helicopter blade twist optimization in forward flight · helicopter blade twist optimization in...

97
Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace Engineering Supervisor(s): Prof. Filipe Szolnoky Ramos Pinto Cunha Examination Committee Chairperson: Prof. Fernando José Parracho Lau Supervisor: Prof. Filipe Szolnoky Ramos Pinto Cunha Member of the Committee: Prof. João Manuel Gonçalves de Sousa Oliveira November 2016

Upload: others

Post on 15-Jul-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Helicopter Blade Twist Optimization in Forward Flight

Marco Lonoce

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisor(s): Prof. Filipe Szolnoky Ramos Pinto Cunha

Examination Committee

Chairperson: Prof. Fernando José Parracho LauSupervisor: Prof. Filipe Szolnoky Ramos Pinto Cunha

Member of the Committee: Prof. João Manuel Gonçalves de Sousa Oliveira

November 2016

Page 2: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

ii

Page 3: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

To my father...

iii

Page 4: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

iv

Page 5: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Acknowledgments

I want to start by thanking Professor Filipe Cunha for the theme of thesis and for his help during the

work. Every meeting was really important to understand the correct direction to the end of this thesis.

My university in Italy, Politecnico di Torino, that gives me the opportunity of a Double Degree Project

with the Instituto Superior Tecnico in Lisbon, Portugal. It was fundamental the heavy work between the

coordinator of the two universities to create this new project.

The important help that the government of Italy and Piedmont region gave me as scholarship and student

residence every year.

My family and specially my father that couldn’t see the end of my studies. They believed me in every

choice that I took.

Finally, all of people that were not mentioned but gave a contribution to this thesis.

v

Page 6: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

vi

Page 7: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Resumo

O incremento da eficiencia do helicoptero e um aspecto fundamental a ter em consideracao no

desenvolvimento inicial do helicoptero. Este ponto pode ser conseguido de varias maneiras. Em relacao

a potencia consumida ha certos aspectos ligados a aerodinamica do rotor que precisam de ser tomados

em conta, em especial a potencia induzida aquela que e necessaria fornecer ao rotor para este gerar

a propulsao. E possıvel minimizar esta potencia uniformizando a velocidade induzida ao longo da pa

para todas as posicoes azimutais. Nesta tese e explorada a ideia de modificar a torcao na pa para cada

condicao de voo de maneira a minimizar a potencia induzida. Sao considerados as seguintes hipoteses:

uma seccao com torcao linear, uma seccao com torcao quadratica, duas seccoes com torcoes lineares,

e tres seccoes com torcoes lineares. Por outro lado esta tese tem tambem como objectivo determinar

quais os conceitos apresentam uma boa oportunidade para a aplicacao de uma controlo activo da

torcao da pa. As simulacoes foram realizadas tendo como base o Sikorsky UH-60A Black Hawk, para o

qual todos os parametros do rotor estao disponıveis.

Palavras-chave: Controlo activo da torcao, reducao da potencia induzida, estruturas adap-

tativas, optimizacao do rotor principal, actuadores piezoeletricos, materiais compositos em fibras.

vii

Page 8: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

viii

Page 9: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Abstract

Improving the efficiency of the helicopter is one of the main objective in helicopter design. Several

ways are already taken in account to achieve this purpose. In relation to the power consumption there are

some aspects connected with the aerodynamic of the main rotor, specially the induced power, the power

used to generate the thrust needed to fly. It’s possible to minimize this power trying to uniform the inflow

along the blade for all the azimutal positions. In this thesis the idea is to modify the blade twist in each

flight conditions to obtain the minimum induced power. The twist distribution concepts considered are

one segment linear twist, quadratic twist, two linear twist segments with different divisions of the blade in

inner and outer parts and a three linear twist segments with different airfoils. This thesis has the purpose

to understand which concepts represent good opportunity for active twist control implementations. With

the results of the simulations a simple active twist control concept is developed. An objective is to

understand which piezoelectric actuators work better for this purpose, where they have to be placed and

how they have to be actuated. All the simulations are done on the Sikorsky UH-60A Black Hawk where

all the main rotor parameters are available.

Keywords: Active Twist Control, Induced power reduction, morphing, main rotor optimization,

piezoelectric actuators, macro fibers composite materials.

ix

Page 10: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

x

Page 11: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Resumo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

Nomenclature xvii

Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Active Blade Twist Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5

2.1 Momentum Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Blade Element Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Xfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Blade Element Momentum Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Inflow Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Flapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Fmincon and Global Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Implementation 17

3.1 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Verification and Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Effect of Blade twist on Main Rotor Power . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results 31

4.1 Optimized Blade Twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 One section with linear twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.2 Quadratic Twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

xi

Page 12: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

4.1.3 Two sections with linear twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.4 Two sections with linear twist and different airfoils . . . . . . . . . . . . . . . . . . . 36

4.1.5 Three linear segments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Optimum Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Concept 41

5.1 Smart Blades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 Piezoelectric Actuation Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Conclusions 51

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Bibliography 52

A Appendix: Matlab Code 59

A.1 Main Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.2 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.3 Optimization function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.4 Flapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xii

Page 13: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

List of Tables

3.1 UH-60A Tail Rotor Characteristics [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 UH-60A Data [19] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Reduction of power between Fixed linear twist and simulations . . . . . . . . . . . . . . . 39

5.1 Actuators Properties [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Actuators and Concepts Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xiii

Page 14: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

xiv

Page 15: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

List of Figures

2.1 Flow Model Momentum Theory Hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Blade Element Theory Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Forces around NACA 23015 - Xfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 CP distribution NACA 23015 - Xfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Local Momentum Analysis BEM Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6 Velocity distribution Hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Inflow and Thrust Hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8 Velocity distribution Forward Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.9 Flapping Hinge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Sikosrky SC 1095 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Sikosrky SC 1094 R8 Airfoil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Error Analysis lift curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Error Analysis drag curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Interpolation lift curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Interpolation drag curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.7 Blade Elements for Hovering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.8 Blade Elements for Forward Flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.9 Number of Azimuthal Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.10 Flight Test Data Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.11 Power consumption with different twists - Hovering . . . . . . . . . . . . . . . . . . . . . . 27

3.12 Power consumption with different twists - Low Speed Forward Flight . . . . . . . . . . . . 28

3.13 Power consumption with different twists - Medium Speed Forward Flight . . . . . . . . . . 28

3.14 Power consumption with different twists - High Speed Forward Flight . . . . . . . . . . . . 29

3.15 Comparison among different twist behaviours . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Linear Twist - Only one section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Parameter a - Quadratic twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Root Tip difference - Quadratic twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Two sections with linear twist 40 - 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Two sections with linear twist 50 - 50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

xv

Page 16: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

4.6 Two sections with linear twist 60 - 40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 Two sections with linear twist 70 - 30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Two sections, two airfoils and linear twist 50 - 50 . . . . . . . . . . . . . . . . . . . . . . . 36

4.9 Blade planform UH-60A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.10 Three sections with linear twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.11 Sikorsky UH-60A Twist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.12 Comparison Flight Test Data and Three linear segments . . . . . . . . . . . . . . . . . . . 39

4.13 Twist Behaviours Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1 Active Twist Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Piezoelectric Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Continuous Electrode vs Interdigitaded Electrode . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Continuous Electrode vs Interdigitaded Electrode Electric Field . . . . . . . . . . . . . . . 45

5.5 Free Strain Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.6 Micro Fiber Composite Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.7 Electric Field Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.8 Blade Model with black box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.9 Airfoil with Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.10 Torsion Angle of the Thermal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xvi

Page 17: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Nomenclature

Roman Symbols

A Disk Area

Aed Equivalent Wetted Area

Ainf Infinity Volume Control Area

B Coefficient for effective Blade Radius

c Chord

Cl Coefficient of Lift

Clα Slope of coefficient of lift - alpha curve

Cd Coefficient of Drag

Cdp Coefficient of Pressure Drag

Cm Coefficient of Moment

CT Coefficient of Thrust

CP Coefficient of Power

D Drag

e Eccentricity of the flapping hinge

f Tip or Hub loss parameter

F Correction Factor for tip or hub loss

fdrag Drag Parameter

kx Cosinus component for linear inflow model

ky Sinus component for linear inflow model

Ib Mass moment of Inertia

L Lift

m Mass Flow

P Power

r Adimensional radius

S Control Surface Area

T Thrust

UP Component of velocity perpendicular to the rotor

UT Component of the velocity parallel to the rotor

V Forward Speed

xvii

Page 18: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

vi Induced Velocity

Vtip Blade Tip Velocity

y Coordinate along the blade

w Wake velocity

Greek Symbols

α Angle of Attack

αij Thermal Coefficient

β Flapping Angle

β0 Coning Angle

β1c Cosinus first harmonic flapping Angle

β1s Sinus first harmonic flapping Angle

γ Shear Strain

∆ES Spacing between Electrodes

χ Skew Angle

λ Inflow velocity

σ Solidity

µ Advanced Ratio

φ Inflow Angle

ρ Density

ψ Azimuth

θ Blade Twist

Ω Rotor Shaft Speed

Abbreviations and Acronyms

AFC - Active Fiber Composite

BEMT = Blade Element Momentum Theory

BET = Blade Element Theory

CFD = Computational Fluid Dynamics

MFC = Macro Fiber Composite

PZT = Zirconate Titanate Piezoceramic

UAV - Unmanned Aerial Vehicles

xviii

Page 19: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace
Page 20: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Chapter 1

Introduction

1.1 Motivation

A helicopter is a low speed, short range and low altitude aircraft. One of the main objectives in

helicopter design is improving the efficiency that is related with endurance, range, maximum forward

speed and also ceiling.

The helicopter power consumption is essentially divided in four parts: main rotor induced power, main

rotor profile power, fuselage parasitic power and tail rotor power [1]. All of these aspects are strongly

connected with the aerodynamic of the helicopter that, unfortunately, depends of the flight condition.

Recent studies [2, 3, 4] are focused on main rotor performance enhancement, because of its strong

influence on over-all helicopter performace (for example: hover and forward flight performance, noise

emission and vibration transmission at the hub). Unfortunately, the flight envelope of a helicopter is too

broad and for this reason, it’s impossible to meet all the constraints and requirements to have always

an optimum condition. The old design philosophy privileges just some flight conditions, in general the

hovering [5].

At this moment, the possibility to adaptively modify the design parameters to achieve an optimal con-

figuration for each flight condition is understudied. To reduce vibration, noise or minimize the induced

power for every forward speeds it’s possible to modify the shape, or the other parameters, of the blade.

These systems are called smart helicopter blades [6] that integrate an active mechanisms able to modify

the blade characteristics in function of the flight condition:

• Flaps: in helicopter blades, flaps are not a primary control surface but are used only to local

modified the lift to reduce vibration and noise [6, 3, 7, 8].

• Morphing blades: this idea shows how important is the biomimetic from the engineering point of

view. Birds modify their wings to adapt in each flight condition, in the same way a morphing blade

is able to change the shape to obtain improvements in aerodynamic loads, vibration and noise.

The possibilities are a modification of the leading or trailing edge, the airfoil camber or an active

twist control [6, 9, 10, 11, 12].

1

Page 21: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

• Active Flow Control: the main object is to improve the lift on a profile. Every points after the sepa-

ration point don’t produce lift, so the idea is to bring the separation point as closer as possible to

the trailing edge to reduce the area without lift generation. The solutions found are a re-energising

or suction of the boundary layer on the top part of the airfoil [6, 13].

All of these systems need a correct integration with the blade and bring several challenges or prob-

lems that have to be fixed [14]. The helicopter blades are designed to work under large centrifugal loads

and, for this reason, a higher part of the section is filled with structural material. The space where it’s

possible to install an actuator is very limited. Another aspect is the weight that, if increased, amplifies

the centrifugal loads to the hub. Also the active system is influenced by the centrifugal loads and has

to be designed thinking that it has to be able to work under these loads. Of course, after all the design

aspects, if the complexity increases the possibility of failure also is higher. But on the other hand, these

systems could reduce the power consumption, vibration (really important for comfort on board for pilot

and passengers and fatigue loads on the helicopter) and noise.

1.2 Active Blade Twist Control

When a blades rotates, each point travels at different speed that is a function of the radial position

and, in forward flight also, azimuth position. This means that the contribution of lift and drag of each

point is also different, going higher at the tip. The consequence is that the lift distribution along the

blade is not constant. With a energy balance it’s easily understandable that the condition with uniform

lift distribution has the minimum induced power consumption [1, 15]. The blade twist is now introduced,

to achieve this purpose. Unfortunately, each flight condition has a different blade twist distribution that

minimizes the induced power. Increasing blade twist in hover and decreasing it in high speed forward

fight is well recognized in helicopter rotor design [1, 15]. According to Leishman [1], the inflow equation

in hovering condition has a special solution that gives uniform inflow:

θ(r) =θtipr

(1.1)

where θ represents the twist.

Equation 1.1 shows a hyperbolic behaviour of the twist. Unfortunately, this solution is physically

unrealisable for r → 0. In pratical sense it’s possible to approximate this solution with a linear twist

distribution because of the hub and root cut-out. According to recent studies, for example a rotor blade

optimization at Eurocopter [16], the twist distribution is related to the mission profile of the helicopter

considered. They optimized the rotor twist in each flight condition between hover and high speed forward

flight. After that, in function of the mission profile it’s chosen an intermediate condition that is a weighted

average between time in hover and forward flight. Other recent studies [17, 18] try to build a main rotor

that it is optimized for each flight condition. To achieve this purpose it’s necessary to use an active twist

control able to generate a torque moment to re-distribute the twist along the blade.

2

Page 22: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

In the beginning the active twist control was utilized to reduce rotor vibrations [19], in fact in 1990s Chen

and Chopra did some tests in hover and forward flight in a wind tunnel [20, 21]. They used a smart rotor

model with individual blade control and embedded piezoceramic actuators. They wanted to achieve

a target value around 2 but they got a maximum twist amplitude of 0.5. This result was enough

to demonstrate that the concept was feasible and that there were advantages in term of vibrations

and noise [20, 21]. Other studies were conducted for example, the active rotor of NASA / Army / MIT

demonstrated that on fixed frame the active system was able to reduce vibratory loads [9]. Thakkar and

Ganguli [11] studied how to reduce vibration, delay flow separation and alleviate dynamic stall. The most

recent studies done by Sikorsky Aircraft and Cheng and Celi [4, 22] demonstrated less power needed

of 1-2% in wind tunnel tests. Another study done by Chopra [23] coupled computational fluid dynamics

and computational structural dynamics analysis on a Sikorsky UH-60A Black Hawk helicopter rotor with

an active twist control. The lift to drag ratio increased by 7.3% and the corresponding power decreased

by 3.3%, the system required a target of 4 twist control to achieve this result. Due to the constraints of

weight, space and mechanical actuations a possible solution for an active twist control is a piezoelectric

actuation system. In general, piezoelectric materials have the property to convert mechanical energy in

electrical energy and vice-versa [6]. A piezoelectric material is polarized and when an electric field is

applied in the direction of polarization it extends in that direction and contracts in the other two (in general

symmetrically), if is applied in the opposite direction it extends in the two other directions and contracts

in the main one [24]. But, if is applied an electric field perpendicular to the direction of polarization the

effect is a shear deformation mode. Research has been conducted on manufacturing a twisting actuator

that utilises actuators assembled in circle that can directly provide rotation and torque [25, 26].

1.3 Objectives

This thesis is focused on the application of variable blade twist to obtain reductions in power con-

sumption. Different twist distributions are considered and how they have to change to minimize the

induced power in each flight condition is studied. The purpose is to understand what happen in the

different conditions and if some of them present advantages related to the others.

1.4 Thesis Outline

This thesis is divided in 6 chapters:

• Chapter 2 : It’s the theoretical background behind the thesis. The software Xfoil used to obtain the

airfoils information, the models for the aerodynamic characteristics, the inflow and the algorithms

for the optimization.

• Chapter 3: Shows how the theoretical background is used to implement the model. The code is

tested doing a comparison with the flight data of the Sikorsky UH-60A Black Hawk and it’s used,

also, to show the effect of the blade twist on the total power consumption of the helicopter.

3

Page 23: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

• Chapter 4: Presents the results of the simulations and a comparison among the solutions.

• Chapter 5: Preliminary design of an active twist control.

4

Page 24: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace
Page 25: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Chapter 2

Background

To study the aerodynamics of the rotor CFD analysis based on free wake methods are commonly

used [27, 28]. They calculate the vortical wake structure to predict the rotor performance. These meth-

ods have a high computational cost, for this reason it’s preferable to use some simple methods to analyze

the rotor with lower accuracy but with a much lower computational cost. Three theories are applicable

with this characteristics [1]: Momentum theory, blade element theory and blade element momentum

theory, that is the combination of the previous two. For each condition, hovering, climb, descent, forward

or lateral flight the aerodynamic is different and also each model has to be used in a different way. The

momentum theory gives analytical solutions, the blade element theory is more realistic but in some con-

ditions the approximations cannot simulate the reality with the necessary accuracy. The main aspect

that affects the quality of the results is the main rotor wake that is not stationary ever in stationary flight,

in fact it interacts with the tail, fuselage and control surfaces.

2.1 Momentum Theory

The momentum theory was established by Rankine in 1865 [29] to analyse marine propellers. The

generalization was done by Glauert in 1935 [1]. The theory idealizes the rotor as an infinitesimally thin

actuator disk over which a pressure difference exists. It’s the same to consider an infinite number of

blades with zero thickness. The actuator disk supports the thrust generated by the movement of the

rotor. The power needed is related to the torque of the rotor shaft and also an induced power related

to the gain in kinetic energy of the rotor slipstream. The theory is independent of the characteristics of

the rotor, it just takes in account the rotor diameter. All the calculations are done considering a control

volume around rotor and its wake with the applications of conservation laws[1].

This theory is based on some approximations:

• The airflow is incompressible

• Between the two surfaces of the actuator disk there is a pressure jump.

• There is no swirl velocity in the airflow

5

Page 26: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 2.1: Flow model for momentum theory analysis of a rotor in hovering condition[1]

• The airflow before and after the actuator disk is uniform.

From the conservation of mass [1]:

m =

∫∫∞ρ−→V · d

−→S =

∫∫1

ρ−→V · d

−→S (2.1)

where m is the mass flow, ρ is the density,−→S is the control surface area and

−→V represents the velocity

for each control area.

m = constant→ m = ρA∞(w + Vc) = ρA(vi + Vc) (2.2)

With the conservation of momentum [1]:

T =

∫∫∞ρ(−→V · d

−→S )−→V −

∫∫0

ρ(−→V · d

−→S )−→V = m(Vc + w)− mVc = mw (2.3)

where A is the control surface area, w represent the velocity in far wake called wake velocity, vi is the

inflow velocity calculated on the rotor/disk plane and Vc is the Climb Velocity.

Finally an equation govering the conservation of energy in the flows can be written as [1]:

6

Page 27: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

P =

∫∫∞

1

2(ρ−→V · d

−→S )|−→V |2 −

∫∫0

1

2(ρ−→V · d

−→S )|−→V |2 =

1

2m(Vc + w)2 − 1

2mVc

2 =1

2mw(2Vc + w) (2.4)

This is a scalar equation, it simply states that the work done on the fluid by the rotor is manifested as a

gain in kinetic energy of the fluid in the rotor slipstream per unit time. This is the power that the system

needs to create the pressure jump near the actuator disk.

With a combination between the result of the conservation of momentum and energy:

v1 = v2 =w

2(2.5)

In hovering condition (Vc = 0) the thrust, T , is calculated as:

T = mw (2.6)

and power is:

P = Tvi =1

2mw2 (2.7)

In the wake below the rotor the flow velocity increases, due to continuity considerations the area of

the slipstream has to decrease. From the conservation of mass in hover condition the ratio between the

cross-sectional area of the wake to the area of the rotor is:

A∞A

=1

2(2.8)

The area of the wake is the half of the rotor disk area. In term of radius is r∞ = 0.707R.

According to Leishman [1] the induced velocity at the rotor disk in hovering condition vh can be obtained:

vh =

√T

2Aρ(2.9)

With this equation, the ideal power consumed is:

P = Tvh = T

√T

2Aρ= 2ρAvh

3 (2.10)

The power required to hover increases with the cube of the induced velocity at the disk. To make a rotor

with a given thrust but with a minimum induced power it’s necessary to increase the mass flow through

7

Page 28: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

the disk and this consequently requires a large rotor disk area [1].

Thinking in term of adimensional parameters, it’s possible to define the coefficient of thrust and the

coefficient of power.

CT =T

ρ(Vtip)2A(2.11)

CP =P

ρ(Vtip)3A(2.12)

2.2 Blade Element Theory

The Blade Element Theory (BET) is the base of analysis of helicopter rotor aerodynamics because

it provides estimation of blade aerodynamic loading in function of azimuthal and radial position [1].

In general, BET divides the blades in several sections and analyses each one as 2D airfoil able to

generate aerodynamic forces. Some corrections as tip and hub loss are taken in account with empirical

corrections. The BET can be used as basis to help design of rotor blades because, unlike the simple

momentum theory, all the characteristics of the blade are part of the theory [1].

Figure 2.2: Blade Element Theory Model[1]

In the blade element theory the angle of attack is defined as:

α = θ − φ φ = arctg(UPUT

) (2.13)

where α is the angle of attack, θ is the twist angle, φ is the inflow angle, UP is the component of the

velocity perpendicular to the rotor and UT is the component of the velocity paralell to the rotor.

8

Page 29: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

For each section it’s possible to compute the lift L and drag D:

dL =1

2ρU2cCldy dD =

1

2ρU2cCddy (2.14)

where c is the chord and dy represents the width of the infinitesimal blade element.

Next step is the calculation of the perpendicular, Fz and parallel Fx forces to the rotor plane.

dFz = dLcosφ− dDsinφ (2.15)

dFx = dLsinφ+ dDcosφ (2.16)

To calculate the total forces it is necessary to compute the contribution of each blade. The infinitesi-

mal coefficients of thrust and power are computed as:

dCT =dT

ρA(ΩR)2=

NbdFzρA(ΩR)2

=1

2σ(Clcosφ− Cdsinφ)r2dr (2.17)

dCP =dP

ρA(ΩR)3=NbdFxΩy

ρA(ΩR)2=

1

2σ(Clsinφ+ Cdcosφ)r3dr (2.18)

where Ω - Rotational Velocity of the Rotor, Nb - Number of Blades and σ - Solidity of the rotor and σ and

r are calculated using:

σ =Nbc

πRr =

y

R(2.19)

The aerodynamic coefficients, in particular the lift Cl and the drag Cd used in the theories are calcu-

lated with the software Xfoil.

2.3 Xfoil

The software Xfoil was developed by Mark Drela from MIT [30]. It’s able to analyse isolated subsonic

airfoils taking in account Reynolds and Mach numbers. The main outputs that the software gives are the

distribution of forces around the airfoil, how the pressure coefficient changes in both top and bottom of

the airfoil and how the lift and drag coefficients change in function of the angle of attack α.

The software is based on 2D panel method, ”analyzes using integral equation instead of differential

equation” the velocity field near the airfoil. The only input that the software requires is a database of

coordinates that represents the geometry of the profile.

Other outputs are available after the analysis:

• The coefficient of moment Cm

• The transition point between laminar and turbolent flow for bottom and top

9

Page 30: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

• The coefficient of pressure drag Cdp

Figure 2.3: Xfoil: Forces distribution around NACA 23015 airfoil

Figure 2.4: Xfoil: CP distribution around NACA 23015 airfoil

10

Page 31: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

2.4 Blade Element Momentum Theory

The blade element momentum theory (BEMT) is a combination between blade element and momen-

tum approach first proposed for helicopter use by Gustafson and Gessow (1946). This theory allows the

estimation of the inflow velocity along the blade for hovering condition[1].

Figure 2.5: Annulus of rotor for local momentum analysis for hovering condition[1]

As shown in Figure 2.5, the theory consists first in the application of the conservation laws to an

annulus of the rotor disk. Each annulus gives an increment in thrust dT and it’s possible to calculate

this just with a simple momentum theory with two assumptions: 2D and no mutual effects between

successive annuli. To solve the problem of 2D restriction the tip-loss effect by Prandtl is enough. For

each annulus the area considered:

dA = 2πydy (2.20)

The incremental thrust of the annulus is the product between mass flow rate and twice the induced

velocity [1]:

dm = ρdA(Vc + vi) = 2πρ(Vc + vi)ydy (2.21)

dT = 2vidm = 2ρ(Vc + vi)vidA = 4πρ(Vc + vi)viydy (2.22)

This is the Froude - Finsterwalder equation. It’s more convenient to work with adimensional quantities:

dCT =dT

ρ(πR2)(ΩR)2= 4

Vc + viΩR

viΩR

y

Rdy

R(2.23)

Writing everything in function of total inflow λ = Vc+viΩR , climb inflow λc = Vc

ΩR and induced inflow

λi = viΩR with the adimensional radius r = y

R :

dCT = 4λλirdr = 4λ(λ− λc)rdr (2.24)

With equation 2.24 is possible to compute the coefficient of induced power:

11

Page 32: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

dCPi = λdCT = 4(λ)2(λ− λc)rdr (2.25)

The calculation of the total thrust and induced power is done by the integration along the blade:

CT =

∫ r=1

r=0

dCT = 4

∫ 1

0

λ(λ− λc)2rdr (2.26)

and

CPi =

∫ r=1

r=0

λdCT = 4

∫ 1

0

λ2(λ− λc)2rdr (2.27)

2.5 Inflow Models

As the dynamic representation of the rotor system reaches a certain level of sophistication in term

of degrees of freedom of the blade motion, it becomes apparent that a comparable level of detail must

be used for the aerodynamic part [31, 1]. The helicopter aerodynamic is strictly related to the induced

velocities at and near the main rotor. In the past, due to the limited computational capability, the induced

inflow was considered uniform. Now, there are several non-uniform representations for each flight con-

dition. Some models can represent better the dynamic effects, others just the aerodynamic loads over

the rotor. For high accuracy simulations, CFD models able to analyse the wake are used [27, 28].

In hover condition the inflow can be determinated directly using BEM theory [1]. The principle is the

equivalence between the circulation theory of lift and the momentum theory of lift. The inflow model for

hovering is [1]:

λ(r, λc) =

√(σClα

16− λc

2)2 +

σClα8

θr − (σClα

16− λc

2) (2.28)

Equation 2.28 is function of the rotor characteristics as σ the solidity or Clα the lift-curve-slope and the

blade twist θ how the inflow changes along the blade.

From the other point of view, in forward flight, the induced velocity field is no longer axisymmetric. The

effects of the individual tip vortices produce an highly non-uniform inflow over the rotor disk, specially

in the range 0.0 ≤ µ ≤ 0.1 (where µ = VΩR . Introducing now the azimuthal angle ψ defined as the

angle of the blade relative to the main axis of the vehicle After that range, in high speed forward flight,

the time-averaged longitudinal inflow becomes more linear and can be approximately represented by a

linear variation in function of azimuthal angle ψ and adimensional radius r [31, 1].

λi = λ0(1 + kxx

R+ ky

y

R) = λ0(1 + kxr cosφ+ kyr sinφ) (2.29)

12

Page 33: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

The coefficient λ0 is the average induced inflow at the centre of the rotor given by the momentum theory:

λ0 =CT

2√µ2 + (λ0)2

(2.30)

To solve this last equation it’s necessary to impose an iterative method. The two coefficients kx and ky

are related to the wake skew angle χ that is the angle between the wake and the rotor disk.

χ = arctan(µx

µz + λ0) (2.31)

The two advanced ratios considered here are just the parallel and perpendicular component to the rotor

plane of the advanced ratio µ. If atpp is define as the angle between the rotor plane and the air speed,

the advanced ratios are: µx = µ cos atpp andµz = µ sin atpp. There are several estimations to calculate

the coefficients of the equation 2.29. One of the more recent that also gives good correlations with flight

test data is the Pitt-Peters model (1981) [32]:

kx =15π

23tan(

χ

2) (2.32)

and

ky = 0 (2.33)

In hovering condition the velocity distribution perpendicular to the blade leading edge is axisymmetric

and it’s showed in Figure 2.6.

Figure 2.6: Velocity distribution in hovering condition. All the azimuthal positions show the same distri-bution

The inflow velocities and the generated thrust depend only by the radial position and for this reason

13

Page 34: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

are axisymmetric as showed in Figure 2.7.

Figure 2.7: Inflow velocities and thrust in hovering condition [33]

Here, the thrust is defined to be negative because in the opposite direction of the inflow velocity. Near

the hub, where the inflow velocities and also the tangential velocities are smaller, low thrust is produced.

The higher part of the thrust is distributed between 50% and 90% of the blade length. Near the tip the

thrust decreases really fast due to the tip losses.

In forward flight there is no axisymmetry in the velocity field. There are three aerodynamic aspects

to be considered: dynamic stall, reverse flow and transonic effect. In the retreating blade near the tip the

blade increases a lot the angle of attack to compensate the reduction of lift produced by the decreasing

of the local airspeed. When the forward flight increases above a certain level the blade encounters the

dynamic stall. In the reverse flow region, the rotational velocity is slower than the aircraft airspeed and

the air flows from the trailing to the leading edge of the airfoil. In the other side, the blade near ψ = 90·

has a velocity that is the sum of the rotational and forward speed V = ΩR + Vforward. The velocity

distribution is showed in Figure 2.8.

Figure 2.8: Velocity distribution in Forward Flight with Reverse Flow Region

14

Page 35: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

2.6 Flapping

Helicopter rotors are articulated with flapping and lead-lag hinges at the root of each blade. Modern

rotor hubs are hinge-less but allow motion about a virtual hinge location. The blade, essentially, presents

three mechanical hinges that allow three different movements: flapping, lead or lag and feather. The

blade flapping is the up and down movement of the rotor blade important to reduce the dissymetry of lift

due to the different local speed between advancing blade side and retreating blade side. The lead-lag

hinge allows in-plane motion of the blade in response to the Coriolis accelerations and forces produced

by the flapping. Finally, the feather is the ability to change the blade pitch. These hinges allow each

blade to independently flap and lead or lag with respect to the hub plane [1]. In hovering condition the

blades reach a steady equilibrium position under the action of aerodynamic and centrifugal forces. The

equilibrium angle, with respect to the hub plane, is called coning angle β0 and it’s calculated with the

equilibrium of aerodynamic moment, Mβ , and centrifugal moment MCF , in relation to the flapping hinge

[1]:

Mβ +MCF = 0 (2.34)

and the coning angle:

β0 =3∫ ReRLydy

MΩ2R2(1 + e)(2.35)

where L is the lift, y is the radial position, M is the mass of the blade (equally distribuited), R is the total

radius of the blade and e is the eccentricity of the flapping hinge.

This equation is valid for any form of aerodynamic load over the blade [1].

In forward flight the blades flap up and down in a periodic manner with respect to azimuth due to

cyclically varying air-loads [1]. Considering Figure 2.9, the flapping angles are functions of aerodynamic,

centrifugal and inertial forces.

∫ R

0

d(MCF ) +

∫ R

0

d(I) +

∫ R

0

d(Mβ) = 0 (2.36)

The equation of flapping motion becomes:

Ibβ + IbΩ2β =

∫ R

0

Lydy (2.37)

where Ib is the moment of inertia of the blade about the flap hinge.

Considering that the azimuthal position ψ = Ωt and the rotational speed is constant:

β(t) = Ω?

β(ψ) β(t) = Ω2??

β(ψ) (2.38)

15

Page 36: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 2.9: Flapping hinge with aerodynamic, centrifugal and inertial loads [1]

So the final equation for flapping is [1]:

??

β(ψ) + β(ψ) =1

IbΩ2

∫ R

0

Lydy (2.39)

In forward flight the aerodynamic forces act at multiples of the rotor frequency. For this reason the blade

flapping motion can be represented by an infinite Fourier series [1]:

β(ψ) = β0 +

∞∑n=1

(βnc cosnψ + βns sinnψ) (2.40)

For simple analysis it’s possible to assume that the solution for blade flapping motion is given by the

first harmonics only [1]:

β(ψ) = β0 + β1ccosψ + β1ssinψ (2.41)

2.7 Fmincon and Global Search

Fmincon is a Matlab function able to find the minimum of constrained non-linear multi-variable func-

tion [34]. It’s part of the optimization toolbox of Matlab. The reason to use an optimization function is

the reduction of calculation time. Another solution is a parametric analysis but just with a few variables

the computational cost becomes really high. The function finds a local minimum near the initial condi-

tions given in input. In all the engineering applications an optimized condition corresponds to a global

minimum. To solve this problem Fmincon works together with a Global Search that generates a family

of initial conditions to calculate all the local minima in the range considered and after that the algorithm

selects the global minimum [35].

16

Page 37: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace
Page 38: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Chapter 3

Implementation

3.1 Numerical Model

To analyse the aerodynamic characteristics of the helicopter a model based on Blade Element Mo-

mentum theory and Blade Element theory is used. The characteristics of the airfoils are taken from the

software XFoil [30], a 2D simulation code based on panel method developed by Mark Drela in MIT. In

this thesis all the simulations are done on a Sikorsky UH-60A Black Hawk. For this reason the airfoils

analysed are the two used on the UH-60A main rotor: SC 1095 and SC 1094 R8 [36]. In Figure 3.1 and

Figure 3.2 are presented the characteristics of UH-60A airfoils with angle of attack α = 3.

Figure 3.1: Sikosrky SC 1095 Airfoil with α = 3

The two main parameters, for this kind of analysis, are the coefficients of lift and drag:

Cl = f(α) (3.1)

17

Page 39: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 3.2: Sikosrky SC 1094 R8 Airfoil with α = 3

and

Cd = g(α) (3.2)

The results don’t represent continuous functions, they are given for several angles of attack α with

∆α = 0.25 as step. To implement an optimization code the input data have to be continuous so an

interpolation is required. The database is interpolated using polynomial equations and the order is

chosen to achieve the best fitting possible. The total error for each polynomial order is studied and the

results are showed in Figure 3.3 and Figure 3.4.

Figure 3.3 and Figure 3.4 represent how the total fitting error changes with the order of the polynomial

equation. The two points chosen represent a good compromise between computational cost and error.

The results of the interpolation are presented in Figure 3.5 and Figure 3.6:

In general, simple models use a linear equation to represent lift curve and a quadratic one for the

drag curve. High order polynomial equation can also represent stall condition and drag bucket to really

take in account all the airfoil informations.

To describe hovering and forward flight conditions two models are taken in account. In hover, using the

equivalence between the circulation and momentum theories of lift, Blade Element Momentum Theory

(BEMT) allows the estimation of the inflow distribution along the blade. Considering no climb velocity

the simplified model is [1, 31]:

λ =σClα16F

(

√1 +

32F

σClαθr − 1) (3.3)

Using this model, it’s possible to estimate the inflow in function of the twist distribution. In forward

flight, the helicopter must provide a lifting force and a propulsive force in opposition of weight and air-

frame drag. The rotor moves through the air and all the blade sections encounter a periodic variation

in local velocity. There are some consequences as blade flapping, unsteady effects, non-linear aerody-

18

Page 40: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 3.3: Error Analysis CLvsα

Figure 3.4: Error Analysis CDvsα

namics, stall, reverse flow and an higher interference between rotor wake and the main rotor itself [1].

The induced velocity field is no longer axisymmetric and the effects of the individual tip vortices tend

to produce a highly non-uniform inflow over the rotor disk specially during the transition from hover into

forward flight, within the range 0.0 ≤ µ ≤ 0.1.

19

Page 41: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 3.5: Interpolation CLvsα with 10 order polynomial equation

Figure 3.6: Interpolation CDvsα with 12 order polynomial equation

In higher speed forward flight (advanced ratio higher than 0.15) the time averaged longitudinal inflow

becomes more linear and can be approximately by [31, 32, 1]:

λi = λ0(1 + kxr cosψ + kyr sinψ) (3.4)

20

Page 42: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

The estimated values of first harmonic inflow considered in this paper is that one from Pitt and Peters

(1981) that has a good representation of the inflow gradient as functions of the wake skew angle and the

advanced ratio when compared to the experimental data [1, 32].

The BEM theory assumes that the blades can be divided into small elements that operate aerody-

namically as 2D airfoils and the aerodynamic forces can be calculated considering just the local flow

conditions [1]. Due to the simplicity of the theory the assumption that the airflow field around the airfoil is

always in equilibrium is necessary. To understand what is the minimum number of blade elements that

the analysis requires, it’s necessary to analyse how the total power changes in function of the number

of blade elements. Hovering and high speed forward flight conditions are considered. So, to compute

the thrust and power of the main rotor the component of the velocity parallel to the rotor and normal to

the blade leading edge UT and the component of the velocity perpendicular to the rotor UP have to be

considered:

UT (y, ψ) = Ωy + µΩR sinψ (3.5)

UP (y, ψ) = λiΩR+ yβ(ψ) + µΩRβ(ψ) cosψ (3.6)

Where y is the radial coordinate, Ω the rotor shaft speed and R the maximum radius of the blade. The

angle of attack α can be expressed in function of the twist angle θ and the inflow angle φ :

α = θ − φ φ = arctan(UPUT

) (3.7)

The incremental lift dL and drag dD are:

dL =1

2ρU2cCldy dD =

1

2ρU2cCddy (3.8)

where c is the chord, Cl = f(α) = f2(y, ψ) and Cd = g(α) = g2(y, ψ). So the equations of thrust T and

power P can be written as:

T =

∫∫NbdFz =

∫∫Nb(dL cosφ− dD sinφ) (3.9)

P =

∫∫NbdFxΩy =

∫∫Nb(dL sinφ+ dD cosφ)Ωy (3.10)

whereNb is the number of blades, dFx the force parallel to the rotor disk and dFz the force perpendicular.

Replacing equations 3.8, 3.5, 3.6 inside thrust and power equations 3.9 and 3.10 also the thrust and

power are expressed in function of azimuth angle ψ and radial position y. So, in a general form:

dFz = Fz(y, ψ)dydψ dFx = Fx(y, ψ)dydψ (3.11)

So the integrals become:

21

Page 43: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

T =

Rmax∫Rmin

2π∫0

NbFz(y, ψ)dydψ (3.12)

P =

Rmax∫Rmin

2π∫0

NbΩyFx(y, ψ)dydψ (3.13)

To implement these equations in a computational code the integrations have to be replaced with

summations. So the blade is divided in a finite number of sections with a width of ∆y.

∆y =1− Rmin

Rmax

N(3.14)

Where Rmin is the minimum radius of the blade, Rmax the maximum radius and N the number of the

elements considered. To understand the minimum number of blade elements two analysis in hovering

and forward flight conditions are considered.

Figure 3.7: Power consumption of UH-60A in hovering

Also in forward flight the aerodynamic field for each azimuthal position is different. From the math-

ematical point of view it’s enough to perform an azimuthal integration between 0 to 2π to obtain exactly

the power consumption and the induced power. With a computational code it’s not possible to consider

infinite number of blade elements, so in the next error analysis it’s presented what is the minimum num-

ber of azimuthal position to have a good compromise between quality of the results and computational

time.

Figure 3.9 shows that at least the code needs the aerodynamic characteristics of 100 blades to

22

Page 44: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 3.8: Power consumption of UH-60A in forward flight

Figure 3.9: Power consumption of UH-60A convergence increasing the azimuthal positions

represent the rotor power consumption.

There are also some corrections to take in account like hub loss [37, 1], tip loss [37, 1] and reverse flow

[1]. The only correction that is not considered is the compressibility effects in high speed forward flight

that increase the drag. At higher rotor advance ratios, there is a considerable amount of reverse flow on

the retreating side of the rotor disk. The region with reverse flow is characterized by UT ≤ 0. To take

in account the effects of the reverse flow it’s enough to change the sign of the drag in this region. The

23

Page 45: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

coefficient of profile power can be computed as:

CPo =σCdo2π

2π∫0

1∫0

(r + µ sinψ)3drdψ − σCdo2π

2π∫π

−µ sinψ∫0

(r + µ sinψ)3drdψ (3.15)

For the hub and tip loss two corrections are considered, because BEM theory permits a finite lift to

be produced at the blade root and tip that it’s unrealistic. There is a factor B [37, 1] used to represent

the effective blade radius that can produce lift. The parameter is around 0.95 for the Hub relation while

for the tip loss the Prandtl tip-loss function is considered. The latter considers a solution to the problem

of the loss of lift near the tips taking in account the induced effects related with a finite number of blades.

So, in the equation there is the number of the blades Nb. The equation is considered for each azimuthal

position and then averaged. The two relations for hub and tip are pretty similar [1]:

f =Nb2

1− rrφ

(3.16)

f =B

2

r − rminrφ

(3.17)

and the correction factor F [1] is calculated for each situation as:

F =2

πarccos(e−f ) (3.18)

Another model taken in account is one for the fuselage drag that is important to understand how the

coefficient of thrust has to change to compensate weight and drag of the helicopter. The model used is

[1]:

D =1

2ρV 2fdragAeq (3.19)

where the drag parameter fdrag and the equivalent wetted area Aeq are related with the helicopter type.

The model has also a flapping consideration [1]. The hinge offset is neglected to simplify the calculation

and the second order differential equation is [1]:

??

β + β =1

IbΩ2

R∫0

Lydy (3.20)

where for definition the flapping β is function of the azimuthal position ψ:

β = β(ψ)

The code is implemented in Matlab and it’s able to compute, using some optimization tools, the

twist distribution that minimizes the power for each flight condition. The function from the optimization

tool of Matlab is ’Fmincon’ [34] combined with a global search [35] for the minimum. This function can

24

Page 46: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

calculate a local minimum given initial conditions while the global search creates a system of different

initial conditions to obtain all the minimum solutions and after it will take the global one. To obtain the

flapping solution an ordinary differential equation solver ’ode45’ is used. This solver is based on Runge-

Kutta methods, a family of implicit and explicit iterative methods used in temporal discretization for the

approximate solutions of ordinary differential equation (ODE) [38].

3.2 Verification and Validation

To validate the method the flight data of the UH-60A helicopter is used [36, 39, 40, 41]. To make a

comparison between simulations and flight data all the typologies of power have to be taken in account.

The code calculates the main rotor induced power, main rotor profile power and fuselage parasitic power.

So an estimation of the tail rotor power is necessary. In table 3.1 some characteristics of the tail rotor

are presented:

Table 3.1: UH-60A Tail Rotor Characteristics [19]

Tail Rotor ParametersTail Rotor Radius 1.6764 m

Nominal tail rotor speed 124.62 rad/sTail Rotor Blade Chord 0.2469 mTail Rotor Blade Twist Linear −18

Blade Airfoil SC 1095Number of Blades 4

The tail rotor has to be able to generate a force to counterbalance the torque in the main rotor. Four

conditions are considered: hovering, low, medium and high speed forward flight. For each of these

conditions the coefficient of thrust of the tail and its power consumption is calculated. In all of these

simulations the power consumption of the helicopter increased of 5%. The distance between the hub

centre of the tail rotor and the rotor shaft in the UH-60A is 9.926 m. In all the calculations the weight of

the helicopter is W = 8322.4 kg [19].

Table 3.2: UH-60A Data [19]

Main Rotor ParametersMain Rotor Radius 8.1788 m

Nominal Main Rotor Speed 27.0 rad/sBlade Chord Lenght 0.5273 m

Blade Twist NonlinearBlade Airfoil SC 1095 / SC 1094R8

Number of Blades 4Blade Mass per unit length 13.92 kg/m

The blade twist of the UH-60A is non linear and presents some transition areas for the presence of

different airfoils. To simplify the calculation that behaviour is approximated by a linear blade twist of −16

25

Page 47: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

and only the SC 1095 airfoil. Figure 3.10 shows the comparison between flight test and the results from

the method. Due to the limitation related to the linear model applied in low advanced ratio range, the

calculations are done for advanced ratio higher than 0.075.

Figure 3.10: Comparison Power consumption of UH-60A between Flight Test Data and Blade Elementtheory

The predictions, using this simple model, are in good agreements with the flight test data and for that

reason it’s verified the application of this method in the analysis of the helicopter performance.

3.3 Effect of Blade twist on Main Rotor Power

High twisted blades improve hover, vertical climb and low speed performance, for example, for mil-

itary helicopters nap-of-the-earth performance capability [42, 43]. From the aerodynamic point of view

in hovering condition, the result is a more uniform downwash velocity in the far wake that corresponds

to a reduction of induced power required [42]. In 1987 Keys et al. [42] conducted a test to quantify

the effect of twist on performance and aicraft vibrations. They considered a four bladed rotor with Mach

scaled composite blades and they tested it in a wind tunnel with two linear twist distributions: −11.5

and −17.3. Increasing the blade twist, in hovering condition, showed a reduction of 2.4% on power

required that corresponds in a 5% increase in useful load [42]. The experiment also showed that the

new redistributed downwash velocity in the inboard part of the rotor increased the aerodynamic load on

the fuselage of 6%. So, the benefit of the twist was reduced of 15% [42].

26

Page 48: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

According to the theory [1], in hovering situation an hyperbolic variation of twist θ0y has the minimum

induced power. This solution is not physically possible because it’s not feasible to build a blade with this

shape (the angle near the root would be too big). Nevertheless a linear twist distribution can improve

the performance is a similar way as the hyperbolic twist variation.

The characteristics of UH-60A Sikorsky table 3.2 are used to show the effect of blade twist using

BEM theory for hovering condition and BET for forward flight. There are some differences from the real

helicopter: in this analysis only the SC 1095 airfoil is considered and the twist distribution is linear or at

least without twist. In fact the comparison is among 5 blade twist behaviours: no twist, −4 linear twist,

−8 linear twist, −12 linear twist ,−16 linear twist.

Figure 3.11: Total power for different linear twist distributions in Hovering

Figure 3.11 shows the effect of different twist distributions in hovering condition. This example used

a linear twist variation and the same profile SC 1095 on the blade. The coefficient of power decreases if

the linear twist slope is increased. This is not true for the simulation with -16 because when the blade

twist is increased, the inner part of the blade has an angle of attack higher than the angle of attack in

stall condition. If this section is between the hub and the root cut-out the effect is not presented but if the

blade twist increases above a certain value that section will produce less lift and more drag. Considered

a helicopter and a twist distribution along the blade there is only an optimum condition that minimizes the

power consumption. In the case of the UH-60A Sikorsky with SC 1095 airfoil and linear twist behaviour

the optimized solution is -13.5. So a solution with -16 presents higher twist slope than the optimal one.

This solutions came from an analysis with BEM theory with tip and hub losses and airfoil characteristics

from the simulation of Xfoil. Also, the reduction of the benefit of the download [42] is not considered.

In forward flight the effect of blade twist is different. In 1948 there was a study [44] that indicated that

higher blade twist reduced forward flight power based on flight test data. This conclusion looks wrong

27

Page 49: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

but in that period the early helicopters were limited to 130km/h, in low speed forward flight highly twist

blades are able to reduce the coefficient of power as shown in Figure 3.12.

Figure 3.12: Total power for different linear twist distributions in low speed forward flight

Modern helicopters can easily reach a speed of 300km/h. The required blade twist distribution to

minimize the power consumption slowly decreases if the forward flight increases. The results are showed

in Figure 3.13 and Figure 3.14.

Figure 3.13: Total power for different linear twist distributions in medium speed forward flight

In Figure 3.13 it’s evident that after µ = 0.18 the linear twist distribution with −8 of slope becomes

the solution that requires less power. Finally, in Figure 3.14, in high speed forward flight a linear twist

behaviour of −4 presents better results.

Keys et all in 1987 [42] studied the four bladed rotor with Mach scaled composite blades also in

forward flight with the two linear twist distributions of −11.5 and −17.3. The solution with high twisted

blade presented a measured power increment of 5% at 330km/h. They also calculated that the helicopter

with −17.3 linear twist distribution presented the same power consumption of the −11.5 at 330km/h

around 322.5km/h. So the performance penalty due to twist was approximately 7.5km/h.

28

Page 50: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 3.14: Total power for different linear twist distributions in high speed forward flight

In 2015 Han et all [19] studied the effect of variable rotor speed and variable blade twist to reduce

rotor power and improve helicopter performance. They developed an empirical aerodynamic model and

a CFD model. The empirical one includes a main rotor model, a fuselage model, a tail rotor model and

a propulsive trim method. The model developed was complex, in fact took in account also an elastic

deformation of the rotor blades. The inflow model was the Pitt-Peters [32]. They considered all of these

effect in the equations of motion based on the generalized force formulation and used the Newmark

integration method to integrate in time domain. With this model they analysed the UH-60A Sikorsky

according to the characteristics of the table 3.2. The result is presented in Figure 3.15.

Figure 3.15: Comparison among different twist behaviours [19]

29

Page 51: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 3.15 confirmed the results found in the simulations with BEM theory and BET, specially the

solutions of the empirical model. In hovering the CFD model doesn’t show high differences among the

different twists but in high speed forward flight the negative effect of high twisted blade is shown.

30

Page 52: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace
Page 53: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Chapter 4

Results

4.1 Optimized Blade Twist

An optimal blade twist behaviour, in function of the forward flight, is determined by what kind of twist

is imposed. Some examples use a linear twist, others a non-linear blade twist, and for cases of a blade

with more than one airfoil each blade section could have a different blade twist. The more complex

is the function that describes that the blade twist more advantages are possible to achieve in term of

power reduction. According to recent studies [45], three sections blade is a solution to take in account

the different aerodynamic environments along the blade for each flight condition. For example in the

British Experimental Rotor Program (BERP) [45] the blade is divided in three sections with three different

airfoils. The central section has the main lifting airfoil, the RAE 9645, with a maximum lift coefficient of

about 1.55. However, this high lift coefficient is obtained at the expense of higher pithing moments that

is counterbalanced by the airfoil in the inner part, the RAE 9648, where the high maximum lift is not

so important. In the tip the airfoil is the RAE 9643 that is a low thickness-to-chord ratio to increase the

divergence Mach number. This is really important to increase the maximum speed of the helicopter. So

a solution with three different segments is commonly used and for each section there is a particular airfoil

that needs a different twist behaviour for the optimization. About the simulations, for each flight condition

between hovering condition and high speed forward flight with µ = 0.35 the twist slope that minimizes the

power consumption is found. The Pitt-Peters inflow model [32] starts to be in agreement with the flight

data around µ = 0.1, so there is a lack of simulations between hovering and this value. Another main

aspect is the accuracy of the model developed to simulate the helicopter, it is based on BEM and blade

element theory and cannot achieve the accuracy of models based on free vortex methods. ElQatary et

all [46], did a comparison between CFD and BEMT models. The differences in power consumption were

in a range between 2.2% and 7%, so the error has an order of some kWatt. Now, considering a flight

condition, for example µ = 0.2, and two solutions really close one to the other, with just a small difference

in the twist distribution, the difference in power consumption has an order of Watt or at least hundreds of

Watt. So, the power consumption will be really close and this will not affect the comparison with the flight

data and the validity of the code but the accuracy it’s not enough to determine which solution minimizes

31

Page 54: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

the power consumption. So, the results present some fluctuations and it’s necessary to interpolate the

simulations to obtain the twist behaviours.

4.1.1 One section with linear twist

The first analysis considers a rectangular blade with only the SC 1095 Airfoil. The blade twist distri-

bution is linear from the root until the tip. In Figure 4.1 is showed how the twist slope should change to

minimize the power consumption.

Figure 4.1: Optimum linear twist slope for each advanced ratio µ for UH-60A

The hovering condition requires −13.5 of twist slope along the blade. The required slope decrease

really fast around µ = 0.1 and it’s around −8. Around µ = 0.2 the twist slope reaches −6 and it

increases really slowly with the advanced ratio.

4.1.2 Quadratic Twist

A quadratic twist behaviour along the blade with just one segment is also considered. The twist

follows a parabolic equation. There are three possible applications: the first considers the minimum

of the parabola exactly in the tip of the blade and the others a minimum inside the blade or without a

minimum. To simplify the calculation the minimum is considered at the end of the blade.

θ = ar2 + br + c (4.1)

where θ is the twist, r the adimensional radius and a,b,c the three coefficients that characterize the shape

of the parabola.

Imposing the first derivative egual to zero in the tip:

dθ(r = 1)

dr= 2a+ b = 0 b = −2a (4.2)

32

Page 55: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Equation 4.2 shows the dependence between the constants a and b.

Figure 4.2: a parameter of the parabolic equation - Optimum quadratic twist in function of advanced ratioµ for UH-60A

Considering a minimum exactly in the tip reduces the number of variables. So, it’s possible to study

a non-linear twist distribution without increasing the computational time to obtain the results.

Figure 4.3: Difference tip and root twist - Optimum quadratic twist in function of advanced ratio µ forUH-60A

In Figure 4.2 the change of this ’a’ parameter with forward speed is shown. And also in Figure 4.3 is

plotted the difference in degree between the twist in the root and the one in the tip. In hovering condition,

the concept with one section and linear twist requires −13.5 of twist slope that has to be reduced to

−6. So, the active twist control has to reduce the twist slope of 7.5. Figure 4.3 shows the difference of

the twist between root and tip for the quadratic twist distribution. In hovering the value is around 7 and

33

Page 56: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

in high speed forward flight is less than 3. So, the active twist control concept for the quadratic twist has

to reduce the difference from root and tip only of 4. Figure 4.2 shows how the a parameter changes

with forward speed. This coefficient characterizes the shape of the parabola, in hovering is around of

20, so the twist has to change really fast increasing a little bit the forward speed.

4.1.3 Two sections with linear twist

In the following condition two linearly twisted segments are considered. In a situation like this one

there is an extra parameter that is how to divide the blade in two segments. In order to understand the

effects of the different division four conditions are presented: 40%, 50%, 60% and 70% of the blade

length for the inner part.

Figure 4.4: Optimum two linear twist slopes in function of advanced ratio µ for UH-60A. Blade division in40% - 60%

Figure 4.4 considers a division in 40% for the inner part and 60% for the outer part. Increasing the

forward flight in this condition weakly affects the inner part that looks almost constant and the outer has

the theoretical behaviour where the twisted ratio is reduced in high speed forward flight condition. For the

hovering condition was not possible to find the minimum using the optimization code due to the strongly

non-linear equation that describes the inflow along the blade (when the optimization code, during the

iteration, gets complex numbers fails). For this reason and due to the fact that all the simulations in

forward flight present almost constant twist, the hovering condition is calculated fixing the inner part of

the blade to the value of the forward flight and optimizing only the outer part. This solution couldn’t

represent the minimum power consumption in hovering but gives advantages in term of active twist

control implementation.

All of these simulations present higher oscillations that the other behaviours taken in account due to

the increase of one variable in the optimization code (root and tip twist angle for the one segment linear

twist and ’c’ and ’a’ parameters in the non-linear twist ratio).

34

Page 57: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 4.5: Optimum two linear twist slopes in function of advanced ratio µ for UH-60A. Blade division in50% - 50%

Figure 4.5 divides the blade exactly in half. Also here it’s possible to assume only one linear twist for

all the flight conditions in the first segment.

Figure 4.6: Optimum two linear twist slopes in function of advanced ratio µ for UH-60A. Blade division in60% - 40%

Figure 4.6 is the opposite of Figure 4.4 and the approximation looks feasible yet.

Figure 4.7 considers 70% of the blade for the inner part and just 30% for the outer part. The inner part

has a different behaviour and it’s not possible to consider only one linear twist for all the flight conditions.

35

Page 58: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 4.7: Optimum two linear twist slopes in function of advanced ratio µ for UH-60A. Blade division in70% - 30%

4.1.4 Two sections with linear twist and different airfoils

All of these simulations consider only the SC 1095 airfoil, in Figure 4.8 the blade it’s exactly divided

in two equal parts but two airfoils, the SC 1095 and the SC 1094R8 are used:

Figure 4.8: Optimum two linear twist slope in function of advanced ratio µ for UH-60A. Two airfoils SC1095 and SC 1094R8 with blade division 50% - 50%

Also here, the hovering condition is calculated fixing the inner part to the forward flight value and just

optimizes the outer part twist slope.

The results are quite interesting for the engineering point of view. Thinking about an implementation on

a real rotor could be possible to fix the inner part of the blade and introduce an active twist control only

in the outer part. This kind of solution could reduce the power consumption of the helicopter without

36

Page 59: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

introducing too much weight and other complex elements inside the blade. The concepts with linear or

quadratic distributions require an active twist system that has to modify the twist behaviour from the root

to the tip of the blade. According to some studies [18, 17], a possible solution is to use piezoelectric

actuators that have to be spread along the blade. Each one required a certain amount of power to

generate the electric field to use the actuators. But, these concepts with two segments present an inner

part of the blade that doesn’t require a new redistribution of the twist and for this reason it’s necessary to

place the actuators only in the outer part. The system requires less actuators that means less electrical

power and less weight.

4.1.5 Three linear segments

The last simulation is directly related to the blade shape of the UH-60A: the idea is to consider three

different sections with linear twist and two different airfoils SC 1095 and SC 1094 R8. The real helicopter

has a non-linear twist behaviour divided in three sections but in this analysis three linear segments are

considered. In Figure 4.9 [41] the blade shape of the Sikorsky UH-60A Black Hawk is presented.

Figure 4.9: Blade planform and shape of UH-60A

To simplify the model all the transitions areas are not considered and also the final taper is neglected.

The tip shape is related to compressibility effects that in this model are not considered. So, the inner

part represents the 50% of the blade, then the central part the 35% and the outer part the last 15%.

The solution shows a behaviour similar to the two linear segments, the inner part presents a constant

twist for all the flight conditions. The hovering condition is calculated fixing the inner and outer part with

the same values of the forward flight for the reasons presented before. Also in this simulation the inner

and outer parts present twist distribution almost constant. The central segment shows a twist behaviour

that decreases the slope increasing the forward speed.

This simulation presents, as the other, some oscillations in the results, the complexity of the model in

this condition is related with four parameters that have to be optimized and these are the tip, the root and

the two nodes that connected the three segments. Increasing the forward flight all the results have less

wiggling because the inflow model used describes in a better way the reality with high speed forward

flight.

37

Page 60: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 4.10: Optimum 3 linear twist slopes in function advanced ratio µ for UH-60A

Thinking about an engineering application of this solution is necessary to implement an active twist

control just for the central segment of the blade and it’s possible to fix inner and outer parts.

4.2 Optimum Solution

The Sikosky UH-60A Black Hawk has a blade divided in three segments with two different airfoils.

The real twist is presented in the following picture:

Figure 4.11: Twist behaviour Sikorsky UH-60A Black Hawk [? ]

The twist in the real helicopter is non-linear but can be approximated by a linear twist distribution with

-16 of slope. Now, it’s possible to compare the power consumption between the flight test data and the

38

Page 61: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

three linear segments simulation.

Figure 4.12: Comparison Flight Test Data and Three linear segments

The coefficients of power in function of the advanced ratio µ. The picture with the three linear seg-

ments simulation shows that an optimized twist for each flight condition could really reduce the power

consumption of an helicopter are presented in Figure 4.12.

This is an example to show that there are some advantages, now could be interested calculated how

large are the reductions of power for each solution considered. In the following table some results are

presented:

Table 4.1: Reduction of power between Fixed linear twist and simulations

Simulation concept Reduction of PowerLinear twist -1.34%

Quadratic twist -8.65%2 Segments with 40% - 60% blade division -4.86%2 Segments with 50% - 50% blade division -4.46%2 Segments with 60% - 40% blade division -3.44%2 Segments with 70% - 30% blade division -2.55%

2 Segments, 2 airfoils with 50% - 50% blade division -2.21%3 Segments, 2 airfoils with 50% - 35% - 15% blade division -6.09%

Table 4.1, presents a comparison among all the simulation concepts with a fixed linear twist distribu-

tion of -13.5. The reference twist uses the optimal condition in hovering of the UH-60A with only the SC

1095 airfoil. Using a linear twist with active twist control can reduce the power consumption of 1.34%.

The other solutions give better results, in fact the concepts with two segments can reach a reduction of

4.46%. All of these concepts fix the inner part twist and use an active twist control only for the outer

part. The two segments with 40% - 60% blade division can get higher performance in comparison to

the others because the controlled part is higher (the 60%). At the end there are two concepts: quadratic

39

Page 62: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

twist behaviour and three segments with linear twist that are the two best conditions with 8.65% and

6.09% of power consumption reduction.

In Figure 4.13 linear twist, quadratic twist and three linear twist segments are presented.

Figure 4.13: Power consumption in function of advanced ratio µ for different twist behaviours.

The simulations show, for each flight condition, the power consumption of the UH-60A in function of

the advanced ratio µ. The blade twist changes according to the behaviours calculated in the previous

section, to minimize the power consumption.

The figure represents a graphic point of view of the power reduction achievable with the different con-

cepts. Already is known that the linear twist distribution gives the lowest benefit while the other conditions

the highest. Looking only to the hovering the three linear twist segments gives the lower power consump-

tion but after µ = 0.25 the quadratic twist distribution has better values. In term of power consumption

reduction the non-linear twist represents the best condition but from an engineering point of view there

are some other aspects:

• The non-linear concept requires an active twist control that involves all the blade from the root to

the tip while the three linear twist segments can just use a system for the second segment for only

35% of the blade.

• In the non-linear concept the twist morphing requires higher variations of the parameters that could

produce problems related to fatigue and deformations.

• The weight, the power consumption and the forces required of the actuator in the three linear twist

segments are lower because the system has to control only the 35% of the blade.

After these considerations, looks easier to implement an active twist control for the three linear twist

sections than for the non-linear twist distribution.

40

Page 63: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace
Page 64: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Chapter 5

Concept

5.1 Smart Blades

Active systems can adapt the blade aerodynamic depending on the flight conditions. These are

integrated inside a blade to enhance the performances of modern helicopters. Most concepts improve

the lift to balance the retreating side, the stall behaviour, vibrations, noise or power consumption. There

are three main ideas: flaps, that modify the flow with tabs and slats, morphing systems that change the

blade shape and finally the flow control around the blade.

On helicopter blades, flaps are not designed as a primary control surface but they modify the pro-

duced lift to reduce vibrations [3, 7, 8]. For example an active trailing edge flap can control dynamically

[3, 47], with a deflection of few degrees, the load on the rotor disk. Due to the cyclic variation of loads,

specially in forward flight, the vibration effects occur at 1, 2, 3 and 4 times the rotational frequency of

the blade (for a 4 blades rotor) [48]. For this reason, the actuator has to be actuated with the same fre-

quencies of the loads to cancel them. The maximum reduction obtained was around the 80% [49, 47].

Another application for the trailing edge flap is the noise reduction produced by the blade vortex interac-

tion (BVI) [8, 47, 50]. This is possible with an individual control of each blade.

Another kind of trailing edge system is the Gurney flap that deploys at 90 degrees a small tab that cre-

ates low pressure to bring the separation point closer to the trailing edge [51] but with a drag penalty

[51, 52].

The second concept is the active flow control, instead of modify the geometry it acts directly on the

boundary layer by a re-energization or a suction to bring the separation point closer to the trailing edge

[13]. The actuators are placed in cavities with a jet system. The wind tunnel tests have shown that these

jets can improve the aerodynamic performance if used at a specific frequency [13].

The third and last concept is based on morphing blades. The idea is to modify the aerodynamic

characteristics by a continuous change of the blade shape in the same way the birds and other flying

animals do. The first concept is a variable droop leading edge, it wants to modify the curvature of the

airfoil for high angle of attack to alleviate the dynamic stall [6]. This system can reduce of 50% the drag

produced by the dynamic stall in the retreating blade region. The system reduces the angle of attack

41

Page 65: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

to avoid the dynamic stall but in this way the helicopter maximum speed is reduced due to a decrease

in lift. Another way to control the produced lift is a system that can change the camber of the airfoil.

The lift is increased for the same chord length [47]. The last morphing concept is the active twist, it can

be used to modify statically the blade twist to optimize the rotor at each flight condition or a cyclic twist

control to actively damp vibrations [53]. Early experiments tried to change the twist in the root of the

blade [9, 11, 53], after consider a distributed actuation system along the blade [9, 53]. Almost all the

studies demonstrate a vibration reduction, Thakkar shows up to 69% of reduction [11] and wind tunnel

test a 95% of reduction [9].

Figure 5.1: Active Twist Control [17]

According to these studies [17], an on-blade active control is feasible and efficient to fix typical rotor

problems. Despite this, the helicopter industry has some uncertainties about it due to the high devel-

opment costs, complexity and the risk for a manned flight vehicle. Beside that these developments

represent an important milestone for the Unmanned Aerial Vehicles (UAVs) where the risk is reduced

[17].

5.2 Constraints

All the smart systems embedded on a blade present some constraints due to the blade motion and

related to a long term use of them. Helicopter rotors are designed to work under very high centrifugal

loads. For this reason the weight has to be the minimum possible [6]. Another aspect is the space

available for a smart system, the structural material fills the bigger part of the section and the only space

available is near the trailing edge. Also, all the weight introduced behind the aerodynamic centre has to

be balanced by an extra mass in the leading edge [2]. Very distributed and light systems as the active

twist control can satisfy easily this kind of constraint but for example the droop leading edge needs a

heavy mechanism to deform the leading edge of the profile [54].

In the design of active systems it’s not possible to ignore that the actuator has to work under a centrifugal

acceleration that strongly depends from the radial position. The systems have to be placed near the tip to

maximise the effect on the blade aerodynamic but unfortunately the centrifugal forces there are higher.

42

Page 66: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

The only solution is to use a very light system. In addition to the centrifugal loads there are a lot of

vibrations that have to be taken in account to avoid premature failure of the component.

Helicopter blades are designed for 10 000 flight hours [55], an active system need to have a design

life superior to the blade without losing performance through the operational life. In typical applications

both pneumatic and hydraulic system are used and also recently electrical mechanisms have reached

equivalent level of safety [56]. Beside the design life of a component there is also the event of failure.

This could be really dangerous for all the systems that modify the geometry of the airfoil and it’s important

to guarantee that the helicopter remains stable and controllable. This is not the case of the active twist

control because the only effects in event of failure are reductions in performance and control of vibrations

[6].

The last aspect is connected to the power needed to operate the actuator. It’s possible to provide a

certain amount of power with a negative effect related to the increase of the rotor hub complexity [57].

Large helicopter blades include a de-icing system for high altitude and a typical power it’s around 1kW

for each blade. This could give an idea about the maximum power consumption for the active systems.

5.3 Piezoelectric Actuation Systems

At the end of the 19th century, Pierre and Jacques Curie discovered that some materials have the

property to produce electrical energy if deformed [58]. This is the direct piezoelectric effect. It’s also

possible the opposite, a piezoelectric material subjected to an electric field deforms according to the

magnitude of the electric field and this is called converse piezoelectric effect.

It’s possible to characterize a piezoelectric material by strain constants dij where i represents the elec-

tric field direction and the j the deformation direction. Piezoelectric materials present below the curie

temperature TC a dielectric moment along one direction. In Figure 5.2 is the axis number 3:

Figure 5.2: Piezoelectric Deformation [6]

If the electric field is applied in the direction of the polarization the material extends along that direc-

tion and contracts in the other two directions. Of course, changing the direction of the electric field the

behaviour is the opposite. In almost all the piezoelectric materials the two other directions perpendicular

to the moment of polarization have the same strain constants.

43

Page 67: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Taking in account the analytical formulation with only external electric field applied, the strain vector can

be expressed as:

ε1

ε2

ε3

γ23

γ31

γ12

=

0 0 d31

0 0 d32

0 0 d33

0 d24 0

d15 0 0

0 0 0

·

Ev1

Ev2

Ev3

(5.1)

where the Evi are the components of the electric field, εi and γij the normal stress and shear compo-

nents.

According to previous studies [47, 59, 60], the zirconate titanate piezoceramic (PZT) constitutes

the best materials for actuation applications because they have better displacement capabilities but

they are not convenient for integration. For this reason the Active Fibre Composite (AFC) and Macro

Fiber Composites (MFC) are preferred for the active twist control. They consist of piezoceramic fibers

embedded inside polymer substrate. AFC has circular fibers while MFC rectangular fibers to improve

the contact with the electrodes. These electrodes are glued on the top and the bottom of the composite

material and there are two ways to build the actuator in function of which dij constant the concept needs.

Figure 5.3: Continuous Electrode vs Interdigitaded Electrode [61]

The continuous electrode has a direction of polarization perpendicular to the composite fibers and

works in d31 mode while the new shape of the interdigitated electrode generate an electric field in the

direction of the fibers. The electric fields are shown in Figure 5.4.

The piezoelectric properties are complex to calculate, there are some homogenization techniques

[59, 61]] to derive the macroscopic behaviour of the component.

The different shape between the fibers in AFC and MFC greatly influences the composite performances.

The MFC actuator with rectangular fibers has more area in direct contact with the interdigitated elec-

trodes, which minimizes electric field attenuation by the low dielectric epoxy matrix [18]. In Figure 5.5 is

44

Page 68: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 5.4: Continuous Electrode vs Interdigitaded Electrode Electric field [61]

comparized the free-strain between MFC and AFC.

Figure 5.5: Free Strain Comparison MFC and AFC [18]

The Macro Fibers Composite actuator has performance 2.5 times higher than the Active Fibers Com-

posite.

A new technology is developed by Physik Instrumente that uses a d33 patch actuator as shown in Fig-

ure 5.6.

A. Paternoster [6] did, in his thesis, a comparison between the MFC and the d33 patch actuator from

Physik Instrumente. The difference is the electric field generated in the two conditions: the MFC electric

field is not homogeneous and it depends by the shape of the interdigitated electrodes while the patch

actuator electric field goes straight through the material as shown in Figure 5.7.

The actuators that Paternoster considered, are a MFC from Smart-Material and a PICMA piezoelec-

tric stack actuator from Physik instrumente. All the properties are listed in the following table Table 5.1:

The d33 coefficient is a parameter related to the chemical capability of the piezoelectric material,

the equivalent one takes also in account the superior design of the patch actuator. The MFC with the

45

Page 69: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Figure 5.6: Micro Fiber Composite Actuator [6]

Figure 5.7: Electric Field Comparison between MFC and patch actuator

interdigitated electrode cannot efficiently apply an electric field in the same way of the patch actuator.

The comparison gives some observations:

• The Physik Instrument d33 patch actuator requires 10 times lower voltage to achieve the same

strain of the MFC, the explanation is related to the small spacing between the electrodes of the

patch actuator.

• The equivalent d33 coefficient of the patch actuator is a little bit higher than the MFC actuator.

• The free strain of the MFC actuator is higher than the patch actuator due to the higher maximum

voltage that it’s possible to apply to the actuator.

In conclusion the two actuators present similar performance, the patch actuator requires 10 times

less voltage to obtain same strain and could be a good solution if there are integration problems to

transmit large voltages through the rotor hub. The MFC requires higher voltage but also has an higher

free strain at the maximum operational voltage.

5.4 Application

In chapter 4, the results show that implement an active twist control can reduce the induced power.

The solution with three linear twist segments is the most convenient because requires an active twist

control only for the 35% of the blade and reduces the power consumption of 6.09% in comparison to a

fixed twist blade. According to bibliography [18, 17], the actuators have to be placed along the blade with

46

Page 70: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Table 5.1: Actuators Properties [6]

MFC 4010-P1 PI d33 actuatorActive length [mm] 40 15.5Active width [mm] 10 4.6

Active thickness [mm] 0.3 0.3Length [mm] 54 36Width [mm] 22 8

Maximum Voltage [V] 1500 130Electrode Layer Spacing [µ m] 500 55

d33 coefficient [pC/N] 460 400equivalent d33 coefficient [pC/N] 440 450

Capacitance [nF] 1 100Free strain per volt [µ strain/V] 0.87 8.2

Max free strain [µstrain] 1300 1100

an orientation +45 or −45 to maximize the effect. Figure 5.8 represents a UH-60A rotor blade and the

black box is the 35% where the active twist control has to be placed.

Figure 5.8: UH-60A rotor blade with black box to identify the active part

The simulation for the three linear twist segments for the UH-60A Black Hawk shows in the second

section a twist slope range from −5 and −1 from µ = 0 to µ = 0.35. So, there are three main concepts:

• Build the blade optimized for hovering condition and an active twist control that reduces the twist

slope increasing the forward flight. The actuators have to be placed oriented from the leading edge

to the trailing edge for the top of the blade and the opposite for the bottom (always with 45). This

is important because the higher coefficient d33 it’s only for the elongation. With an inversion of

the electric field the deformation is related to the d31 coefficient. In hovering condition the active

twist control doesn’t require power and in case of failure the rotor remains optimized for hovering

condition.

• Build a blade optimize for high speed forward condition and then increases the twist slope for all

the other flight situations. The orientations of the actuators is the opposite of the previous case.

• Build a blade optimize for an intermediate condition around −3. The advantage is to use the

actuators in the two directions but only for half of the range needed in the two other cases. The

actuators in both top and bottom are placed in the same directions but top and bottom are going

47

Page 71: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

to work always with different mode: one in d31 and the other d33. In this way the system works

exactly in the same condition with negative or positive polarization.

The active twist control has to be implemented on a section with length = 2.86 m and the concepts

consider distribution of actuators in the top and bottom of the blade as shown in Figure 5.9.

Figure 5.9: Airfoil with actuators

It’s possible to do a simplify calculation with the three concepts. In the analysis is considered the

best condition where every actuator can reach the maximum strain. This is important to understand the

theoretic minimum number of actuators for each concept.

Table 5.2: Actuators and Concepts Comparison

MFC 4010-P1 PI d33 actuatorMaximum Rotation for each Actuator [] 0.1 0.0325

Concept 1: Required Number of Actuators 40 123Concept 2: Required Number of Actuators 40 123Concept 3: Required Number of Actuators 20(one side) - 28(two sides) 62(one side) - 84(two sides)

Maximum Number of Actuators 158 714

The maximum rotation for each actuator represents the changing in twist due to an actuator placed

on the top or on the bottom of the blade. It considers free strain elongation of the actuators and the

distance from the rotational axis of the airfoil. The first two concepts need 4 of changing twist in total

and require a minimum number of actuators to achieve this. The last concept requires only 2. The

effect in d31 mode is around an half the d33 mode. The minimum number is done considering the same

number of actuators for bottom and top and in total are 28 for the MFC and 84 for the patch actuator.

This calculation shows that the patch actuator can achieve the same result with an high number of ac-

tuators but less voltage and less dimensions. The MFC will occupy the 25% of the first two concepts

and the 18% for the third while the patch actuator requires the 17% and the 11% of the available space.

About the power consumption using the patch actuator the electrical power consumption is reduced of

70%.

Until now, the concept is not complete but as future work the idea is to do a FEM analysis to under-

stand the twist changing that the system can induce. There are some studies, for example by Koalovs,

Barkanov and Gluhihs [18], that consider all the material properties of each part of the blade (spar, lead,

foam and skin) with embedded the MFC actuator. They did a 3D finite element model in ANSYS and

analysed the piezoelectric effect with the thermal analogy between piezoelectric effect and thermoelastic

effect. So, the applied electric field is modelled as a thermal load. The analogy is:

48

Page 72: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

αij =dij

∆ES(5.2)

where α is the thermal strain, d the piezoelectric coefficient and ∆ES the spacing between the elec-

trode. The steady-state thermal analysis determines the torsion angle of the rotor blade as shown in

Figure 5.10.

Figure 5.10: Torsion Angle of the Thermal Analysis [18]

49

Page 73: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

50

Page 74: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Chapter 6

Conclusions

In this thesis variable blade twist is used to reduce rotor power and improve helicopter performance.

A simplified model based on BEM and blade element theory to calculate the aerodynamics loads of the

helicopter is used [1]. The database of the airfoil is obtained by a simulation using Xfoil for 2D profiles

[30]. The inflow models are analytical, one for hovering condition [31] and the Pitt - Peters model [32]

for forward flight that gives higher correlation with flight data for advanced ratio higher than 0.1. All the

effects due of tip and hub loss, reverse flow and flapping behavior are also considered [37, 1]. Several

solutions are taken into account and all of those can reduce the power consumption and optimize the

helicopter in each flight condition: one section with linear or quadratic twist behaviour, two sections with

linear twist distributions but different blade divisions with one or two airfoils and finally the three sections

linearly twisted with two airfoils. The best solution comes from a compromise between complexity, weight

and power consumption of the active twist control system and benefit produced by the actuation.

In term of power consumption reduction a comparison among all the concepts is done. The reference

condition is a fixed linear twist distribution of −13.5 of slope. The highest power consumption reduction

comes from the simulation with one section and quadratic twist distribution and the result is 8.65%. The

concept with linear twist along one section gives the lowest power consumption reduction around 1.34%.

Another concept with good result is the three linear sections that can provide a power consumption

reduction around 6.09%.

In current studies, ATC system is used primarly to reduce the vibrations and it’s a piezoeletric com-

posite material able to create torques if connected with electricity.

All the concepts with two or three sections show something interesting, the twist slope of the inner part

of the blade remains almost constant changing the advanced ratio and in the three sections concept also

the outer part remains almost with constant slope. So they don’t require an active twist control system

that has to be spread along all the blade. Taking in account the main interesting concepts, the three

sections and the quadratic there are some differences: the non-linear concept requires an active twist

control that involves all the blade from the root to the tip while for the three linear sections it’s enough to

placed the ATC in the central section for just 35% of the blade length. So, there are advantages about

electrical power consumption and reduction of the weight of the actuators.

51

Page 75: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

The ATC concept is based on piezoelectric actuation. The idea is to place the actuators in both top

and bottom of the blade to maximize the effect. The two actuators that could be used are the Micro

Fiber Composites (MFC) and the patch actuator from Physik Instrumente. The difference between the

two actuators is in the electric field generated, the first one has a not homogeneous electric field that

depends by the shape of the interdigitaded electrodes while the patch actuator electric field goes straight

through the material. Due to this property, the patch actuator requires 10 times less voltage to achieve

the same strain of the MFC and it is also smaller.

Finally, an application of these systems on the three linear twist segments is done. The actuators

have to be placed only for the 35% of the blade with an orientation of +45 or −45 to produce the

torque needed. In hovering condition the required twist slope in the central segment is around −5 while

in high speed forward flight is −1. So the range for the actuators is around 4 of twist slope. There are

three concepts: optimize the blade in hovering condition and then actuation for all the other situation,

optimize for high speed forward flight or a middle condition that requires only half of the range but in the

two directions.

A simple analysis to understand the theoretical minimum number of actuators is done. The hypotesis is

that each actuator can reach the maximum stain (the free strain) also if it is placed on the blade. The

first two concepts with MFC require the 25% of the blade area, the last one in a middle condition only

the 18% while the patch actuator requires the 17% and 11%. In term of electrical power consumption

the patch actuator can achieve a reduction of the 70% in comparison to the MFC actuator.

6.1 Future Work

The first step, in future works, is analysis of the MFC and patch actuators embedded in a blade and

the torque and morphing that are able to produce. This is necessary to understand what are the number

of actuators that are needed. The calculations done in this thesis took in account only the Sikorsky

UH-60A Black Hawk and the results strongly depend on initial parameters that characterize helicopter

and main rotor. So, a possible application has to be done only on this helicopter or on a scaled model.

There are some aspects that are not taken in account for example how to provide electrical power to the

blade and how the inboard computer has to control the actuators.

52

Page 76: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace
Page 77: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Bibliography

[1] J. Leishman. Principles of Helicopter Aerodynamics. Cambridge Aerospace Series, 2nd edition,

2006. ISBN:9780521523967.

[2] F. Straub, D. Kennedy, and A. Stemple. Development and Whirl Tower Test of the Smart Active Flap

Rotor. Smart structures and materials. International Society for Optics and Photonics, 2004.

[3] N. Koratkar and I. Chopra. Wind Tunnel Testing of A Mach-Scaled Rotor Model with Trailing-edge

Flaps. Smart Materials and Structures, 10(1):1, 2001.

[4] A. Bernhard and J. Wong. Wind-tunnel Evaluation of Sikorsky Active Rotor Controller Implemented

on the NASA/ARMY/MIT Active Twist rotor. Journal of American Helicopter Society, 50(1):65–81,

2005.

[5] P. A. and A. S. Helicopter Blade Morphing Strategies Aimed At Mitigating Environmental Impact.

Journal of Theoretical And Applied Mechanics, 49(4):1233–1259, 2011.

[6] A. Paternoster. Smart Actuation Mechanisms for Helicopter Blades. PhD thesis, University of

Twente, Enschede, The Netherlands, Febraury 2013.

[7] S. Viswamurthy and R. Ganguli. An Optimization Approach to Vibration Redution in Helicopter

Rotors with Multiple Active Trailing Edge Flaps. Aerospace Science and Technology, 8(3):185–

194, 2004.

[8] A. Altmikus, A. Dummel, R. Heger, and D. Schimke. Actively Controlled Rotor: Aerodynamic and

Acoustic Benefit for the Helicopter Today and Tomorrow. 34th European Rotorcraft Forum, 2008.

[9] M. Wilbur, P. Mirick, W. Yeager, C. Langston, C. Cesnik, and S. Shin. Vibratory Loads Reduction

Testing of the NASA/Army/MIT Active Twist Rotor. Journal of the American Helicopter Society, 47

(2):123–133, 2002.

[10] M. Wilbur, W. Wilkie, C. Cesnik, and S. Shin. Design and Manufacturing of a Model-scale Active

Twist Rotor Prototype Blade. Journal of Intelligent Material Systems and Structures, 19(12):1443–

1456, 2008.

[11] D. Thakkar and R. Ganguli. Induced Shear Actuation of Helicopter Rotor Blade for Active Twist

Control. Thin-Walled Structures, 45(1):111–121, 2007.

53

Page 78: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

[12] J. Riemenschneider, S. Opitz, M. Schulz, and V. Plassmeier. Active Twist Rotor for Wind Tunnel

Investigations. ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent

Systems, 2010.

[13] D. Greenblatt and I. Wygnanski. The Control of Flow Separation by Periodic Excitation. Progress

in Aerospace Science, 36(7):487–545, 2000.

[14] A. Paternoster, R. Loendersloot, A. deBoer, and R. Akkerman. Geometrical Optimization of Hin-

geless Deployment System for an Active Rotor blade. Journal of Intelligent material systems and

structures, 24(7):855–861, 2013.

[15] E. Brouwers, T. Zientek, and L. Centolanza. Twist Effect on Rotor Perfomance, Loads and Vibra-

tions. 71st Forum of the American Helicopter Society, 2015.

[16] D. Leusink, D. Alfano, P. Cinnella., and J. Robinet. Aerodynamic Rotor Blade Optimization at Eu-

rocopter a New Way of Industrial Rotor Blade Design. 51st AIAA Aerospace Sciences Meeting,

2013.

[17] M. Wilbur and W. Wilkie. Active Twist Rotor Control Applications for UAVs. Selected topics in

electronics and systems 42, 185, 2004.

[18] A. Kovalovs, E. Barkanov, and S. Gluhihs. Numerical Optimization of Helicopter Rotor Blade Design

for Active Twist Control. Institute of Materials and Structures, Riga Technical University, 11(3):3–9,

2007.

[19] D. Han, V. Pastrikakis, and G. Barakos. Helicopter Performance Improvement by Variable Rotor

Speed and Variable Blade Twist. Aerospace Science and Technology, 54:164–173, 2016.

[20] P. Chen and I. Chopra. Hover Testing of Smart Rotor with Induced-Strain Actuation of Blade Twist.

AIAA Journal, 35(1):6–16, 1997.

[21] P. Chen and I. Chopra. Wind Tunnel Test of a Smart Rotor Model with Individual Blade Twist Control.

Journal of Intelligent Material Systems and Structures, 8(5):414–425, 1997.

[22] R. Cheng and R. Celi. Optimum Two-per-Revolution Inputs for Improved Rotor Performance. Jour-

nal of Aircraft, 42(6):1409–1417, 2005.

[23] R. Jain, H. Yeo, and I. Chopra. Computational Fluid Dynamics-Computational Structural Dynamics

Analysis of Active Control of Helicopter Rotor for Performance Improvement. Journal of American

Helicopter Society, 55(4):42004–42004, 2010.

[24] C. Sky. Clean Sky Joint Technology Initiative. http://www.cleansky.eu, 2012.

[25] A. Glazounov, Q. Zhang, and C. Kim. Torsional Actuator and Stepper Motor Based on Piezoelectric

d15 Shear Response. Journal of Intelligent Material Systems and Structures, 11(6):456–468, 2000.

[26] A. Glazounov, Q. Zhang, and C. Kim. Torsional Actuator Based on Mechanically Amplified Shear

Piezoelectric Response. Sensors and Actuators A. Physical, 79(1):22–30, 2000.

54

Page 79: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

[27] G. Srinivasan. A Free-Wake Euler and Navier-Stokes CFD Method and its Application to Helicopter

Rotors Including Dynamic Stall. JAI Associates, Inc. Technical Report 93-01, 1993.

[28] J. Steinhoff and R. Krishnamurthi. Free Wake Analysis of Helicopter Rotor Blades in Hover using a

Finite Volume Technique. U.S. Army Research Office, 1988.

[29] W. Rankine. On the Mechanical Principles of the Action of Propellers. Transactions of the Institute

of Naval Architects, 6:13–39, 1865.

[30] M. Drela. Xfoil Software and Documentation. Xfoil 6.99 (Unix, Windows), page

http://web.mit.edu/drela/Public/web/xfoil/, 2013.

[31] R. Chen. A survey of Nonuniform Inflow Models for Rotorcraft Flight Dynamics and Control Appli-

cations. NASA Technical Memorandum 102219, 1989.

[32] D. Pitt and D. Peters. Theoretical Prediction of Dynamic Inflow Derivatives. Vertica, 5:21–34, 1981.

[33] J. Halwickr. Implementation of Blade Element Theory in CFD Analysis of Edgewise Ducted Fan

Vehicles. PhD thesis, The Pennsylvania State University, August 2012.

[34] Fmincon and M. Mathworks. Find Minimum of Constrained Non-linear Multivariable Function.

http://it.mathworks.com/help/optim/ug/fmincon.html, 2016.

[35] G. Search and M. Mathworks. Find Global Minimum. http://it.mathworks.com/help/gads/globalsearch-

class.html, 2016.

[36] J. Totah. A Critical Assessment of UH-60 Main Rotor Blade Airfoil Data. NASA Tehcnical Memo-

randum 103985, page 13, 1993.

[37] P. Moriarty and A. Hansen. AeroDyn Theory Manual. National Renewable Energy Laboratory,

2005.

[38] M. ODE45. Solve Nonstiff Differential Equation. http://it.mathworks.com/help/matlab/ref/ode45.html,

2016.

[39] H. Yeo, W. Bousman, and W. Johnson. Performance Analysis of a Utility helicopter with Standards

and Advanced Rotors. Journal of American Helicopter Society, 49(3):250–270, 2004.

[40] S. Davis. Predesign Study for a Modern 4-bladed Rotor for the RSRA. Technical Report NASA -

CR - 166155, 1981.

[41] W. Bousman. Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils. NASA / TP - 2003

- 212265, 2003.

[42] C. Keys, F. Tarzanin, and F. McHugh. Effect of Twist on Helicopter Performance and Vibratory

Loads. 13th European Rotorcraft Forum, 1987.

[43] W. Paul and R. Zincone. Advanced Technology Applied to the UH-60A and S-76 Helicopters. 3rd

European Rotorcraft and Powered Lift Forum, 1977.

55

Page 80: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

[44] A. Gessow and G. Myers. Aerodynamics of the Helicopter. Frederick Ungar Publishing Co., 1967.

[45] F. Perry, J. Wilby, P. Jones, and G. Jones. The BERP Rotor - How Does it Work and What Has it

Been Doing Lately? Vertiflite, 44(2):44–48, 1998.

[46] I. ElQatary and B. Elhadidi. Comparison between OpenFOAM CFD and BEM theory for variable

speed and variable pitch HAWT. ITM Web of Conferences 2, 2014.

[47] P. Friedmann, M. deTerlizzi, and T. Myrtle. New Developments in Vibration Reduction with Actively

Controlled Trailing Edge Flaps. Matehmatical and Computer Modellingl, 33(10-11):1055–1083,

2001.

[48] A. Bramwell, G. Done, and D. Balmford. Bramwell’s Helicopter Dynamics. Elsevier, 2000.

[49] I. Chopra. Review of State of Art of Smart Structures and Integrated Systems. AIAA Journal, 40

(11):2145–2187, 2008.

[50] Y. Yu, B. Gmelin, and W. Splettstoesser. Reduction of Helicopter Blade-Vortex Interaction Noise by

Active Rotor Control Technology. Progress in Aerospace, 33(97):647–687, 1997.

[51] M. Singh, K. Dhanalakshmi, and S. Chakrabartty. Navier-Stokes Analysis of Airfoils with Gurney

Flap. Journal of Aircraftl, 44(5):1487–1493, 2007.

[52] K. Yee, W. Joo, and D. Lee. Aerodynamic Performance Analysis of a Gurney Flap for Rotorcraft

Application. Journal of Aircraft, 44(3):1003–1014, 2007.

[53] R. Barrett and J. Stutts. Design and Testing of a 1/12th-Scale Solid State Adaptive Rotor. Smart

Materials and Structures, 6(4):491, 1997.

[54] S. Kota, G. Ervin, and R. Osborn. Design and Fabrication of an Adaptive Leading Edge Rotor

Blade. American Helicopter Society Annual Forum, 64(3), 2008.

[55] J. Kwon, K. Hwang, S. Kim, P. Kim, and C. Kim. Fatigue Life Evaluation in Composite Rotor Blade of

Multipurpose Helicopter. Proceedings 6th Russian - Korean International Symposium on Science

and Technology, pages 15–20, 2002.

[56] J. Bennett, B. Mecrow, A. Jack, D. Atkinson, S. Sheldon, B. Cooper, G. Mason, C. Sewell, and

D. Cudley. A Prototype Electrical Actuator for Aircraft Flaps and Slats. IEEE International Confer-

ence on Electric Machines and Drives, 46(3):915–921, 2005.

[57] A. Haber, S. Jacklin, and G. DeSimone. Development, Manufacturing and Component Testing of

an Individual Blade Control System for UH-60 Helicopter Rotor. American Helicopter Society Aero-

dynamics Acoustic, and Test and Evaluation Techinical Specialists Meeting, 2002. San Francisco,

CA.

[58] P. Curie and J. Curie. Developpement, Par Pression, de l’Electricite Polaire dans les Cristaux

Hemiedres a Faces Inclinees. Comptes rendus hebdomadaires des sceances de l’Academie des

Sciences, 1880.

56

Page 81: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

[59] C. Nguyen and X. Kornmann. A Comparison of Dynamic Piezoactuation of Fiber - based Actuators

and Conventional PZT Patches. Journal of Intelligent Material Systems and Structures, 17(1):45–

55, 2006.

[60] S. Mekid and B. Lim. Characteristics Comparison of Piezoelectric Actuators at Low Electric Field:

Analysis of Strain and Blocking Force. Smart Materials and Structures, 13(5):93–98, 2004.

[61] A. Deraemaeker and H. Nasser. Numerical Evaluation of the Equivalent Properties of Macro Fiber

Composite (MFC) Transducers using Periodic Homogenization. International Journal of Solids and

Structures, 47(24):3272–3785, 2010.

57

Page 82: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

58

Page 83: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

Appendix A

Appendix: Matlab Code

A.1 Main Code

%========================================================================

% Blade Element Momentum Theory (BEMT) and Blade Element Theory (BET)

% Marco Lonoce - November 2016

%

%========================================================================

%% Acquisition of the informations about the Airfoil

clear all %#ok<CLSCR>

close all

clc

global p CT real solidity matrix dr d2r r matrix phi Ut azimut lambda PP solidity Nb CT req CL real ...

slope exp r p clalpha p cdalpha p clalpha2 p cdalpha2 theta mu R min R max

% Open Xfoil file - Read Only

fid = fopen('sc1095.txt', 'r');

for l=1:12

tline = fgetl(fid); %#ok<NASGU> % Skipping the first 12 rows

end

a = fscanf(fid,'%f', [7 Inf]);

fclose(fid);

clear tline l fid

%% Characterstics of the Airfoil

alpha = a(1,:); %Angle of Attack

CL = a(2,:); %Coefficient of Lift

59

Page 84: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

CD = a(3,:); %Coefficient of Drag

clear a

%% Calculation of Cl alpha - Linear Regression

x = alpha(35:111)';

y = CL(35:111)';

slope exp = (x\y)*(180/pi);

clear x y

%% Interpolation

p clalpha = polyfit(alpha,CL,5);

p cdalpha = polyfit(alpha,CD,7);

%% Other airfoil

% Open Xfoil file - Read Only

fid = fopen('sc1094r8.txt', 'r');

for l=1:12

tline = fgetl(fid); %#ok<NASGU> %

end

a = fscanf(fid,'%f', [7 Inf]);

fclose(fid);

clear tline l fid

%% Characterstics of the Airfoil

alpha = a(1,:); %Angle of Attack

CL = a(2,:); %Coefficient of Lift

CD = a(3,:); %Coefficient of Drag

clear a

%% Interpolation

p clalpha2 = polyfit(alpha,CL,5);

p cdalpha2 = polyfit(alpha,CD,7);

%% Input Data

n = 200; %Number of radial stations to calculate

Nb = 4; %Number of blades

c tip = 0.5273; %Blade Chord Length - tip - meters

60

Page 85: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

RPM = 257.831; %Rev / Min

W = 8322.4; %Mass of the helicopter in kg

R max = 8.1778; %Radius in meters

R min = 1.39; %Root cut-off in meters

h = 0; %Altitude in meters

Vc = 0; %Climb velocity - m/s

%% Preliminary Calculations

rho = 1.225*((288-0.0065*h)/288)ˆ4.2561; %Density kg/mˆ3

rev = RPM*(2*pi)/60; %Radians per second

dr = (1-R min/R max)/n; %Radial increment - adimensional

r = ((R min/R max):dr:1); %preallocating the r-range

Ad = pi*((R max)ˆ2); %Disk Area - mˆ2

d2r = pi/180; %deg to radians

CT req = (W*9.807)/(rho*Ad*(rev*R max)ˆ2); %Thrust coefficient requested in hovering

taper = 1; %Vector with all the taper ratios

lambda climb = Vc/(rev*R max); %Adimensional inflow velocity for climb

%% Characteristic of the blade for Flapping

mass meter = 13.92; %Mass for meter kg/m

Ib = sum(mass meter*R max*((r*R max-R min).ˆ2)*dr); %Inertial Moment

%% Parameters for the convergence and the parametric analysis

toll = 0.0025; %tollerance in deg for the calculation of the hovering condition CT

iteration = 5000; %number of iteration for the convergence

toll result = 0.075;

step = 0.5; %Step for parametric analysis of the twist (changing in the root)

t s = 5; %Fixed starting value for the tip

theta start = t s; %Starting value for alpha in section root - in deg

theta final = theta start+15;%Deg - Final value in the root section

row index = length(taper)*(length(theta start:step:theta final));%Solutions Matrix

format long

%% Forward Flight - Input Data

Vf = linspace(0.1*rev*R max,0.25*rev*R max,20); %Flight Range

Vf = [0 Vf]; %Including hovering condition in the analysis

graph mat = zeros(length(Vf),10);

61

Page 86: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

hbar = waitbar(0,'Calculation phase'); %Wait Bar

%Initialization of the flapping coefficents

beta0 = 0*d2r;

A = 0*d2r;

B = 0*d2r;

for i 2 = 1:length(Vf)

if Vf(i 2) == 0

mu = 0;

end

%Do the calculation only if there is forward flight

if Vf(i 2)~=0

mu = Vf(i 2)/(rev*R max); %Advanced Ratio

f drag = 0.020; %Coefficient of drag for parasitic drag

A eq = 4.65; %Wetted Area

drag ext = 0.5*rho*(Vf(i 2)ˆ2)*f drag*A eq; %Parasitic Power Estimation

a tpp = -atan(drag ext/(W*9.807)); %Inclination of the TPP - function of the forward speed

azimut = linspace(0,360,100); %Azimut in degree

azimut = azimut*d2r; %Azimut in radians

% Flapping Behavior

%Control to avoid NaN if the previous iteration fails

if isnan(beta0)

beta0 =0;

end

if isnan(A)

A = 0;

end

if isnan(B)

B=0;

end

beta = beta0 - A*cos(azimut) - B*sin(azimut);

dbeta = A*sin(azimut) - B*cos(azimut);

% Coefficient of Parasitic Power

CP parassite = (drag ext*Vf(i 2))/(rho*A eq*(rev*R max)ˆ3);

end

62

Page 87: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

% Forward Flight - Inflow Model Calculations

if Vf(i 2)~=0

%Average Inflow Model - Momentum Theory

syms lam in

fun = @(lam in) lam in - CT req/((2*cos(a tpp))*(sqrt((mu*cos(a tpp))ˆ2+(lam in)ˆ2)));

lam2 = solve(fun,lam in);

lam2 = double(lam2);

lam = lam2(2);

%Linear Model - Pitt & Peters (1981)

skew angle = atan(mu*cos(a tpp)/(lam - mu*sin(a tpp)));

Kx = (15*pi/23)*tan(skew angle/2);

lambda PP = lam*(1+Kx*(r')*cos(azimut));

%Velocities

r matrix = (r')*ones(1,length(azimut));

azimut matrix = ones(length(r),1)*azimut;

ones mat = ones(length(r),length(azimut));

Ut = rev*r matrix*R max + Vf(i 2)*sin(azimut matrix);

Up = (lambda climb*ones mat+lambda PP)*(rev*R max) ...

+ (r')*dbeta*R max + mu*rev*R max*ones(length(r),1)*(beta.*cos(azimut));

phi = atan(Up./Ut);

mean phi = mean(mean(phi));

dim phi = size(phi);

%Adimensional Velocity

dim = size(r matrix);

dim1 = dim(1);

velocity adim = r matrix+mu*ones(dim1,1)*sin(azimut);

end

% Optimization phase

if mu == 0

solution matrix = zeros(row index,7);

riemp hor = 1;

%Cycle for different taper

for i = 1:length(taper)

63

Page 88: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

tap = taper(i); %Taper considered in this iteration

%Chord and solidity are defined with taper

c = c tip + r*(c tip*tap - c tip);

solidity = (Nb*c)/(pi*(R max)); %Local Solidity in function of the chord

%Parametric Analysis for Hovering

for k = theta start:step:theta final

error cond = -1; %Flag for calculation of hovering condition

CT real = 1; %initial value --> too big

contatore = 0; %initialization for convergence

slope fix = t s - k;

k2 = k;

while (error cond > toll result | | error cond < 0) && contatore < iteration

theta1 = k2 +0*r*0.5;

theta2 = k2 +slope fix*r*0.35;

theta3 = k2 + slope fix - 1.5*r*0.15;

dim r = size(r);

theta hov = zeros(dim r(1),dim r(2));

for i boom=1:dim r(1)

for j=1:dim r(2)

if r(i boom,j) < 0.5

theta hov(i boom,j) = theta1(i boom,j);

elseif r(i boom,j)>=0.5 && r(i boom,j)<=0.85

theta hov(i boom,j) = theta2(i boom,j);

elseif r(i boom,j)>0.85

theta hov(i boom,j) = theta3(i boom,j);

end

end

end

F=1;

%Iteration for tip and hub losses

for lambda index=1:10

lambda = ((solidity.*slope exp)./(16.*F)).*(sqrt(1+ ...

((32*F)./(solidity.*slope exp)).*theta hov.*r*d2r)-1);

lambda(end) = lambda(end-1);

64

Page 89: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

alpha real = theta hov*d2r - lambda./r; %alpha in radians

alpha real = alpha real/d2r; %alpha in deg

CL real = polyval(p clalpha,alpha real);

CD real = polyval(p cdalpha,alpha real);

for i boom2=1:dim r(1)

for j=1:dim r(2)

if r(i boom2,j)>=0.5 && r(i boom2,j)<=0.85

CL real(i boom2,j) = polyval(p clalpha2,alpha real(i boom2,j));

CD real(i boom2,j) = polyval(p cdalpha2,alpha real(i boom2,j));

end

end

end

f = (Nb/2)*((1-r)./lambda);

F = (2/pi)*acos(exp(-f));

f2 = (0.95/2)*((r-R min/R max)./lambda);

F2 = (2/pi)*acos(exp(-f2));

end

CT real = sum(0.5*solidity.*F.*F2.*CL real.*(r.ˆ2)*dr);

error cond = (CT real - CT req)/CT req;

%Repeat the Iteration if the CT is not guarantee

%Original Code converges faster

if error cond < 0

k2 = k2 + toll;

elseif error cond >= toll result

k2 = k2 - toll;

end

contatore = contatore + 1;

end

if contatore == iteration

fprintf('Error in the convergence, %.2f %.4f %.4f \n', tap,k2,slope fix);

else

%Induced coefficient of power

CP ind = sum(lambda.*0.5.*solidity.*CL real.*(r.ˆ2)*dr);

%Profile drag

65

Page 90: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

CP profile = sum(0.5*solidity.*CD real.*(r.ˆ3)*dr);

%Drag

CP tot = CP ind + CP profile;

if riemp hor == 1

CP ref = CP tot;

end

CP err = (CP tot - CP ref)*100/CP ref;

%Solution Matrix

solution matrix(riemp hor,:) = [tap k2 slope fix ...

CP ind CP profile CP tot CP err];

end

riemp hor = riemp hor + 1;

end

end

else

tap = taper; %Taper considered in this iteration - Rename

c = c tip + r*(c tip*tap - c tip);

c matrix = (c')*ones(1,length(azimut));

solidity = (Nb*c)/(pi*(R max));

solidity matrix = (solidity')*ones(1,length(azimut));

error cond = -1;

cont = 0;

while abs(error cond) > toll result

while abs(error cond) > toll result | | exitflag == -2 | | fval < 0 | | cont > 5

objectivefunction = @funtominimize;

x0 = [10 8 6 4 ];

LB = [0 0 0 0];

UB = [20 20 20 20];

constraintfunction = @fmc constraint;

gs = GlobalSearch;

opts = optimoptions(@fmincon,'Algorithm','interior-point');

problem = createOptimProblem('fmincon','x0',x0,'objective',objectivefunction, ...

'nonlcon',constraintfunction,'lb',LB,'ub',UB,...

66

Page 91: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

'options',opts);

[x,fval,exitflag] = run(gs,problem);

error cond = (CT real - CT req)/CT req;

cont = cont+1;

end

f = (Nb/2)*((1-r matrix)./(r matrix.*abs(phi)));

F = (2/pi)*acos(exp(-f));

f2 = (0.95/2)*((r matrix-R min/R max)./(r matrix.*abs(phi)));

F2 = (2/pi)*acos(exp(-f2));

MofLift = sum(0.5*rho*(velocity adim.ˆ2)*((rev*R max)ˆ2) ...

.*CL real.*F.*F2.*(R max*r matrix - R min)*dr,1)/(Ib*revˆ2);

p = polyfit(azimut,MofLift,4);

[t, y] = ode45(@odefunflap,azimut,[0 0]);

nuovo = y(:,1)';

beta0 = mean(nuovo);

A = -2*mean(cos(azimut).*nuovo);

B = -2*mean(sin(azimut).*nuovo);

beta = beta0 - A*cos(azimut) - B*sin(azimut);

dbeta = A*sin(azimut) - B*cos(azimut);

Up = (lambda climb*ones mat+lambda PP)*(rev*R max) ...

+ (r')*dbeta*R max + mu*rev*R max*ones(length(r),1)*(beta.*cos(azimut));

phi = atan(Up./Ut);

alpha real = theta*d2r - phi; %alpha in radians

alpha real = alpha real/d2r; %alpha in deg

dim ut = size(Ut);

for ixt=1:dim ut(1)

for jxt=1:dim ut(2)

if abs(Ut(ixt,jxt)) < 10

alpha real(ixt,jxt) = -0.72;

end

end

end

f = (Nb/2)*((1-r matrix)./(r matrix.*abs(phi)));

F = (2/pi)*acos(exp(-f));

f2 = (0.95/2)*((r matrix-R min/R max)./(r matrix.*abs(phi)));

F2 = (2/pi)*acos(exp(-f2));

67

Page 92: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

CL real bis = polyval(p clalpha,alpha real);

CD real = polyval(p cdalpha,alpha real);

CT profile = 0.5*solidity matrix.*CD real.*velocity adim.ˆ2*dr;

CT lift = 0.5.*solidity matrix.*F.*F2.*CL real.*(velocity adim.ˆ2)*dr;

CFz = CT lift.*cos(phi)-CT profile.*sin(phi);

CL real2 = sum(CFz,2)/length(azimut);

CT real = sum(CL real2);

error cond = (CT real - CT req)/CT req;

%CT lift represents a coefficient of power

CT lift = 0.5.*solidity matrix.*F.*F2.*CL real.*(velocity adim.ˆ3)*dr;

CT lift2 = CT lift.*sin(phi);

CP reverse = -0.5*solidity matrix.*CD real.*velocity adim.ˆ3*dr;

for k=1:dim(1)

for l=1:dim(2)

if velocity adim(k,l)>0

CP reverse(k,l) = 0;

end

end

end

CP profile2 = sum(0.5*solidity matrix.*CD real.*velocity adim.ˆ3*dr ...

+ CP reverse +CT lift2,2)/length(azimut);

CP profile = sum(CP profile2);

CP ind2 = sum(lambda PP.*0.5.*solidity matrix.*CL real ...

.*(velocity adim.ˆ2)*dr,2)/length(azimut);

CP ind = sum(CP ind2);

fval = CP ind + CP profile;

end

end

if mu == 0

minimo cp = min(solution matrix(:,6));

i 3 = find(minimo cp == solution matrix(:,6));

power = minimo cp*rho*Ad*((rev*R max)ˆ3);

power tail = power*1.05;

tip angle = solution matrix(i 3,3) + solution matrix(i 3,2);

tip2 = tip angle - 1.5;

graph mat(i 2,:) = [mu Vf(i 2) solution matrix(i 3,2) solution matrix(i 3,2) ...

68

Page 93: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

tip angle tip2 minimo cp minimo cp power power tail];

else

cpowertot = fval + CP parassite;

power = cpowertot*rho*Ad*((rev*R max)ˆ3);

power tail = power*1.05;

graph mat(i 2,:) = [mu Vf(i 2) x(1) x(2) x(3) x(4) fval cpowertot power power tail];

end

waitbar(i 2 / length(Vf));

end

close(hbar);

%% Create a file with the results

fileID = fopen('result 1.txt','w');

fprintf(fileID,'sc1095 cutroot 1.39 - taper: %.3f \r\n \r\n', taper);

fprintf(fileID,'%.4f %.4f %.6f %.6f %.6f %.6f %.12f %.12f %.12f %.12f\r\n',graph mat');

fclose(fileID);

A.2 Constraints

function [c, ceq] = fmcconstraint(x)

global CT real CP ind dr d2r r matrix phi solidity matrix mu azimut p cdalpha ...

p cdalpha2 Nb CT req p clalpha p clalpha2 lambda PP Ut R min R max

theta1 = x(1) -(x(1)-x(2))*r matrix*0.5;

theta2 = x(2) -(x(2)-x(3))*r matrix*0.35;

theta3 = x(3) -(x(3)-x(4))*r matrix*0.15;

dim r = size(r matrix);

theta = zeros(dim r(1),dim r(2));

for i=1:dim r(1)

for j=1:dim r(2)

if r matrix(i,j) < 0.5

theta(i,j) = theta1(i,j);

elseif r matrix(i,j)>=0.5 && r matrix(i,j)<=0.85

theta(i,j) = theta2(i,j);

elseif r matrix(i,j)>0.85

theta(i,j) = theta3(i,j);

end

end

end

alpha real = theta*d2r - phi; %alpha in radians

alpha real = alpha real/d2r; %alpha in deg

dim ut = size(Ut);

69

Page 94: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

for i=1:dim ut(1)

for j=1:dim ut(2)

if abs(Ut(i,j)) < 10

alpha real(i,j) = -0.72;

end

end

end

CL real = polyval(p clalpha,alpha real);

CD real = polyval(p cdalpha,alpha real);

for i=1:dim r(1)

for j=1:dim r(2)

if r matrix(i,j)>=0.5 && r matrix(i,j)<=0.85

CL real(i,j) = polyval(p clalpha2,alpha real(i,j));

CD real(i,j) = polyval(p cdalpha2,alpha real(i,j));

end

end

end

f = (Nb/2)*((1-r matrix)./(r matrix.*abs(phi)));

F = (2/pi)*acos(exp(-f));

f2 = (0.95/2)*((r matrix-R min/R max)./(r matrix.*abs(phi)));

F2 = (2/pi)*acos(exp(-f2));

%Profile drag

dim = size(r matrix);

dim1 = dim(1);

velocity adim = r matrix+mu*ones(dim1,1)*sin(azimut);

CT profile = 0.5*solidity matrix.*CD real.*velocity adim.ˆ2*dr;

%lift

CT lift = 0.5.*solidity matrix.*F.*F2.*CL real.*(velocity adim.ˆ2)*dr;

CFz = CT lift.*cos(phi)-CT profile.*sin(phi);

CL real2 = sum(CFz,2)/length(azimut);

CT real = sum(CL real2);

CP ind2 = sum(lambda PP.*0.5.*solidity matrix.*CL real.*(velocity adim.ˆ2)*dr,2)/length(azimut);

CP ind = sum(CP ind2);

c = [-CP ind; x(2)-x(1); x(3)-x(2); x(4)-x(3)];

ceq = [-CT real + CT req];

end

70

Page 95: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

A.3 Optimization function

function app fmc = funtominimize(x)

global solidity matrix dr d2r Nb r matrix phi mu azimut lambda PP CL real ...

theta p clalpha p cdalpha p cdalpha2 p clalpha2 Ut R min R max

theta1 = x(1) -(x(1)-x(2))*r matrix*0.5;

theta2 = x(2) -(x(2)-x(3))*r matrix*0.35;

theta3 = x(3) -(x(3)-x(4))*r matrix*0.15;

dim r = size(r matrix);

theta = zeros(dim r(1),dim r(2));

for i=1:dim r(1)

for j=1:dim r(2)

if r matrix(i,j) < 0.5

theta(i,j) = theta1(i,j);

elseif r matrix(i,j)>=0.5 && r matrix(i,j)<=0.85

theta(i,j) = theta2(i,j);

elseif r matrix(i,j)>0.85

theta(i,j) = theta3(i,j);

end

end

end

alpha real = theta*d2r - phi; %alpha in radians

alpha real = alpha real/d2r; %alpha in deg

dim ut = size(Ut);

for i=1:dim ut(1)

for j=1:dim ut(2)

if abs(Ut(i,j)) < 10

alpha real(i,j) = -0.72;

end

end

end

CL real = polyval(p clalpha,alpha real);

CD real = polyval(p cdalpha,alpha real);

for i=1:dim r(1)

for j=1:dim r(2)

if r matrix(i,j)>=0.5 && r matrix(i,j)<=0.85

CL real(i,j) = polyval(p clalpha2,alpha real(i,j));

CD real(i,j) = polyval(p cdalpha2,alpha real(i,j));

end

end

71

Page 96: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace

end

%Profile drag

dim = size(r matrix);

dim1 = dim(1);

velocity adim = r matrix+mu*ones(dim1,1)*sin(azimut);

CP reverse = -0.5*solidity matrix.*CD real.*velocity adim.ˆ3*dr;

f = (Nb/2)*((1-r matrix)./(r matrix.*abs(phi)));

F = (2/pi)*acos(exp(-f));

f2 = (0.95/2)*((r matrix-R min/R max)./(r matrix.*abs(phi)));

F2 = (2/pi)*acos(exp(-f2));

CT lift = 0.5.*solidity matrix.*F.*F2.*CL real.*(velocity adim.ˆ3)*dr;

CT lift2 = CT lift.*sin(phi);

for k=1:dim(1)

for l=1:dim(2)

if velocity adim(k,l)>0

CP reverse(k,l) = 0;

end

end

end

CP profile2 = sum(0.5*solidity matrix.*CD real.*velocity adim.ˆ3*dr ...

+ CP reverse +CT lift2,2)/length(azimut);

CP profile = sum(CP profile2);

%Drag

CP ind2 = sum(lambda PP.*0.5.*solidity matrix.*CL real.*(velocity adim.ˆ2)*dr,2)/length(azimut);

CP ind = sum(CP ind2);

app fmc = CP ind + CP profile;

end

A.4 Flapping

function dbdpsi = odefunflap(t,y)

global p

dbdpsi = [y(2); -y(1) + p(1)*tˆ4 + p(2)*tˆ3 + p(3)*tˆ2 + p(4)*t + p(5)];

end

72

Page 97: Helicopter Blade Twist Optimization in Forward Flight · Helicopter Blade Twist Optimization in Forward Flight Marco Lonoce Thesis to obtain the Master of Science Degree in Aerospace