heat resistant materials creep behaviorocw.snu.ac.kr/sites/default/files/note/10. heat resistant...

28
Heat resistant materials & Creep behavior 20160502 2 nd Seminar : General Topic Min-Gu Jo [CSSM]

Upload: others

Post on 16-Feb-2021

12 views

Category:

Documents


0 download

TRANSCRIPT

  • Heat resistant materials &

    Creep behavior

    20160502 2nd Seminar : General Topic

    Min-Gu Jo

    [CSSM]

  • Contents

    • Thermal power station & Heat resistant materials

    • Creep deformation

    • HEA for Creep-resistant material

  • • ‘14 Korea 1st Energy supplement ratio• IEO Energy consumption prospect

    • CCT (Clean Coal Technology) HELE coal technology (High Efficiency Low

    Emission coal technology) CCS(CO2 Capture & Storage)

    Energy consumption & Thermal power station

    • Thermal power stationInternational Energy Outlook 2014

    1/24

    2015 Korea Energy Handbook

  • Coal thermal power station & Heat resistant materials

    SC(Supercritical): 538℃↓USC(Ultra-supercritical): 566℃↑HSC(Advanced-USC): 704℃↑

    • Current state of Korea- SC USC- 6000 ton CO2/MW- 30% efficiency (ave)

    T ↑ Efficiency ↑ CO2 emission ↓

    • Heat resistant materials

    2/24

  • - Boiler (tube, pipe)

    - Turbine- Welding part

    - Bending part - Corrosion - Oxidation

    • Coal thermal power station

    TurbineBoiler Generator

    3/24

  • • Definition: Phenomenon which materials gradual are changed(are deformed) under a constant applied load(stress)

    Normally, under a constant applied load at an elevated temperature (T > 0.4 Tm) a time dependent dimensional changeJet engine (1% in 10,000 hrs), steam tube (1% in 100,000 hrs)

    Creep

    To determine the engineering creep curve of metal, a constant load is applied to a tensile specimenmaintained at constant temperature and the strain of the specimen is determined as a function of time

    Tensile test: constant displacement determined stress

    Creep test: constant stress determined strain and time

    4/24

  • • Creep stages (3 steps)Primary creep (Transient): strain rate decreases with increasing time work hardeningSecondary creep (Steady-state): balance between work hardening and recoveryTertiary creep (Acceleration): strain rate increases due to creep damage (effective area decrease, metallurgical change)

    5/24

  • • Creep mechanisms

    - Dislocation glide (σ/G > 10-2)Involves dislocation moving along slip planes and overcoming barriers by thermal activationOccurs at high stress and low T

    - Dislocation creep (climb, 10-1> σ/G >10-4)Involves dislocation movement to overcome barriers by thermally assisted mechanisms involving diffusion of vacancies or interstitials

    - Diffusion creep (10-4 > σ/G)Involves the flow of vacancies and interstitials through a crystal under the influence of applied stressFavored at high T and low stressBulk diffusion (Nabarro-Herring creep), GB diffusion (Coble creep)

    - Grain boundary slidingInvolves the sliding of grains past each other

    6/24

  • 7/24

    C.M. Hu, Materials Characterization 61 (2010) 1043 – 1053

    Josh Kacher, Acta Materialia 60 (2012) 6657–6672

  • Strengthening mechanism

    Solid Solution HardeningSubstitutional solid solution (Mo, W, Co..)Interstitial solid solution (C, N, B)

    Precipitation(Dispersion) Hardeningσ = 0.8MGb/λ

    Work Hardening(Dislocation Hardening)σ0 = σi + αGbρ1/2

    Grain Size Refinement Hardeningσy = σ0 + kD-1/2

    Secondary Phase Hardeningσave = f1σ1 + f2σ2 f : volume fraction

    Microstructural degradation heterogeneous failure

    But, Creep is time-dependent deformationMicrostructure changes are effective

    8/24

  • M23C6 ((Cr,Fe,Ni,Mo)23C6 )Crystal structure : FCC (a=10.57~10.68Å)Precipitation site : Grain boundary, Twin boundaryShape : Globular, PlateTypical Size : 200~500nm

    Initial stage : Precipitation hardening Precipitate at grain boundary depletion zone Coarsening Decreasing strength

    MX precipitates (MC, MN, M(CN), M1M2(CN))Alloy : Ti, Nb, V, Zr, Ta.. (strong carbide/nitride former)Crystal structure : FCC (a=4.40~4.47Å)Precipitation site : dislocation, stacking faults. Twin or grain boundaryShape : Cuboidal shape after sufficient aging

    Providing good strengthening effect Stabilizing the alloy against intergranular corrosion

    Carbo-Nitride

    9/24

  • Z-Phase (CrNbN)Crystal structure: Tetragonal (a=3.037Å, C=7.391Å)Precipitation site : grain boundaries, twin boundary, dislocation Shape : Rodlike, CuboidalTypical Size : 20~50nm

    Z phase forms Nb stabilised steel with N at low temperature than MX particles.Modified Z- phase : (Cr(Nb,V)N), CrVNMX precipitates Z-phase after long time annealing (stable phase below 1000oC)

    M2N (Cr2N)Crystal structure: Hexagonal close packed (a=4.78Å c=4.44Å)Precipitation site : grain boundaries, twin boundary, dislocation Shape : Rodlike, CuboidalTypical Size : 20~50nm

    10/24

  • Laves phase (Fe2Mo, Fe2Nb, Fe2W, Fe2Ta, Fe2Ti)Crystal structure : Hexagonal (a=4.73Å, C=7.72Å)Precipitation site : Grain boundary,Mo added steel : formation after a minimum of 1000h between 625~800oCNb stabilized steel : after long time aging, 5000~10000h between 625~800oC However, NbC and Z phase are more stable than Laves phase

    σ-Phase (Fe,Ni)x(Cr,Mo)yCrystal structure : Tetragonal (a=8.80Å, C=4.54Å)Precipitation site : Grain boundary, Twin boundary, InclusionThe precipitates form after long term aging at high temperature (10,000~15,000h, 600oC)

    G Phase (Ni16Nb6Si, Ni16Ti6Si7, (Ni,Fe,Cr)16(Nb,Ti)6Si7) (austenitic stainless steel)Crystal structure : FCC Phase (a=1.115~1.12Å)

    Intermetallic compound

    T. Sourmail, Precipitation in creep resistant austenitic stainless steels, Materials Science and Technology, 17 (2001) 1-14

    11/24

  • 10-1 100 101 102 103 104 105

    0.050.100.150.200.250.300.350.400.450.50

    80MPa 100MPa 120MPa 150MPa

    Stra

    in (m

    m/m

    m)

    Time (h)10-1 100 101 102 103 104 105

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30 150MPa 200MPa 250MPa 300MPa

    Stra

    in (m

    m/m

    m)

    Time (h)

    Typical creep curve

    650oC 800oC

    10-1 100 101 102 103 104 10510-810-710-610-510-410-310-210-1100

    Cree

    p ra

    te (h

    -1)

    Time (h)

    150MPa 200MPa 250MPa 300MPa

    650oC

    10-1 100 101 102 103 104 10510-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    80MPa 100MPa 120MPa 150MPa

    Cree

    p ra

    te (h

    -1)

    Time (h)

    800oC

    12/24

    D-B Park, PhD thesis, Korea univ (2013)

  • Stress dependences of minimum creep rates

    100 200 300 40010-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    800°C 750°C 700°C 650°C

    Min

    imum

    cre

    ep ra

    te (h

    -1)

    Stress (MPa)

    33.8221088.5 σε −×= 59.6191098.1 σε −×=

    02.6191095.1 σε −×=6.8271008.7 σε −×=

    nm Aσε =

    Dislocation creep

    n=3~5: pure metal, simple alloy

    n=3~12austenitic stainless steel

    In this studyn=6~8.6

    Norton law (Power law)

    13/24

    Dae-Bum Park, Materials Characterization 93 (2014) 52 – 61

  • Activation energy for dislocation creep

    100 120 140 160 180 200 220 240 260280320340360380400420440460480500520540560

    Activ

    atio

    n en

    ergy

    (kJ/

    mol⋅K

    )

    Applied stress (MPa)0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    120MPa 150MPa 200MPa 250MPa

    Min

    imum

    cre

    ep ra

    te (h

    -1)

    1000/T (K-1)

    −=

    RTQA n expσε

    γ-Fe self diffusion activation energy : 295kJ/mol14Cr-15Ni-Ti austenitic stainless : 460kJ/mol347H austenitic stainless steel : 441~461kJ/molTP347H austenitic stainless steel : 385~463kJ/mol

    The similarly value of apparent activation energy (465~485kJ/mol)

    14/24

    Dae-Bum Park, Materials Characterization 93 (2014) 52 – 61

  • 15/24

    Fig. 4. (a) Creep rate versus time tested at 866 K and (b) creep-rupture plot of the Steel Aand Steel B acquired at various creep conditions.

    Fig. 5. XRD profiles of the powders electrolytically extracted from the gauge part of creep specimens of (a) Steel A and (b) Steel B tested at 866 K.

    Kyu-Ho Lee, Materials Characterization 102 (2015) 79–84

  • Fig. 7. Equilibrium phase fraction of high-Cr martensitic heat-resistant steels, (a) Steel A and (b) Steel B calculated by MatCalc.

    Fig. 8. Development of phase fraction of the precipitates in (a) Steel A, (b) Steel B and (c) chemical composition ofM2N in Steel B during aging at 866 K calculated by thermo-kinetic simulation.

    Kyu-Ho Lee, Materials Characterization 102 (2015) 79–84

  • Monkman-Grant relationship (predict the rupture time)

    184.0006.1 =− rm tε

    10-8 10-7 10-6 10-5 10-4 10-3 10-210-1

    100

    101

    102

    103

    104

    105

    800°C 750°C 700°C 650°C

    Tim

    e to

    rupt

    ure

    (h)

    Minimum creep rate (h-1)

    Ktrnm =ε

    10-1 100 101 102 103 104 10510-810-710-610-510-410-310-210-1100

    Cree

    p ra

    te (h

    -1)

    Time (h)

    150MPa 200MPa 250MPa 300MPa

    650oC

    10-1 100 101 102 103 104 105

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30 150MPa 200MPa 250MPa 300MPa

    Stra

    in (m

    m/m

    m)

    Time (h)

    650oC

    16/24

    Dae-Bum Park, Materials Characterization 93 (2014) 52 – 61

  • Larson-Miller plot (predict the rupture time)

    23000 24000 25000 26000 27000 28000 29000 30000 31000

    100

    200

    300

    400500

    304HV Super304H[1]

    SUS 347H[2]

    SUS 316[3]

    Appl

    ied

    stre

    ss (M

    Pa)

    LMP=(T)(logtr+25) (K,h)

    KCtT r =+ )(log

    [1] NRIM Creep data sheep No. 56[2] NRIM Creep data sheep No. 28B[3] NRIM Creep data sheep No. 6B

    17/24

    Dae-Bum Park, Materials Characterization 93 (2014) 52 – 61

  • High Entropy alloy(HEA) Introduction

    1) Solid solution strengthening2) Distorted lattice structure3) Cocktail effect4) Sluggish effect

    5) Nanoscale deformation twin (Cantor alloy)

    Core effect

    Daniel B. Miracle, “Exploration and Development of High Entropy Alloys for Structural Applications”, Entropy (2014), 16, 494-525

    Definition: At least five major metallic element having an 5-35 at% B. Cantor, Materials Science and Engineering A 375–377 (2004) 213–218

    FeCrMnNiCo

    Yeh, Advanced Engineering Materials, 6, 5 (2004) 299-303 High-Entropy alloys (HEAs)

    i

    N

    iiconf nnRS ln

    1∑=

    −=∆

    18/24

  • 30 40 50 60 70 80 90 100

    0

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    40000

    Inte

    nsity

    Diffraction angle 2-Theta

    Initial specimen information• EBSD IQ(Microstructure) • XRD

    • Vickers hardness

    161Hv±2.677

    FCC singe phaseLattice parameter* : 3.58238 Å(*:Bragg’s law와 d-spacing으로얻은각각의면들의 lattice parameter의평균)

    Element Wt% At%CrK 18.30 19.76

    MnK 18.36 18.75FeK 19.95 20.80CoK 21.18 20.92NiK 19.94 19.78

    Matrix Correction ZAF

    • EDS

    50.34㎛±19.89

    19/24

  • Tensile results

    0.0 0.1 0.2 0.3 0.4 0.5 0.60

    200

    400

    600

    RT 500 ℃ 600 ℃ 700 ℃

    Eng

    Stre

    ss (M

    Pa)

    Eng Strain0.0 0.1 0.2 0.3 0.4

    0

    200

    400

    600

    800

    1000

    RT 500 ℃ 600 ℃ 700 ℃

    True

    Stre

    ss (M

    Pa)

    True Strain

    0 100 200 300 400 500 600 700 800 9000

    200

    400

    600

    800

    1000

    1200

    Cantor Ni-based super alloy (KIST) Austenite (NIMS) High Cr (NIMS) Low Cr (NIMS)

    UTS

    (MPa

    )

    Temperature ( ℃)10-4 10-3 10-2

    200

    250

    300

    350

    400

    450

    500

    550

    600

    UTS

    (MPa

    )

    Strain rate (S-1)

    27 ℃ 500 ℃ 600 ℃ 700 ℃

    20/24

  • 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70

    100

    200

    300

    400

    500

    600

    700

    Cantor (This stduy) S304H (KEPCO)

    Eng

    Stre

    ss (M

    Pa)

    Eng Strain

    Tensile results compared with S304H

    CantorStrain rate : 8.333x10-4 S304HStrain rate : 6.666x10-4

    RT

    RT

    450℃

    550℃

    600℃650℃ 500℃

    600℃

    700℃

    0 100 200 300 400 500 600 700 800

    300

    400

    500

    600

    700

    UTS

    (MPa

    )

    Temperature ( ℃)

    Cantor S304H

    21/24

  • Creep results

    10-3 10-2 10-1 100 101 102 10310-5

    10-4

    10-3

    10-2

    10-1

    100MPa 200MPa

    T=650 ℃

    Stra

    in

    Time (hr)10-3 10-2 10-1 100 101 102 103

    10-810-710-610-510-410-310-210-1100101102103

    200MPa 100MPa

    T=650 ℃

    Cree

    p ra

    te (1

    /h)

    Time (hr)

    100 101 102 103 104 1050

    50

    100

    150

    200

    250

    300

    350

    400 Cantor Ni-based super alloy (NIMS) Austenitre (NIMS) High Cr (NIMS) Low Cr (NIMS)

    Stre

    ss (M

    Pa)

    Rupture Time (hr)

    22/24

  • XRD results after creep test

    200MPa 100MPa Initial

    40 50 60 70 80 90 100

    Relat

    ive In

    tensit

    y

    Diffraction angle 2-theta

    200MPa 100MPa Initial

    45 48 51

    Relat

    ive In

    tensit

    y

    Diffraction angle 2-theta

    Specimen Initial 100MPa 200MPa

    Crystalstructure FCC FCC FCC

    Lattice parameter*(Å)

    3.58238 3.58729 3.59578

    (*:Bragg’s law와 d-spacing으로 얻은각각의면들의 lattice parameter의 평균)

    23/24

  • Summary

    24/24

    • To improve efficiency of coal thermal power station, increase of operating temperature is required. Therefore, research on heat-resistant material should be preceded.

    • Materials with high heat-resistance, oxidation-resistance, corrosion-resistance, weldability and especially creep-resistance are required as the structural materials for the thermal power station application.

    • Creep phenomenon is a time-dependent deformation behavior and microstructural change is dominant effect on the failure of materials.

    • Through the creep test condition under high temperature and constant load compare to the real operating condition, we expect to predict the lifetime of structural materials for the thermal power station.

  • Thank you for your attention

    Heat resistant materials �&�Creep behavior슬라이드 번호 2슬라이드 번호 3슬라이드 번호 4슬라이드 번호 5슬라이드 번호 6슬라이드 번호 7슬라이드 번호 8슬라이드 번호 9슬라이드 번호 10슬라이드 번호 11슬라이드 번호 12슬라이드 번호 13슬라이드 번호 14슬라이드 번호 15슬라이드 번호 16슬라이드 번호 17슬라이드 번호 18슬라이드 번호 19슬라이드 번호 20슬라이드 번호 21슬라이드 번호 22슬라이드 번호 23슬라이드 번호 24슬라이드 번호 25슬라이드 번호 26슬라이드 번호 27슬라이드 번호 28