hdd to 3d-nand and beyond_oct2016_satoruaraki

32
HDD TO FLASH & BEYOND -TECHNOLOGY / CARRIER CHALLENGES - OCT 18, 2016 SATORU ARAKI 10/18/2016 @ 2016 Satoru Araki, all right reserved 1

Upload: satoru-araki-phd-mba-pmp

Post on 20-Mar-2017

43 views

Category:

Technology


2 download

TRANSCRIPT

HDD TO FLASH & BEYOND- TECHNOLOGY / CARRIER CHALLENGES -

OCT 18, 2016

SATORU ARAKI

10/18/2016@ 2016 Satoru Araki, all right reserved 1

HDD TO FLASH & BEYOND – EXECUTIVE SUMMARY

ØPOSITIONING IN NEXT NEW TECHNOLOGY WAVES• Data Storage is one of the Key Module in IoT Big Waves, as well as Sensor,

Wireless, Software, and AI• FLASH has Promising Future in Huge Volume Expansion, because of 3D

Capacity Scalability & Cost Reduction• However, Storage-Class Memory is emerging to cover DRAM and FLASH area

ØFLASH MEMORY CHALLENGES• 3D NAND Continuous Scalability Expansion: >100 by 2020, >500 Layer by

2030 per ITRS2015• Cost and Performance

ØEMERGING STORAGE CLASS MEMORY CHALLENGES• Current Candidates: 3D XPoint, ReRAM, MRAM, FeRAM• Cost, Scalability, Performance• Vertical Structure Integration

10/18/2016@ 2016 Satoru Araki, all right reserved 2

AGENDA

Ø RECENT FORECAST/FACT STATEMENT

Ø IOT - POSITIONING IN NEXT NEW TECHNOLOGY WAVES

Ø DATA STORAGE HIERARCHY

Ø FLASH MEMORY BASICS

Ø 3D NAND TECHNOLOGY

Ø COMPETITIVE LANDSCAPE

Ø BEYOND 3D NAND – NON VOLATILE MEMORY

10/18/2016@ 2016 Satoru Araki, all right reserved 3

RECENT FORECAST/FACT STATEMENTS

Ø IoT – 50 Billion Devices will be connected to the network Ø IoT Market Scale – $45B in 2020Ø FLASH Memory Market Scale – $31B in 2015Ø Data Generation – 44 Zeta Bytes in 2020Ø Recent Merge & Acquisition Info & Rumors

• Qualcomm -> NXP, $30B • Softbank -> ARM, $33B• Renesas -> Intersil, $3B• WD -> SanDisk, $15B

10/18/2016@ 2016 Satoru Araki, all right reserved 4

IoT Market

Data Generation

3D-NAND POSITION IN NEXT TECHNOLOGY WAVES – MY VIEW

10/18/2016@ 2016 Satoru Araki, all right reserved 5

Big DataAIDeep Learning

CloudHuman

Internet

NAND Flash

Standardization

Control

IoT Sensor SSD

HDD

LinkedIn Ref Page

Generation§ Sensor§ Wireless

Storage§ Memory§ HDD

Processing§ Software

Perception§ AI Deep Learning

DATA STORAGE HIERARCHY

10/18/2016@ 2016 Satoru Araki, all right reserved 6

§ FLASH Memory Replaces Performance and Consumer HDD § DRAM on Top of the Hierarchy – Very Expensive§ Persistent (Storage Class) Memory – Emerging to Invade DRAM

Flash Memory

Performance HDD

Consumer HDD

Ref. 1

DATA STORAGE MEMORY HIERARCHY – HDD TO FLASH

10/18/2016@ 2016 Satoru Araki, all right reserved 7

§ Storage-Class Memory Emerging to Cover DRAM Space§ New Non-Volatile Memory – ReRAM, Phase Change, MRAM

Ref. 2

FLASH MEMORY BASICS

§ Modification from MOS-FET, by Inserting Floating Gate • Injecting Electrons into Floating Gate by Tunneling Effect

§ Multi-Level bits by Controlling Electrons in FG

10/18/2016@ 2016 Satoru Araki, all right reserved 8

Gate

SiO2

Gate: 0 V Gate: +

Source (N)

Drain (N)P-type

+-Gate

SiO2Source

(N)Drain

(N)P-type

+-+

N

MOS-FET

PN

+-

CG

++ FG ++

Gate: 0 V Gate: +

Source (N)

Drain (N)

P-type

+-CG

- FG -Source

(N)Drain

(N)P-type

+-+

FLASH

N

Vgate

Vgate

VTH

Dis

VTH

Dis“1” “0”

VTH

“Multi”

4 bit (QLC) – 16 level3 bit (TLC) – 8 level2 bit (MLC) – 4 level1 bit (SLC) – 2 level

WHY 3D-NAND ?

10/18/2016@ 2016 Satoru Araki, all right reserved 9

§ 3D Multilayer Structure Enables Higher Bit Density/area

Charge Trap(SONOS)

SiO2Si9N10SiO2

Poly-Si

source drain

CG

90degflip

SiO2Poly-Si

Si9N10

SiO2 Poly-Si

1

2

3

N-1

N

V-Channel(3D)

. . .

. . .

Functional Layers by Vertical Wall Deposition

Ref. 2

3D-NAND DESIGN VARIATIONS

10/18/2016@ 2016 Satoru Araki, all right reserved 10

Design Pipe shaped-BiCS V-NAND Conventional FGExtended

Sidewall CGDual CG w

Surrounding FGSeparated

Sidewall CG

Design

Type Charge Trap Floating Gate

Who Toshiba/SanDisk Samsung Baseline Tohoku Univ 2010 Hynix 2010 Intel/Micron

Pros § Higher Scalability§ Improved Retention

§ Faster Erase Speed§ Longer Retention§ Wider Vt Window

§ Reliable MLC op§ High Speed P/E§ Wide Read Margin

Cons § Thicker than FG § Thicker than FG§ CT Complexity

§ Interference§ Disturbance

§ Interference§ Disturbance § High Direct Coupling

Ref. 1

SAMSUNG VS INTEL/MICRON IN 32L

10/18/2016@ 2016 Satoru Araki, all right reserved 11

§ FG type (Intel/Micron) may have thinner stack, plus better area efficiency than CT type (Samsung, SanDisk)

§ Area efficiency also better?

FLASH PROCESS ROADMAP– COMPETITION

10/18/2016@ 2016 Satoru Araki, all right reserved 12

§ Samsung leads the competition as 3D volume production from 2014

§ Toshiba/SanDisk follows§ Intel/Micron comes up with

new 3D Xpoint in 2016. Production unknown

3D-NAND POSITIONING IN MEMORY TREND – ITRS2015

10/18/2016@ 2016 Satoru Araki, all right reserved 13

§ Official Roadmap shows 100 Layers in 2020, and continuously increase >500 Layers in 2030

§ Max Bit may stay in TLC – 3 bit

EMERGING STORAGE CLASS MEMORY – BEYOND FLASH

10/18/2016@ 2016 Satoru Araki, all right reserved 14

§ Storage-Class Memory – New Category to Cover Both DRAM & FLASH§ Non-Volatile§ Several Candidates as of now: 3D XPoint, ReRAM, MRAM, FeRAM, etc

Storage-Class Memory

Ref. 1

Key Requirements:§ Cost§ Scalability§ Performance

3D XPOINT BY INTEL/MICRON

10/18/2016@ 2016 Satoru Araki, all right reserved 15

§ 3D XPoint is a ReRAM with Phase Change Material?

Ref. 6

Resistive RAM – NON VOLATILE MEMORY

10/18/2016@ 2016 Satoru Araki, all right reserved 16

§ Pros: ü Simple Device Structureü Faster R/W Speed

§ Consü Critical Layer Patterningü New Material Development

Ref. 1

BEYOND 3D-NAND, 3D XPOINT

10/18/2016@ 2016 Satoru Araki, all right reserved 17

§ 3D Vertical Structure with ReRAM is the GOAL?

3D NAND Process+

ReRAM

Future Direction ??

ü >100 Layers Possible ?ü Simple Cell Structure ?ü Faster Speed ?

Ref. 2

MKW VENTURES AT FLASH MEMORY SUMMIT 2016

10/18/2016@ 2016 Satoru Araki, all right reserved 18Ref. 5

3D-ReRAM – SanDisk View

10/18/2016@ 2016 Satoru Araki, all right reserved 19

§ 3D Multilayer Structure Enables Higher Bit Density/area

Ref. 2

TECHNOLOGY & CARRIER CHALLENGES – WHAT CAN WE BRING?

10/18/2016@ 2016 Satoru Araki, all right reserved 20

Challenges§ Semiconductor Device Experience§ Device Know-how§ Product Kow-how

Transferrable Skills§ Tunnel Barrier Knowhow§ Thin Film Deposition, Etching Knowhow§ Reliability Methodology

Challenges§ No track record in Semi§ No direct leadership experience§ Proven Certificate – PMP, PgMP, CSM§ Experience in Semi, part timer?

Transferrable Carrier§ Engineering Management Skills§ Leadership Traits§ Project, Prog, Prod Management Skills

TECHNOLOGY CARRIER

REFERENCES

1. “3D FLASH MEMORIES”, Ed. Rino Micheloni, Springer ISBN 978-94-017-8510-6

2. Siva Sivaram, Keynote-4: Creating Storage Class Memory: Learning from 3D NAND Flash Memory Summit 2016, Link

3. ITRS2015 Executive Summary, Link

4. TECHINSIGHTS, NAND Flash Memory Roadmap, Link

5. Mark Webb, MKW Ventures, Flash Memory Summit 2016, Link

6. Seshubabu Desu, 4DS Memory Limited, Flash Memory Summit 2016, Link

7. Jim Handy, Objective Analysis, Flash Memory Summit 2016, Link

8. Forbes, Roundup Of Internet of Things Forecasts And Market Estimates, 2015, Link

9. Gartner, Press Release, Processing, Sensing and Communications Semiconductor Device Portion of the IoT Is Set for Rapid Growth, Link

10. ATKearney, Big Data and the Creative Destruction of Today's Business Models, Link

10/18/2016@ 2016 Satoru Araki, all right reserved 21

Visual Management Board

2/09/2017@ 2017 Satoru Araki, all right reserved 22

Near-Term Action Item Responsible Team Member Due Date Completion

DateM / S / C Priority Comments

Create prototype parts kit Jane M. 4/27/09 M Parts missing

Draft test plan out for review Joe P. 5/1/09 5/8/09 S Complete

Complete circuit simulation Cedrick M. 5/1/09 M Need Resources!!

Order injection-mold tooling Joline Q. 5/5/09 M

Meet with key supplier Harry P. 5/10/09 C

Prepare for customer meeting Dave N. 5/10/09 S

Key Milestone Responsible Team Member

Planned Completion

Date

Actual Completion

Date

Cost Status

Schedule Status

Tech. Status Comments

Fabricate Prototype David Copperfield 6/7/09 6/7/09 Complete

Prototype Testing Oliver Twist 4/5/09 First Test Failed

Prototype Validated Tiny Tim 3/14/09 May Require Rework

Production Tooling Charles Darney 4/24/09 Supplier Issues

Test Plan Complete Sydney Carton 4/20/09 Resources Unavailable

Final Drawing Release Lucy Mannette 5/17/09

Fabricate Qual Units Charles Dickens 6/14/2009

Planned Work Project Timeline

Unplanned Work

Parking Lot

Week 1 Week 2Mon Wed Fri Mon Wed Fri

Out

Out Out

Out

Tom

Dick

Harry

Jane

Sally

Mary

Two-Week Action Plan

Risk Management

0

5

10

15

20

25

Months from Project Start

Proj

ect “

Risk

Rat

ing”

BACK UP

10/18/2016@ 2016 Satoru Araki, all right reserved 23

3D-NANDFlash- ChallengesandCompetitiveLandscape-

JULY8,2016

SATORUARAKI

7/08/2016 @2016SatoruAraki,allrightreserved 24

3DFlashChallenges– ExecutiveSummary§ PositioninginNextNewTechnologyWaves◦ Promisinginvolumehugeexpansion,but3Dcapacityscalability&costarecrucial

§ ProcessChallenges◦ Reducingprocessvariationinetchedholedepthprofileandsize◦ Tunnelingbarrierandchargetraplayermaterialandprocessoptimization

§ DeviceChallenges◦ DesignoptimizationforVthreshold shiftandreliabilityimprovement◦ Designscalability>100layers

§ TunnelingBarrierChallenges◦ Opportunitytoimprovedesignmarginbynewmaterials

§ CompetitiveLandscape◦ Samsungaheadin256Gb(3D48-layerTLC)– mainbattlefieldin2016/2017

§ NextActionsinProductEngineering

7/08/2016 @2016SatoruAraki,allrightreserved 25

3D-NANDPositioninNextTechnologyWaves– myview

BigDataAIDeepLearning

CloudHuman

Internet

NANDFlash

Standardization

Control

IoT Sensor SSD

HDD

7/08/2016 @2016SatoruAraki,allrightreserved 26

LinkedInRefPage

3D-NANDhasPromisingFutureif;§ Keepcapacityscalabilitywith§ Costcompetitiveness,Reliability

3DProcessChallenges§ V-ConnectionThroughHoleEtchingUniformity◦ HighAspectRatio,48à 64,80layerextendibility,variationminimization◦ Holesize,depthprofile,wallroughness,etc

§ TunnelingBarrierUniformityforHoleWall◦ Keyfilminterfacequalityimprovement◦ ALDdepositionvariationminimizationinholedepth◦ RestrictionofthebarriermaterialforALD

§ ChargeTrapLayerMaterialandProperties◦ Materialselectionandprocessoptimization

§ LongerThroughput,LowerYieldby48à 64,80Layer§ HigherHoleDensityduetoDepositionCoveragetotheWall§ Poly-SiFilmQualityImprovement§ ControlGateLeadFabricationProcessComplexityin48à 64,80Layer

7/08/2016 @2016SatoruAraki,allrightreserved 27

3DDeviceChallenges§ FlashVthreshold Shift&ProfileWideningdueto3D◦ Needverticalkeylayerprocessqualityvariationminimization◦ Needthinfilmphysicalqualityimprovement

§ DeviceReliability◦ DegradationdeltainLayer-1toNinVerticaldirection◦ Variationof3bitReadVthreashold profiletails◦ ChargeTrapstableenoughoverFloatingGate?

§ CostCompetitiveness◦ Muchlongerwf cycletime&loweryieldagainst2D◦ Processmaturityforvolumemfg

§ PerformanceYield§ Scalability◦ 80layerwillbethe3Dmax?>100possible?◦ 4bit/cellpossible?

7/08/2016 @2016SatoruAraki,allrightreserved 28

TunnelingBarrierChallenges§ BarrierDepositionProcessUniformity◦ ToptobottombarrierSiO2 thicknessvariation à S/N,reliability,yieldissue◦ Etchingholediameter/depthprofileuniformity à Vvariation,reliability,yieldissue

§MaterialImprovement◦ Manynewmaterialsbeingproposedbutmaynotsuitablefor3D:Gd2TiO5,Gd2O3,ZrO2,HfO2,etc◦ Restrictionfordepositingtodeepaspectratioholes◦ Potentialtoimproveitbymetal-CVD+oxidation ß TMRlessonsinHDD

7/08/2016 @2016SatoruAraki,allrightreserved 29

Poly-Si

SiO2 SiO2Si9N10SiO2

Poly-Si

FloatingGate(FG)

ChargeTrap(SONOS)

source drain source drain

CG

CGSiO2Poly-Si

Si9N10SiO2 Poly-Si

1

2

3

N-1

N

90degflip

V-Channel(3D)

...

...

Type Merit

FG SiO2 controlSONOS SiO2/SiN/SiO2/p-Si Faster prog/erase

High-k Al2O3, La2O3, ZrO2, HfO2, Gd2TiO5

Faster Prog/erase speed

MOHOS SiO2/Gd2TiO5/SiO2/p-Si Faster programming/erase Larger memory window

TunnelingBarrier

CompetitiveLandscape§ 3DImplementation◦ 256Gbit chipproductionisthemainbattlefield◦ Samsungwillstartshippingin2016◦ Toshiba/SanDisk2016/E,announcedFab2inv andconstruction,3Dratio50%2017,80%2018

§ CapacityChampionData◦ Samsung:◦ Micron: 768GbTLC,3Dw/FGatISSCCFeb,2016

§ CellDesignperDepositionStepsin256Gb◦ Samsung96,Toshiba/SanDisk144,Micron128- why?

§ EmergingTech:ReRAM,MRAM,etc

7/08/2016 @2016SatoruAraki,allrightreserved 30

J.Choe,FlashMemorySummit2015,Comparisonof2x/1xnm2DPlanarand3DV-NANDArchitecture

§ 2DProduction◦ 75-80%Node15nminallSamsung,Toshiba/SanDisk,Micron/Intel,SKHynix

◦ PlannedNode9nmin2018

§ 256Gbisthemainbattlefield◦ Samsungalreadyinproduction◦ Toshiba/SanDiskisabouttostartproductionthisyear◦ Micron/Intel,SKHynixbehind– catchingupaggressively

7/08/2016 @2016SatoruAraki,allrightreserved 31

Gen Date Capacity 3D-Tech CellDepo Process Status Production Volume Investment Spec

1st Aug/2013 128GbMLC 24layers 20nm2nd May/2014 128GbMLC/TLC 32layersV-NAND 20nm inProduction

3rd Dec/2016 256GbTLC 48layersV-NAND 96depo 15/16nm Sampling PM971-NVMe,512GB/p 540/520MB/sr/w,98k/90kr/eIOPS

1st2nd Apr/2016 128GbMLC/TLC 32layersBiCS

3rd Dec/2016 256GbTLC 48layersBiCS 144depo 15/16nm Sampling3Dproductionwillstartat2016/E.Fab2constwillstart3/2017

2015:0,2016:start,2017:50%,2018:80%

$8Bfromeach,$15Btotalto2018fiscal/E

2015:0,2016:start,2017:50%,2018:80%

64GbMLC 25nm3rd 2016 256/386Gb,MLC/TLC 32layers 128depo2nd 3Q/2015 128GbMLC 36layers3rd 2016 48layers

Samsung

Micron/Intel

Toshiba/SanDisk

SKHynix

CompetitiveLandscape– cont’d

3DProductEngineering- NextActions§ 3DNANDProductLaunch– 1st Priority

§ DeeperCollaboration:MilpitasDesign/Eng’g TeamandJapanWf FabTeam◦ Utilizeandfuseeachteam’sculturalstrength◦ Needacoordinatorasa“ConnectionPin”.How?– hereisareflink.Let’sdiscussitlater

§ CompetitiveBenchmarkingforDesign/ProcessFeedback

§Manymore…..Let’sdiscussthemlateron…

7/08/2016 @2016SatoruAraki,allrightreserved 32