helioseismology

31
Helioseismology Jørgen Christensen- Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet Dansk AsteroSeismologisk

Upload: solana

Post on 02-Feb-2016

34 views

Category:

Documents


0 download

DESCRIPTION

Helioseismology. J ørgen Christensen-Dalsgaard Institut for Fysik og Astronomi, Aarhus Universitet Dansk AsteroSeismologisk Center. The Sun. Five-min oscillations: A local phenomenon in the solar atmosphere?. Musman & Rust (1970; Solar Phys. 13, 261). Models: Ulrich (1970): - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Helioseismology

Helioseismology

Jørgen Christensen-Dalsgaard

Institut for Fysik og Astronomi, Aarhus Universitet

Dansk AsteroSeismologisk Center

Page 2: Helioseismology

The Sun

Page 3: Helioseismology

Five-min oscillations: A local phenomenon in the solar atmosphere?

Musman & Rust

(1970; Solar Phys. 13, 261)

Page 4: Helioseismology

Oscillation modes of the Sun

Deubner (1975; Astron. Astrophys. 44, 371)

Models:

•Ulrich (1970):

•Wolff (1972):

•Ando & Osaki (1975):

Page 5: Helioseismology

The start of global helioseismology

Grec et al. (1980; Nature 288, 541)

Page 6: Helioseismology

Crucial advantages• Access to modes of degree up to 1000+

• Observations over very extended period (more than 10 years nearly continuously)

• Well-determined global parameters

Page 7: Helioseismology

Frequencies of solar model

= / 2

Observed solar modes

Page 8: Helioseismology

Rays

Page 9: Helioseismology

Inversion with rays

Page 10: Helioseismology

Observing a Doppler image

Page 11: Helioseismology

VIRGO on SOHO (whole-disk):

Data on solar oscillationsObservations:

MDI on SOHO

Page 12: Helioseismology

Observed frequencies

m-averaged frequencies from MDI instrument on SOHO

1000 error bars

Page 13: Helioseismology

Frequency differences, Sun - model

Page 14: Helioseismology

No settling

The solar internal sound speed

No settling

Including settling

Sun - model

Page 15: Helioseismology

The solar internal sound speedSun - model

Basu et al. (1997; MNRAS 292, 243)

Page 16: Helioseismology

Changes in composition

The evolution of stars is controlled by the changes in their interior composition:

• Nuclear reactions

• Convective mixing

• Molecular diffusion and settling

• Circulation and other mixing processes outside convection zones

Nuclear burning

Settling

Page 17: Helioseismology

No relativistic effectsIncluding relativistic effects

Relativistic electrons in the Sun

Elliot & Kosovichev (1998; ApJ 500, L199)

Page 18: Helioseismology

Neon discovery solves mystery of sun's interiorNASA's Chandra X-ray Observatory survey of nearby sun-like stars suggests there is nearly three times more neon in the sun and local universe than previously believed. If true, this would solve a critical problem with understanding how the sun works.       FULL STORY

                                                                                            

 

             

  

(Spaceflight Now – 14 Aug 2005)

Page 19: Helioseismology

Improvements:

•Non-LTE analysis

•3D atmosphere models

Consistent abundance determinations for a variety of indicators

Revision of solar surface abundances

Asplund et al. (2004; A&A 417, 751. 2005; astro-ph/0410214 v2):Pijpers, Houdek et al.

Model S

Z = 0.015

Page 20: Helioseismology

How do we correct the models?

Basu & Antia (2004; ApJ 606 L85): an opacity increase to compensate for lower Z is required

Seaton & Badnell (2004; MNRAS 354, 457): recent Opacity Project results do indicate some increase over the OPAL values, but hardly enough

Antia & Basu (2005; ApJ 620, L129): could the neon abundance be wrong?

Page 21: Helioseismology

The neon story

Ne x 2.5

Bahcall et al. (2005; ApJ, in the press [astro-ph/0502563])Drake & Testa (2005; Nature 436, 525): X-ray observations of nearby stars indicate such a neon increase

Page 22: Helioseismology

Spherical harmonics

Page 23: Helioseismology

Rotational splitting

Page 24: Helioseismology

Simple rotational splitting

Page 25: Helioseismology

Kernels for rotational splitting

Page 26: Helioseismology

Inferred solar internal rotation

Base of convection

zone

TachoclineNear solid-

body rotation of

interior

Schou et al. (1998; ApJ 505, 390)

Page 27: Helioseismology

Rotation of the solar interior

BiSON and LOWL data; Chaplin et al. (1999; MNRAS 308, 405)

Page 28: Helioseismology

Tachocline oscillations

See Howe et al. (2000; Science 287, 2456)

● GONG-RLS

▲MDI-RLS

∆ MDI-OLA

Page 29: Helioseismology

Zonal flowsRotation rate - average value at solar minimum

Vorontsov et al. (2002; Science 296, 101)

Page 30: Helioseismology

Radial development of zonal flows

Howe et al., (ApJ, in the press)

Page 31: Helioseismology

Observed and modelled dynamics

6 1/2 year MDI inversion, enforcing 11-yr periodicity

Vorontsov et al. (2002; Science 296, 101)

Non-linear mean-field solar dynamo models

Covas, Tavakol and Moss (2001; Astron. Astrophys 371, 718)