprints of this Special Feature, see

    terns exis t for certain taxa, such as long-l ived fresh-

    footnote 1. p 605.

    water turt les , there is often considerable variat ion in

    ~ r e s e i t d d r es s : U . S . E n v i r o n m e n ta l P r o te c ti o n A g e n -

    the elast ici ty pat terns of closely-related species , and

    cy , Na ti on j il Hea l t h and E nvi ron men t a l E f f ec t s Rese a rch

    even populat ions within a species , due to habi tat char-

    L a b o r a t o r y ( N H E E R L ) , W e s t e r n

    E c o l o g y D i v i s i o n . 200

    S W 3 5 t h S t r e e t . C o r v a l l is . O r e e o n 9 7 3 3 3 U S A .

    acteris t ics or dis turbance regim es that affect vi tal rates

    E - m a i l : h e p p e l l @ m a i l . c o r . e p a . g o v

    (Si lvertown e t al . 1996, Oostermeijer et al . 199 6). Be-

    mailto:[email protected]:[email protected]
  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    3/13

    655

    arch

    2000

    ELASTICITY ANALYSIS IN POPULATION BIOLOGY

    cause of variance and uncertainty in vi tal rates , i t i s

    important to know w hat comb inat ions of vi tal rates and

    populat ion growth rates give rise to part icular elast ici ty

    pat terns.

    There is a pract ical need for a classificat ion of pop-

    ulat ions according to their l ikely response to pertur-

    bat ion . Conservat ion m anagement p lans cannot be as -

    sessed for mos t species , because demographic data to

    construct detai led age- o r s tage-specific mo dels are un-

    avai lable. Obtaining complete est imates of vi tal rates ,

    including their temporal variances and covariances, is

    t ime consuming for any species and may be imposs ib le

    for those tha t have long l i fe spans or tha t cover wide

    geographic ranges , such as mar ine t axa (Boyce 1992 ,

    Caughley 1994 , Heppel l and Crow der 1998) . Green and

    Hirons (1991) suggested that

  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    4/13

    656

    SELINA

    S.

    HEPPELL ET AL.

    Ecology, Vol.

    81,

    No. 3

    pendix A). Order and family classificat ions are l is ted

    accord ing to Wi l son and Reeder (1993) .

    In

    32 cases ,

    the l i fe tables included age-specific reproduct ive rates

    ( female newborns per female per year) , which gener-

    al ly varied according to proport ion of females who

    were mature in a given age class . In the remaining l i fe

    tables , survivorship and age at f i rs t breeding were the

    only age-specific data avai lable, so the mean fert i l i ty

    provided by the author(s) was prescribed to al l mature

    age classes . Life tables that were constructed on half-

    year intervals were rounded to the next integer year.

    We calculated several s tandard l i fe his tory measures

    for each l i fe table, including the net reproduct ive rate

    for the populat ion

    R

    mean genera t ion t ime T sur-

    vivorship to first maturity

    l

    and l i fe expectat ion at

    (expectat ionnd l i fe expectat ion at maturi tyirth

    of further l i fe; Pianka [1978]):

    changes in P, an d F across age classes to obtain the

    fol lowing quant i t ies of interest :

    0 1. Fert i li ty elast ici ty, which is the effect of a

    proport ional c han ge in reproduct ive ou tput for al l adul t

    age classes (the sum of elements in the top row of

    E .

    1

    2. Juveni le survival elast ici ty, which is the ef-

    fect of a proport ional chan ge in al l annual survival rates

    for age 1 to the year just prior to maturat ion (the su m

    of the subdiagonal elements of

    E

    f rom co lumn 1 to

    co lumn a 1, where a represents the fi rs t age class

    that includes breeding females).

    2 3. Adult survival elast ici ty, which is the effect

    of a proport ional change in al l annual survival rates

    for mature individuals ( the sum of the subdiagonal el -

    ements of

    E

    f rom a to k).

    To examine the relat ionship between mean fert i l i ty ,

    mean adul t surviv al , and elast ici ty pat terns, we cal-

    culated weighted means of age-specific adul t survival

    P,

    and age-specific fertility

    F,.

    We weighted the means

    according to the probabi l ity of survival to age i, so that

    (3)

    and

    where

    1

    is the survivorship of a cohort to age i

    m

    is

    the number of female offspring produced annual ly by

    a female aged

    i

    k i s the maximum age, and a is the

    age at f i rs t reproduct ion (the fi rs t age class with

    nz f

    0) .

    We then converted each l i fe table to a prebreeding,

    birth pulse project ion matrix (Lesl ie matrix [Lesl ie

    1945, Caswell 19891) in which the surv ival probabi l i ty

    P, and fertility

    F,

    of age class

    i

    are given by the fol-

    lowing:

    F,

    thus inc ludes surv ival to age 1. We calculated the

    elast ici ty matrices E from the eigenvec tors of each pro-

    ject ion matrix

    A

    (Casw ell et al . 198 4, de Kroon e t al .

    1986) :

    where

    v

    and w are the left and right eigenvectors of

    the project ion matrix

    A,

    and w,

    v )

    is the scalar product

    of the two vectors . We summed the elast ici t ies of

    h

    to

    We plot ted the summ ed elast ici t ies from each matrix

    on a three-way proport ional graph after Si lvertown et

    al . (1993 ), where ma ximum elast ici t ies for ferti l ity , ju-

    veni le survival , and adul t survival occur at the apexes

    of the t r iangle. We grouped the species broadly: ro-

    dents ( including rabbi ts) , carnivores (including

    bats) , marine (whales , seals , sea l ions, and ma nate e,

    al l rest ricted to at most one offspring per yea r), graz-

    ers (ungulates , zebra, hippopotam us, and elephant) ,

    and primates . We also plot ted the proport ional contri -

    but ions of fert i l i ty , juveni le survival , and adul t surviv al

    to populat ion growth, in order to show which species

    have s imilar elast ici ty pat terns and how the pat terns

    are affected by generat ion t ime. Although a correlat ion

    analysis of l i fe table resul ts and al l of the summed

    elast ici t ies was inappropriate, due to the proport ional

    nature of elast ici t ies (Shea et al . 1994), we calculated

    Spearman rank correlat ion coefficients for adul t sur-

    vival elast ici ty and l i fe table resul ts to show how the se

    resul ts are related. To compare relat ionships w ithin v s .

    between m ammal ian orders , we a l so ca lcu la ted the cor-

    relat ion coefficients for l i fe tables of orders Art iodac-

    tyla, Rodent ia, and Carnivora. Life table calculat ions

    and mat r ix analyses were performed us ing Mathcad

    sof tware (Maths of t , Cambridge , Massachuset t s, USA).

  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    5/13

    657

    arch 2 ELASTICITY ANALYSIS IN POPULATION BIOLOGY

    Spearman rank correlat ions were calculated according

    to Zar (1984) .

    We note the fol lowing useful prop erty of elast ici t ies .

    The fi rs t row of an age-classified project ion ma trix con-

    tains the fertilit ies

    F

    which adopt the value of zero

    for

    i 2 yr.

    small sam ple s ize (Table 1). Within the Art ioda ctyla,

    there was a s t rong negat ive correlat ion between age at

    matur i ty and adul t surv ival e las t i c ity , which was nei -

    ther a s ignificant relat ionship for the other orders nor

    the com bined data set . In addi t ion, the s igns of several

    of the correlat ions within this order are reversed, al -

    though the relat ionships are not s ignificant . This is in

    large par t due to the h ippopotamus l i fe t ab le , which i s

    qui te different from the other Art iodactyla (see Figs.

    1 and 2C) . There was no corre la t ion between adul t

    surv ival e las t ic i ty and net reproduct ive ra te R or A for

    any of the three ord ers , nor for the ent i re data set com -

    bined.

    Fig. 4 shows the e las t ic i ty pat terns genera ted by Eqs .

    13 and 15 for a complete range of adu l t surv ival ra tes ,

    and four different ages at maturi ty, in populat ions that

    are dec lining (A

    =

    0.8), stable (A

    =

    1.0), or increasing

    (A

    =

    1.2) . For the decl in ing popula t ions , the p lo t s a re

    truncated at P = 0.8 , as a popula t ion cannot decl ine

    faster than the surviv al rate of adul ts , even i f there is

    no recrui tment to the adul t populat ion P A). These

    resul ts elucidate the source of the pat terns from the l i fe

    table analysis . For example, fert i l i ty elast ici ty is neg-

    at ively correlated with generat ion t ime (Fig. 2). Long

    genera t ion t imes may be due to l a te age a t matur i ty ,

    h igh adul t surv ival (which increases the mean age of

    mothers and , hence , T,; Eq. 2 ) , o r bo th (see Appendix

    1). Fig. 4 show s that populat ions that mature later have

    low fert i l i ty elast ici t ies , and fert i l i ty elast ici ty decreas-

    es with increasing adul t survival (moving to the right

    of each plot) . As

    P

    app roac hes A, the elasticity of A to

    changes in adu l t surv ival increases rap id ly . Changes in

    juveni le survival or fert i l i ty have l i t t le or no effect on

    A in these cases, because these populat ions are in s ta-

    s i s, and adul t surv ival complete ly determines popu-

    la t ion g rowth . Thus , long- l ived species a t low popu-

    lat ion growth rates have h igh adul t surv ival elast ici t ies

    and low fer t i l i ty e las t i c it i es . Summ ed juveni le surv ival

    elast ici t ies are not predictable fro m generat ion t ime for

    popula t ions w i th age a t matur i ty > 2 yr (Fig . 2C) . For

    a given adul t survival rate, the relat ive contribut ion of

    juveni le surv ival increases as increases. P can n o t b e

    greater than uni ty, so adul t survival elast ici ty is re-

    duced, relat ive to juveni le survival elast ici ty, as ju-

    veni le s tage length increases. Increasing

    A

    fo r a g iven

    age at maturi ty also increases the relat ive contribut ion

    of juveni le survival , which has a greater contribut ion

    over a l l adu l t surv ival ra tes when A > 1 than when A

    < 1 Over these ranges of parameters , elast ici ty pat-

    terns are mo re sensi t ive to adul t surviv al and than

    to A.

    We com pared the elast ici t ies est imated fro m the s im-

    pl i f ied model (B) with those from the age-classified

    mammal pro jec t ion mat r i ces A). Parameters fo r B

    were est imated as fol lows: earl iest age class with a

    fert i l i ty est imate; E , the mean annual fert i l i ty rate (Eq.

    9); P , the mean adul t surv ival ra te (Eq . 8 ) , and A ob-

    tained from the l i fe table matrix. Fert i l i ty elast ici t ies

    f rom the two model s were h igh ly corre la ted r

    =

  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    8/13

  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    9/13

    March 2000 ELASTICITY ANALYSIS IN POPULATION BIOLOGY

    dult annual survival rate

    Fertility Juvenile dult

    FIG.4.

    Resul t s of Eqs . 13 and 15, showing the ef fects of age at matur i ty ( rows) ,

    h

    (columns) , and adul t annual survival

    rate (x-axes) , on summed survival e las t ic i t ies (y-axes) . Each area plot i s for a range of e las t ic i t ies wi th increas ing adul t

    annual survival fo r a given age at matur i ty and annual s urviv al ra te . In the fi rs t column , populat ions a re decl ining, in the

    middle colu mn popu lat ions are s table , and in the r ight column populat ions are increas ing. The maxim um a dul t survival ra te

    is

    0.8

    for models wi th

    0.8

    as

    h

    cann ot be less than adul t survival in models of type

    B

    (Eq. 11 .

    graphic elast ici t ies and the l i fe his tory pat terns ob-

    served in mammals . In long- l ived species tha t mature

    la te and have few offspring (Read and Harvey 's s low

    mammals (1989)) , fecundi ty and ear ly o f fspr ing sur-

    vival are less cri t ical than juveni le surv ival to maturi ty.

    Thus , increas ing juveni le surv ival (qual i ty ) , th rough

    large offspring s ize at birth, small l i t ter s ize, and pa-

    rental care, has a greater effect on fi tness than does

    increasing l i t ter s ize. In contrast , mam mals that mature

    ear ly and have shor ter l i fe spans ( fas t mam mals )

    have m uch high er fert i l i ty elast ici ties; individuals with

    these l i fe his tory t rai ts wil l benefi t more from an in-

    crea se in offspring numb er (quant i ty). s imilar ar-

    gument has been made for b i rds (Ss ther e t a l . 1996 ,

    Sre ther and Bak ke 2000) .

    Phylogenet i c cons t ra in t s have confounded some

    comparat ive s tudies of mammal l i fe his tory t rai ts , and

    numerous t echniques have been developed to remove

    these ef fec t s (Harvey and Page1 1991) . Resu l t s f rom

    various analyses have been confl ict ing, primari ly due

    to d i f feren t comparat ive methodolog ies . Ss ther and

    Bakk e (2000) found that phylogenet i c correc t ions d id

    not al ter their correlat ions between elast ici t ies and l i fe

    his tory t rai ts of birds . We fo und that elast ici ty pat terns

    for mammals were dependent on genera t ion t ime and

    i t s components , age a t matur i ty and adul t annual sur-

  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    10/13

  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    11/13

    663arch 2000 ELASTICITY ANALYSIS IN POPULATION BIOLOGY

    script ions for research or conservat ion e fforts Saether

    e t a l . 1996 , Si lver town e t a l . 1996 , Wisdom et a l . 2000) .

    In part icular, intervent ions targeted at one l i fe s tage

    may affect other vi tal rates in surpris ing ways. Unless

    those effects can be included in the calculat ions, chang-

    es in cannot be pred ic ted . Perhaps mos t impor tan tly ,

    elast ici t ies give us information about populat ion pro-

    ject ions, given that current condi t ions vi tal rates or

    prescribed c hanges in vi tal rates) are maintained, lead-

    ing to a s table age dis t r ibut ion. Although i t may be

    tempting to use the qu ant i tat ive differences in elast ici ty

    values to rank management op t ions , the assumpt ions

    and restrict ions of determinist ic elast ici ty analysis

    make qual i ta t ive compar i sons much more prudent de

    Kroon e t a l . 20 00) . E las t ic i ty o f of ten does an ex-

    cel lent job of qual i tat ively predict ing the elast ici t ies of

    other indices appropriate for models that include den-

    si ty dependence, environmental or demographic s to-

    chas t ic i ty , o r spat ia l s tructure Casw el l2000 , G ran t and

    Benton 2000 , N euber t and C aswel l 2000) . In the bes t

    of al l worlds, elast ici ty analysis would be a f i rs t s tep

    in a larger framework of populat ion viabi l i ty analysis

    that included s tochast ic s imulat ions, mult iple models ,

    and detai led sensi t ivi ty analysis FerriCre et al . 1996,

    Bei ss inger and Wes tphal 1998) .

    We would l ike to acknowledge R. Powel l , J im Gi l l iam, A.

    Read, and W. Morr i s , who provided ins ight ful comments on

    this work. C. Pf i s ter , H. de Kroon, N. Schumaker , and two

    anonymous reviewers of fered many useful suggest ions for

    the manuscr ipt . This work was par t of a disser ta t ion S . Hep-

    pel l ) a t Duke Univers i ty and was suppor ted by a grant f rom

    the Nat ional Mar ine F isher ies Service and the Univers i ty of

    Nor th Caro l i na S ea Gran t R IM E R-21 and NOAAINM F S

    NA90A A-D-S 684 7) , a s we l l a s a pos t doc t ora l appo i n t ment

    f rom the U.S . Envi ronmental Protect ion Agency, Nat ional

    Heal th and Envi ronmental Effects Research Laboratory. H.

    Caswel l acknow ledges suppor t f rom Nat ional Science Foun-

    da t i on Gran t DE B-95827 40 , W oods Hol e Oceanograph ic In -

    s t i tute Cont r ibut ion 993 1.

    Ai tchison, J . 1986. The s ta t i s t ical analys is of composi t ional

    da t a . Chapman and H a l l , New York , New York , US A.

    Beiss inger , S . R. , and M . I . Westphal . 1998. On the use of

    demograph ic mod els of populat ion viabi l ity in endangered

    species management . Journal of Wildl i fe Manage ment 62 :

    821-841.

    Billheimer, D., P. Guttorp, and W.

    E

    Fagan. 1998. S tat i s t ical

    analys is and interpretat ion of discrete composi t ional d ata .

    Nat ional Center for S tat i s t ics and the Envi ronment

    NRCS E ) T echni cal Repor t NRCS E -T RS No. 11 .

    Boyce, M . S . 1992. Po pulat ion viabi li ty analys is . Annual

    Review of Ecology and Systemat ics 23:481-506.

    Braul t , S . , and H. Caswel l . 1993. Pod-specif ic demog raphy

    of ki l ler whales Orcinus orcn) . Ecology 74:1444-1454 .

    Car ro ll , C . , C . Augspurge r , A . D obson , J . F r ank l i n , G . Or i ans ,

    W. Reid, R. Tracy, D. Wilcove, and J . Wi lson. 1996.

    S t rengthening the use of science in achieving the goals of

    the endangered species act : an assessment by the Ecological

    Society of America. Ecological A ppl icat ions 6 : 1-1 1

    Caswel l , H. 1989. Matr ix populat ion models : const ruct ion,

    analys is and interpretat ion, f i r s t edi t ion. S inauer , Sunder-

    land, Massachuset t s , USA.

    Caswel l , H. 1996. Second der ivat ives of populat ion growth

    rate: calculat ion and appl icat ion. Ecology 77:870-879.

    Caswel l , H. 2000. Matr ix populat ion models : const ruct ion,

    analys is and interpretat ion, second edi t ion. S inauer , Sun-

    der land, Massachuset t s , USA, in press .

    Caswel l , H. R. J . Na i man , and R . M or i n . 1984 . E va l ua ti ng

    the consequences of reproduct ion in complex salmon id l ife

    cycles . Aquacul ture

    :

    123-134.

    Caughl ey , G . 1966 . M or t a li t y pa t t e rns i n m amm al s . E co l ogy

    47:906-918.

    Caughley, G . 1994. Direct ions in conservat ion biology. Jour-

    nal of Animal Ecology 63:215-244.

    Charnov, E . L . 1993 . Li fe his tory invar iants : some explo-

    rat ions of symme try in evolut ionary ecology. Oxford Uni-

    vers i ty Press , Oxford, UK.

    Cunni ng t on , D . C . , and R .

    J .

    Brooks. 1996. Bet -hedging the-

    ory and eigenelas t ic i ty: a compar ison of the l i fe his tor ies

    of loggerhead sea tur t les Carerra carer ra) and snapping

    tur t les Chelydra serpent in a) . Canadian Journal of Zoology

    74:291-296.

    de Kroon, H. , A. P lai s ier , J . van Groen endael , and H . Casw el l .

    1986. Elas t ic i ty: the re la t ive cont r ibut ion of demographic

    parameters to populat ion growth rate . Ecology 67:1427-

    1431.

    de Kroon , H . , J . van Groenendael , and J . EhrlCn. 2000. Elas-

    t ic i t ies : a review of methods and model l imi tat ions . Ecol -

    ogy 81 : 607-618 .

    FerriCre, R., F. Sarrazin, S . Leg end re, and J. P. Baro n. 1996 .

    Matr ix popu lat ion mode ls appl ied to viabi li ty analys is and

    conservat ion: theo ry and pract ice us ing the ULM sof tware.

    Ac t a Oeco l og ica 17 : 629-65 6 .

    Ga i l la rd , J . M . , D . P on t ie r , D . A l l a i ne , J . D . L ebre ton , J .

    Trouvi l l iez , and J . Clober t . 1989. An analys is of demo-

    graphic tact ics in bi rds and mammals . Oikos 56:59-76.

    Goodal l , J . , edi tor . 1986. T he chimpanzees of Gombe : pat -

    terns of behavior . Belknap Press of Harvard Univers i ty

    Press , Cambridge, Massachuset t s , USA.

    Gran t , A, , and T. G . Benton. 2000. Elas t ic i ty analys is for

    densi ty-dependent populat ions in s tochast ic envi ronmen ts .

    Ecology 81:680-693.

    Green , R . E . , and G . J . M . Hi rons . 1991 . T he r e l evance o f

    populat ion s tudies to the conservat ion of threatened bi rds .

    P ages 594-633 in C . M . P e r r ins , J . D . L ebre ton , and G . J.

    M . Hirons , edi tors . Bi rd pop ulat ion s tudies : re levance to

    conservat ion and management . Oxford Univers i ty Press ,

    New York, New York, USA.

    Groom, M . J . , and M . A . P ascua l . 1998 . T he ana l ys i s o f

    populat ion pers i s tence: an out look on the pract ice of via-

    bil i ty analy sis. Pages 4-27 in P. L. Fiedler and P. M . Kar-

    eiva, edi tors . Conservat ion biology: for the coming de cade,

    second edi t ion. Chapman and Hal l , New York, New York,

    U S A .

    Har r is , S . , C . C l a rk and M . L . S haf f e r. 1989 . E x t i nc t ion p rob-

    abi l i t ies for i solated populat ions . Pages 65-90 in U . S . Seal ,

    M . A . Bogan and S . H . Ander son , ed i t o rs . Conse rva ti on

    biology of the black-footed fer ret . Yale Univers i ty Press ,

    New Haven .

    Harvey , P. H . , and M . D . P age l . 1991 . T he compara t i ve me t h-

    od in evolut ionary biology. Oxford Univers i ty Press , Ox-

    ford , UK.

    Harvey, P. H. , and R . M . Zammuto. 1985. Pat terns of mor-

    tal i ty and age at f irst reproduction in natural populations

    of m ammal s . Na t ure 315 : 319-320 .

    Heppel l , S . S . 199 8. A n appl icat ion of l i fe his tory theory

    and populat ion m odel analys is to tur t le con servat io n. Cop -

    e i a 1998: 367-375 .

    Heppe l l, S . S . , and L . B . C rowder . 1998 . P rognos ti c eva l u -

    at ion of enhancement ef for t s us ing populat ion models and

    l i fe his tory an alys is . Bul le t in of Mar ine Scie nce 62:495-

    507 .

  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    12/13

    664 SELINA S HEPPELL ET AL. Ecology, Vol . 81, No. 3

    Internat ional Union for the Conservat ion of Nature and Nat -

    ural Resources ( IUCN). 1997. Applying the IUCN Red

    Lis t Cr i ter ia to mar ine f i sh: a summ ary of ini t ia l guidel ines .

    Species 28, June 1997, onl ine at (ht tp:www.iucn.org/

    themeslssc/species/species28/newslnewsd/htm .

    Internat ional Union for the Conservat ion of Nature and Nat -

    u ral Resources ( IUC N) S pec i es S urv i va l Commi ss i on .

    1996. 1996 IUC N Red Lis t of threatened animals . IUC N,

    Gland, Swi tzer land.

    Lesl ie , P . H. 1945. On the use of mat r ices in cer ta in popu-

    lat ion mathemat ics . Biometr ika 33:183-212.

    L ev i n , L . A . , H . Caswel l , T. Br i dges , C . D i Bacco , D . Cabre r a ,

    and

    G .

    Plaia . 1996. Demographic responses of es tuar ine

    polychaetes to pol lutants : l i fe table response exper iments .

    Ecological Appl icat ions 6: 1295-1 3 13.

    M a c e , G . M , a n d E .

    J .

    Hudson . 1999 . A t t i tudes t oward sus -

    ta inabi l i ty and ext inct ion. Conservat ion Biology 13:242-

    246 .

    Millar, J . S . , and R . M . Z am mut o . 1983 . L i f e h i st o r ie s o f

    mam mals : an analys is of li fe tables . Ecology 64:631-635.

    Neuber t , M . and H . Caswel l . 2000 . Demography and d i s -

    persal : invasion speeds of s tage-s t ructured populat ions .

    E co l ogy 81 : i n p r es s .

    Oostermei jer , J .

    G.

    B. , M . L . B rugman. E . R . de Boer . and

    H. C. M. den Ni js . 1996 . Tem poral and spat ia l var ia tion

    in the demography of Gentiana pneuntonantlze, a rare pe-

    rennial herb. Journal of Ecology 84:153-166.

    P ianka. E . R. 1978. Evolut ionary ecology. Harper and Row.

    New York. New York, USA.

    Promislow, D . E . L . : and P. H. Harve y. 199 0. Living fas t and

    dying young: a comparat ive analys is of l i fe-his tory var i -

    a t i on among mammal s . Journa l o f Z ool ogy (L ondon) 220 :

    417-437.

    Purvis : A, , and P. H. Harvey. 1995. Mam mal l i fe-his tory

    evolut ion: a comparat ive tes t of Charnov's model . Journal

    of Zoology (London) 237:259-283.

    Read . A . F :

    and P. H. Harvey. 1989. L i fe his tory di f ferences

    among the euther ian radiat ions . Journal of Zoology (Lon-

    don) 219:329-353.

    Sat her : B. E . . and Bak ke. 2000. Avian l i fe his tory var i -

    a t ion and cont r ibut ion of demographic t ra i t s to the popu-

    lat ion growth rate . Ecology 81:642-653.

    S a t h e r , B . E . ,

    T.

    H. R i ngsby , and E . Roskaf t . 1996 . L i f e

    his tory var ia t ion, populat ion processes and pr ior i t ies in

    species conservat ion: towards a reunion of research para-

    d i gms . O i kos 77 : 217-226 .

    Sava ge, L . 19 98. Inno vat ive nat ional graduate s tudent sem -

    inar analyzes Habi ta t Conservat ion P lans . Integrat ive Bi -

    o l ogy 1 : 45-48 .

    S hea , K . , M . Rees , and S . N . W ood. 1994 . T rade -of f s , e l a s -

    t ic i t ies and the comparat ive method. Journal of Ecology

    82:951-957.

    S i l ve r t own, J . , M . F ranco , and E . M enges . 1996 . I n t e rp re -

    ta t ion of e las t ic i ty mat r ices as an aid to the management

    of plant populat ions for conse rvat ion . Conservat ion B iol -

    ogy 10 : 591-597 .

    S i lver town, J . , M . Franco, I . P isanty, and A. Mendoze . 1993.

    Comp arat ive plant demo graph y: re la t ive impor tance of l i fe-

    cycle components to the f ini te ra te of increase in woody

    and herbaceous perennials . Journal of Ecology 81:465-

    4 7 6 .

    S tearn s , S . C. 198 3. Th e influence of s ize and phylogeny on

    pat terns of covar ia t ion among l i fe his tory t ra i t s in mam-

    mal s . O i kos 41 : 173-187 .

    van Groenen dael . J . , H. de Kroon, S . Kal i sz , and S . Tul ja-

    purkar . 1994. Loop analys is : evaluat ing l i fe his tory path-

    ways in populat ion project ion mat r ices . Ecology 75:2410-

    2415 .

    Western, D. 197 9. S ize, li fe his tory and ecology in mamm als .

    Afr ican Journal of Ecology 17:185-204.

    W i l son , D . E . . and D . M . Reeder , ed i t o r s . 1993 . M amm al

    species of the wor ld: a taxonom ic and g eographic reference.

    second edi t ion. Sm i thsonian Ins t i tut ion Press , Washington,

    D . C . , U S A .

    W i sdom, M . J . . L. S . M i l ls and D . E Doak . 2000 . L i f e st age

    simulat ion analys is : es t imat ing vi ta l - ra te ef fects on popu-

    lat ion growth for conservat ion. Ecology 81:628-641.

    Wooton. J . T. 1987. Th e ef fects of body m ass , phylogeny.

    habi ta t and t rophic level on mammal ian age at f i r s t repro-

    duct ion. Evolut ion 41:732-749.

    Zar , J . H. 1984. Biostat i s t ical analys is . second edi t ion. Pren-

    t ice-Hal l , Engelwood Cl i f fs , New Jersey. USA.

    PPENDIX

    Detai led l i fe tables , including sou rces: parameters , and resul t s for 50 mamm al pop ulat ions , may b e found in ESA's Elect ronic

    Data A rchive: Ecological Archives E08 1-00 6.

  • 7/21/2019 Heppell Et Al. 2000 Elasticity Analysis

    13/13

    March 2000

    ELASTICITY ANALYSIS IN POPULATION BIOLOGY

    PPENDIX B

    In this Append ix we der ive the express ions (E q.13 ) and

    With this scal ing, the scalar product i s

    (Eq.1 5) for the e las tic i t ies of to changes in the s impl if ied

    model given by the mat r ix

    B

    in (E q.11 ) . Th e elas t ic i ty of

    to any element i s given by

    ( w , v ) = a - 1

    -

    X

    (B.4)

    x P

    h~~

    log

    x

    b

    v,tt:

    ab

    log h , , X

    (w,

    v)

    Using these results, we find that the elast ici ty of X t o changes

    in F is

    where w and v are the r ight and lef t e igenvectors and (w, v )

    i s their scalar product (d e Kroon et a l . 1986) . These can be

    wri t ten di rect ly f rom the l i fe cycle graph corresponding to

    the mat r ix, us ing the character i s t ic equat ion to s impl i fy som e

    of the express ions . The resul t s are:

    1

    PIA - I

    P l P 2 A - 2

    Le t e,

    :=

    e, , , , , be the su mm ed juveni le survival e las t ic i ty.

    (B.2)

    Because the e las t ic i t ies of a l l the juveni le surviv al probabi l -

    i t ies are equal ,

    A1S -l ] and we know that

    Because e i

    e,,,

    this implies that

    (B.3)

    e j

    a e ~ (B.lO)

    as given by (Eq.

    13 .

    Thus, the complete e las t ic i ty pat tern

    determined by

    a , A,

    and P

    of the matrix B is