handbook of plant palaeoecology · the late glacial and holocene. subfossil plant remains offer us...

60
Handbook of PLANT PALAEOECOLOGY

Upload: dokhuong

Post on 24-Mar-2019

224 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

Handbook ofPLANT PALAEOECOLOGY

Page 2: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

GRONINGEN ARCHAEOLOGICAL STUDIES

VOLUME 19

EDITORIAL BOARDProf. dr. P.A.J. A� emaProf. dr. R.T.J. Cappers

Prof. dr. L. HacquebordDr. W. Prummel

Prof. dr. D.C.M. RaemaekersProf. dr. H.R. Reinders

Prof. dr. S. Voutsaki

GRONINGEN INSTITUTE OF ARCHAEOLOGY

Poststraat 69712 ER Groningen

the [email protected]

WEBSITEwww.gas.ub.rug.nl

IN COOPERATION WITHDeutsches Archäologisches Institut

D.A.I. ZentralePodbieldskiallee 69-71

D-14195 BerlinGermany

[email protected]

WEBSITEwww.dainst.de

PUBLISHERS’ ADDRESSBARKHUIS

Zuurstukken 37 9761 KP Eelde the NetherlandsTel. 0031 (0)50 3080936 Fax 0031 (0)87 7844285

[email protected] www.barkhuis.nl

Page 3: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

Handbook ofPLANT PALAEOECOLOGY

R.T.J. CappersGroningen Institute of Archaeology

University of Groningen

R. NeefDeutsches Archäologisches Institut

Berlin

BarkhuisGroningen University Library

Groningen 2012

Page 4: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

Photomicrography: Judith Jans & René T.J. Cappers

Photomacrography: René T.J. Cappers & Dirk Fennema, unless otherwise noted in the captions

Book cover photographs: René T.J. Cappers

Book cover design: Nynke Tiekstra, ColfsfootMedia – Noordwolde

Book interior design and typese� ing: Nynke Tiekstra, ColfsfootMedia – Noordwolde

Copy editor: Suzanne Needs-Howarth

Cover photographs:

Top: Harvesting Bread wheat (Triticum aestivum) with a sickle (Ezbet Basili, Egypt; April 2002)

Bo� om le� : Goat browsing a dump area next to a roadhouse with concentrations of discarded

vegetables and burned cans (Ras Banas, Egypt; March 1998)

Bo� om right: Culms of Sorghum (Sorghum bicolor) used as kiln fuel (El Nazla, Egypt; November 2009)Sorghum bicolor) used as kiln fuel (El Nazla, Egypt; November 2009)Sorghum bicolor

Printed by: HooibergHaasbeek te Meppel

ISBN 9789491431074

Copyright © 2012 Groningen Institute of Archaeology (University of Groningen) and the Deutsches

Archäologisches Institut (Berlin).

All rights reserved. No part of this publication or the information herein may be reproduced, stored in a

retrieval system, or transmi� ed in any form or by any means, electronic, mechanical, photocopying, recording

or otherwise, without prior permission from the Groningen Institute of Archaeology (University of Groningen)

or the Deutsches Archäologisches Institut (Berlin).

Although all care is taken to ensure the integrity and quality of this publication and the information herein, no

responsibility is assumed by the publishers nor the authors for any damage to property or persons as a result

of operation or use of this publication and/or the information herein.

Page 5: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

Contents

Preface 91 General Introduction 13 1.1 Plant taxonomy 13 1.1.1 Taxonomic ranks 13 1.1.2 Abbreviations 14 1.1.3 Synonyms and type identifications 15 1.1.4 Naming of cultivated plants 15 1.1.5 Plant names in written sources 16 1.1.6 Vernacular names of common crops 20 1.1.7 Genetic research 22 1.2 Plant ecology 26 1.2.1 Seed production and seed predation 26 1.2.2 Seed dispersal 28 1.2.3 Environmental conditions 34 1.2.4 Water stress 37 1.2.5 Agricultural practices 47 1.3 Flora and vegetation 93 1.3.1 Landscape, flora, and vegetation 93 1.3.2 Flora 94 1.3.3 Vegetation 97 1.4 Subfossil plant remains 128 1.4.1 Biomolecules 128 1.4.2 Phytoliths 130 1.4.3 Spores and pollen 131 1.4.4 Seeds and fruits 135

2 Palynology 143 2.1 The archaeobotanical archive 143 2.1.1 Dispersal of spores and pollen 143 2.1.2 Pollen precipitation 144 2.1.3 Peat Formation 146 2.1.4 Sampling and microscopic analysis 151 2.2 Vegetation reconstruction 153 2.2.1 Pollen diagram 153 2.2.2 Anthropogenic pollen indicators 157 2.2.3 Pollen precipitation and vegetation 159 2.3 Pollen morphology 159 2.3.1 Anatomy and morphology of pollen and spores 159 2.3.2 Glossary of terms 163 2.3.3 Atlas of spores, pollen, and algae 165

Page 6: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

3 Non-woody macro-remains 173 3.1 The archaeobotanical archive 173 3.1.1 Origin and taphonomy 173 3.1.2 Sampling 199 3.2 Morphology of fruits and seeds 239 3.2.1 Morphology of fruits 239 3.2.2 Fruit types 244 3.2.3 Morphology of seeds 246 3.2.4 Subfossil seeds, fruits, and threshing remains 247 3.2.5 Cereals 248 3.2.6 Pulses 322 3.2.7 Oil and fibre crops 333 3.2.8 Seed atlas 339

4 Vegetation history of the Netherlands 351 4.1 The Late Glacial 351 4.1.1 General overview 351 4.1.2 The Older Dryas 353 4.1.3 The Allerød 356 4.1.4 The Younger Dryas 356 4.2 The Holocene 357 4.2.1 General overview 357 4.2.2 The Preboreal (10 300–8800 BP) 358 4.2.3 The Boreal (8800–7500 BP) 359 4.2.4 The Atlanticum (7500–5000 BP) 361 4.2.5 The Subboreal (5000–2800 BP) 364 4.2.6 The Subatlanticum (2800 BP to present) 366 4.2.7 Case study 370

5 Food economy 375 5.1 Transition to farming 375 5.1.1 Modelling the dawn of farming 375 5.1.2 Domestication 380 5.2 Reconstruction of the diet 387 5.2.1 The food spectrum 387 5.2.2 Cereals 388 5.2.3 Pulses 397 5.2.4 Oil crops 402 5.2.5 Vegetables and fruits 403 5.2.6 Case studies 405

6 Fuel 423 6.1 Woody plants 423 6.2 Non-woody plants 425

7 Appendixes 435 7.1 Chronology of the Near East 435 7.2 Chronology of ancient Egypt 436

Page 7: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

8 Literature 439 8. 1 Taxonomy 439 8. 2 Ecology 439 8. 3 Flora and vegetation 440 8. 4 Identification 443 8. 5 Spores and pollen 445 8. 6 Fruits, seeds, and mosses 446 8. 7 Vegetation history 447 8. 8 Food economy 449 8. 9 Fuel 451 8. 10 Additional references cited 451

9 Indices 457 9.1 Taxonomic and syntaxonomic index 457 9.2 Subject index 467

Page 8: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

Burning of kitchen trash outside the camp area (Berenike excavation, Egypt; 2000–2001 season).

Page 9: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

Preface

Plant palaeoecologists use data from plant fossils and plant subfossils to reconstruct ecosystems of the past. This book deals with the study of subfossil plant material retrieved from archaeological excavations and cores dated to the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in which humans exploited and even transformed vegetations. However, to improve our knowledge of the past, we need to employ sampling procedures that will provide us with samples that contain the relevant kinds of plant material. This, in turn, means we need to have solid knowledge of all processes that act upon plant material. By modelling the transport of plant material from outside the settlement towards the settlement and its final destination in specific archaeological contexts, we can design an optimal sampling strategy to be used during the excavation. Most archaeological contexts contain plant remains that originate from more than one source and that entered that context by more than one pathway. Recognizing these pathways — which is a real challenge — may facilitate the identification of the different depositional origins within the archaeological context. It also may help to improve the typology of archaeological contexts. Fortunately, nowadays archaeobotanical research focuses much more than it did in the past on a clear link between archaeology, taphonomy, and biology. One of the main objectives of this book is to describe the processes that underlie the formation of the archaeobotanical archive and the ultimate composition of the archaeobotanical records, being the data that are sampled and identified from this immense archive. Our understanding of these processes benefits from a knowledge of plant ecology and traditional agricultural practices and food processing. This handbook summarizes the basic ecological principles that relate to the reconstruction of former vegetations and of agricultural practices in particular. Ethnoarchaeobotanical research offers the opportunity to document processes that assist us in interpreting subfossil records. We were fortunate to have many opportunities to observe traditional agricultural practices during our research stays in the Near East, the cradle of agriculture—especially in Turkey, Syria, and Egypt. Although there, too, globalization is resulting in the modernization of agriculture, some small-scale, traditional agriculture still exists. This offered us the possibility to research methods of crop growing, crop processing and storage, and food processing that in other parts of the world have long since been lost because of the transformation to large-scale modern agriculture. Although we recognize that, as with any ethnographic analogy, agricultural practices and food processing will have differed in the past because they were adapted to local conditions and traditions, our observations are nevertheless a valuable source of information that can be used to interpret

Page 10: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

subfossil records. We grew up and were educated in the Netherlands, so because of this background, we have provided information on wild and crop plant ecology and history — and on vegetation ecology and history in general — from the Netherlands as well, as a means of verifying of our work in the Near East. Of course in the Netherlands, traditional agriculture has disappeared, and the definition of what is waste and garbage has changed enormously in an era of combine harvesters and waste disposal services. Botanical evidence relating to the past is extensive and includes both written sources and subfossil records. Our ability to interpret and use earlier written sources and identifications is, however, hampered by the ongoing changes in taxonomy, which recently have become tightly linked with genetic research. Because of these changes, the same plant can be presented under different names — which is especially true for crop plants. To facilitate the consultation of these sources, this handbook presents the valid scientific plant names together with their most important synonyms. In addition, we link the most commonly used plant names in classical Latin and Greek texts with modern plant taxonomy. A substantial part of this book gives a more detailed view of plant taxonomy and morphology, especially of the main crop plants in Europe, western Asia, and northern Africa. We hope this book will help palaeobotanists, environmental archaeologists, and colleagues from related disciplines optimize inferences based on what we could term “old-style” archaeobotany. And we hope that our observations will serve as an eye-opener and improve future research, not only as it is practised in our laboratories, but also as it is practised in the field. We would like to thank all those who supported our research and studies. In the first place, we want to express our gratitude to the people (too many to name) of the countries where we documented traditional agriculture — especially in Turkey, Syria, and Egypt — for their hospitality and sincerity. We also extend many thanks to the archaeologists (again, too many to name individually) with whom we collaborated, and of course to the institutions that have supported our work, the Groningen Institute of Archaeology (GIA) of the Rijksuniversiteit Groningen and the Deutsches Archäologisches Institut (DAI) in Berlin. We thank Suzanne Needs-Howarth (copy editor), Nynke Tiekstra (designer and typesetter), and Roelf Barkhuis (publisher) for giving a “face” to the book. We are grateful to Renée Bekker, Susanne Jahns, Benjamin Kilian, and Jan Frits Veldkamp for their critical remarks on some of the chapters. We thank our former professor Willem van Zeist, who introduced us to the field of palaeobotany. And, finally, we would like to express our gratitude to the late professor Sytze Bottema (1937–2005), who influenced both of us a lot by the way he incorporated field observations into his research.

René Cappers and Reinder Neef Groningen and Berlin, February 2012

Page 11: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

22 Handbook of plant palaeoecology | Cappers & Neef

1.1.7 Genetic research

Until recently, the classification of plants was mainly based on morphological and anatomical features. Over the past 20 years, much research has been done on the genetics of plants, resulting in a better understanding of phylogenetic trees and in major shifts of plants between genera and even families. However, this work is still in progress and current floras only present a status quo of our increasing insight into phylogenetic relationships. For example, based on available genetic research, the traditional classification of the Brassicaceae family turns out to be rather artificial, and a revision may be expected. Genetic research is applied on two levels: the size of the genome and the nucleotide sequences of genes. The genome is the entire number of genes present in each cell of a particular plant taxon. A gene is a functional unit bearing the code for a specific feature of the organism. Genes are linked together in long molecules, called deoxyribonucleic acid (DNA). In organism with a large number of genes, the DNA is split up into several parts, each of which is called a chromosome. In comparison with mammals, the amount of DNA in the flowering plants varies tremendously. This is partly related to the presence of multiple copies of the chromosome set (see below). For example, the total genome of Arabidopsis thaliana contains 157,000,000 base pairs (157 megabases; Mb) representing 25,498 genes, which are subdivided over five chromosomes. Because of its relatively small genome size, Arabidopsis thaliana is one of the model plants for genetic research (fig. 2). Genes are concentrated in ‘gene islands’, and more than 80 percent of the genome consists of repetitive elements (e.g. retrotransposons).

Figure 2: Its small plant

size, short life cycle, and

small genome make

Arabidopsis thaliana one of

the model organisms for

genetic research.

Page 12: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

1.1 Plant taxonomy 23

Most flowering plants are classified as diploid, which means that the genome is present as a double set of chromosomes in the nucleus of each cell. Only the gametes (pollen and ovules) of the plants have a single copy in their nucleus, being the result of a special cell division called meiosis. The division of the genome into a unique set of the genome makes it possible that each fusion of a pollen grain and an ovule results in a diploid cell. In this way, the size of the genome remains the same for a particular plant species. The number of the unique (haploid) chromosome number is designated with the letter n (1 x n = n). Diploid organisms have two homologous chromosomes in each cell nucleus, which is designated ‘2n’. A homologous set of chromosomes contains the same genes in a fixed sequence, although the expression of both genes may differ. Arabidopsis thaliana has five different chromosomes. The genome of this diploid plant species can thus be designated as n = 5 or 2n = 10. The genome is designated with a capital letter. This is of special interest for illustrating the composition and origin of the genomes of plant species in which changes of chromosome numbers occur (viz. polyploids; see below). Aberrant numbers of chromosomes may be present in organisms. Humans have 23 different chromosomes (n = 23), but abnormalities occur due to the absence of, for example, one of the sex chromosomes (genome is 2n − 1) or the presence of an extra copy of chromosome number 21 (genome is 2n + 1). In both cases, the aberrant number of chromosomes results in an abnormal human phenotype. The former leads to Turner syndrome and the latter to Down syndrome. Because the aberrant chromosome number results in a combination of specific, clinically recognizable features, the term syndrome is used. In plant species aberrant numbers of chromosomes also occur. This phenomenon is of special interest with respect to the process of plant domestication. The term domestication syndrome has been introduced to describe the spectrum of traits that characterize domesticated plants. A disadvantage of this term is that it is based on a clinical perspective rather than on an ecological framework. See section 5.1.2 for a further discussion on the use of this term. Variations in chromosome numbers can be achieved by reducing or increasing the number of chromosomes. The reduction of the number of chromosomes is largely restricted to diploid plant species, resulting in double haploid plants (monoploids) in which every nucleus has just a single copy of each chromosome. In fact, the genome of a monoploid, which in essentially is a diploid organism, is similar to that of a haploid gamete (pollen and ovules). Monoploids can be artificially produced by special tissue cultures in which, for example, plants are grown from pollen or unfertilized ovules. The use of pollen is preferred because they are more easily obtained in large quantities. Because genes can still be represented by several copies in the haploid genome, the phenotypic expression is only predictable when dealing with major genes. This kind of crop manipulation has been successfully applied to, for example, Soybean (Glycine max) and Common tobacco (Nicotiana tabacum). Once such monoploids have been cultivated, the chromosome number is doubled again by treating the cells with chemicals. In this way, double haploids are created having similar (homozygotous) chromosomes.

Page 13: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

24 Handbook of plant palaeoecology | Cappers & Neef

We are dealing with polyploids if more than two copies of the chromosome set are present. The genome of a triploid plant consists of three copies of the unique chromosome set (3n), that of a tetraploid has four copies (4n), that of a pentaploid has five copies (5n), that of a hexaploid has six copies (6n), and so forth. Each pair of chromosomes is designated with a capital letter. For example, the genome of the hexaploid Bread wheat (Triticum aestivum ssp. aestivum) is BBAADD, and can be written as 6n. This wheat species has 21 different chromosomes (7B, 7A and 7D), the total number of chromosomes being 6 x 7 = 42. Preferably, the genome is written as 2n = 6x = 42, in which n is the sum of a single set of chromosomes. This means that it behaves as a diploid plant (viz. the number of chromosomes of BAD = 3 x 7) and x is the number of one unique set of chromosomes (= 7). This description can be reduced to 2n = 42, in which the total number of chromosomes is mentioned but the polyploidy level remains obscure. The sequence of the genome designation in genomic formulas is determined by the taxon providing the cytoplasm (ovule); thus female parent x male parent. The BA genome of Triticum turgidum indicates that the B genome has been donated from a female Aegilops plant (present in the ovule) and the A genome stems from a male Triticum plant (present in the pollen grain). The hybrid offspring receives the organelles, residing in the cytoplasm, from the female parent. In plant cells, organelle genes are present in mitochondria (producing energy-rich ATP molecules) and chloroplasts (conducting photosynthesis). Recombination of mitochondrial DNA (mtDNA) and chloroplast DNA (cpDNA) does not occur during sexual reproduction, but changes in the DNA structure (viz. the sequence of the bases) result from rapid mutations. For this reason, studying the organelle genes is of much interest for understanding the evolutionary relationships of plants. The presence of more than two copies of the chromosome set is rather common in the plant kingdom. About one-third of all flowering plants are polyploids, and the proportion is even higher in economic plants. Because the number of chromosomes is large in polyploids, the nucleus and cell are often larger as well, resulting in plants that are more flexible and can adapt to different conditions and habitats. Polyploidy can be the result of chromosome duplication within a species, which is called autopolyploidy, but it can also be the result of a crossing between two different species (hybridization), which is called allopolyploidy. Autopolyploids have been cultivated because of the increase in flowers and fruits in particular. Fruits of Grape (Vitis vinifera) may serve as an example. The fruits of the diploid species (genome: 2n = 38) are normal-sized, whereas those of the tetraploid cultivars (genome: 4n = 76) have fruits that are almost twice as large. Allopolyploidy has played an important role in the cultivation history of several crops, including Wheat (Triticum), Banana (Musa), Banana (Musa), Banana ( ), Sugarcane (Saccharum), Potato (Solanum), and Sweet potato (Ipomoea). Triticum urartuand T. monococcum are both diploid, having two sets of seven chromosomes, but their genome is distinct, and the related chromosomes show little affinity, as a result of which hybridization is rare (Table 7). A superscript letter designates the different character of both genomes: Audesignates the different character of both genomes: Audesignates the different character of both genomes: A and Am. These letters are not fixed, and different combinations are used in publications. The two tetraploid wheat species, T. timopheevii and T. turgidum, both have the A genome, which is donated by Triticum urartu. The domestication of wheat also

Page 14: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

1.1 Plant taxonomy 25

includes hybridization with Aegilops species. Recent research shows that the B and G genomes were probably donated by Ae. speltoides and the D genome by Ae. tauschii, although the origin of the B genome is still a matter of debate. The domestication history of wheat most probably included two independent hybridizations of Ae. speltoides with T. urartu. The first hybridization could have taken place some 300,000 years ago, by which the B genome was donated. During a second, more recent, hybridization between the species about 90,000 years ago, the G genome was donated. Due to the long time span since these hybridizations, the genome of the outcrossing Ae. speltoides has evolved, and identical alleles are only found in the G genome; hence it gets its own designation with the letter S. Most probably, specimens of Ae. speltoides having a genome that is almost identical with the B and G genomes cannot be found anymore (Kilian et al., 2009; Kilian et al., 2011; Wang et al., 2011).

Table 7: Genome designation of Aegilops and Triticum species. The two Aegilops species have donated their genome by hybridization.

Plant species Genome

S B G A D

Aegilops speltoides S

2n = 2x = 14Aegilops tauschii D

Triticum urartu Au

Triticum monococcum Am

Triticum timopheevii G Au

2n = 4x = 28Triticum turgidum B Au

Triticum aestivum B Au

2n = 6x = 42Triticum zhukovskyi G Au Am

Recently, artificial hybridization has resulted in new crops, such as Triticale (x Triticosecale) and several Cabbages (Brassica). Triticale is a hybrid of Wheat (Triticum) and Rye (Secale cereale), combining the high yield and protein content of wheat with rye’s the adaptation to more harsh environments and its high lysine content, one of the essential amino acids. Several hybrids exist in which genomes of different wheat species have been used. No valid names on a species level are available yet. Although the first crossings were made in the late 1890s, it only became a commercial crop in the 1970s. This commercially produced hexaploid Triticale (genome AABBRR) is a hybrid of the tetraploid Hard wheat (Triticum turgidum ssp. durum; genome BBAA) and the diploid Rye (genome RR). The octaploid Triticale (genome BBAADDRR), resulting from a cross between the hexaploid Bread wheat (Triticum aestivum; genome BBAADD) and Rye, has less favourable traits and is therefore not cultivated on a commercial basis. Within the genus Brassica, three diploid species are considered to be basic species: B. nigra (2n = 2x = 16), B. oleracea (2n = 2x =18), and B. rapa (2n = 2x = 20). Hybridization between B. nigra and B. oleracea resulted in the tetraploid B. carinata (2n = 4x = 34), hybridization between B. nigra and B. rapa in the tetraploid B. juncea (2n = 4x = 36), and hybridization of B. oleracea and B. rapain the tetraploid B. napus (2n = 4x = 38). Each of these tetraploids is represented by several varieties, demonstrating the large phenotypic potential within this genus.

Page 15: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

26 Handbook of plant palaeoecology | Cappers & Neef

The classification of plants has recently been improved by the analysis of DNA sequences. This kind of research focuses on the specific gene sequences, such as that of the gene rbcL (ribulose biphosphate carboxylase, large subunit). This gene is present in the chloroplast DNA and has the genetic code for the production of an enzyme that triggers an essential process in photosynthesis. Because of this essential trait, this gene is present in all angiosperms and is suitable for this kind of research. The phylogenetic relationship between plants is inferred by specific dissimilarities in the base sequences of the gene. The conserved regions of this gene are of special interest when comparing the same gene in different species, because they accumulate mutations over time. Assuming a rather constant rate of mutations, the dissimilarities in base sequences can be interpreted on a time scale and used for the reconstruction of phylogenetic trees. This kind of reconstruction is, however, hampered by specific events that can lead to a higher rate of mutations. The Angiosperm Phylogeny Group (AGP), which has published three overviews so far, governs this research (viz. APG 1 in 1998, APG 2 in 2003, and APG 3 in 2009).

1.2 Plant ecology

1.2.1 Seed production and seed predation

Subfossil plant remains can be used to reconstruct the former vegetation and the past food economy. Ideally, archaeobotanical data records should consist of the scientific plant name; the plant part; the number of plant remains; the preservation condition; and the presence of specific features dealing with fragmentation, predation, and processing. The number of seeds or fruits, being part of most archaeobotanical records, can be indicative of the relative contribution of each plant to the former vegetation or food diet. This does not imply, however, that the observed differences in numbers coincide with the original representation in the vegetation or diet. Several variables have to be taken into account for a more reliable interpretation. For the reconstruction of the former vegetation in a particular landscape, these include seed production, seed dispersal, and the taphonomic processes that act on seeds after deposition over time. A complicating factor for the reconstruction of vegetation is that descriptions of vegetation are based on the surface area coverage of the individual species, whereas archaeobotanical records predominantly consist of seed counts. A possible pathway to link the archaeobotanical data record to the syntaxonomy will be discussed in section 1.3.3. Variables that determine the presence in the archaeobotanical data record of edible plants deal with crop processing and food preparation in particular. A meaningful conversion of seed counts to energy levels will be discussed in section 5.2.5. Seed production is the primary variable that determines the number of seeds recovered from an archaeological sample. Differences in seed production are, however, not mirrored in the archaeobotanical archive. Seed dispersal and all kinds of taphonomic processes are responsible for a shift in the proportions between plants. The potential seed production is primarily determined by the number of ovules present in the lower part of the pistil. Actual seed production is primarily determined by the degree of fertilization. This, in turn, depends

Page 16: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

1.2 Plant ecology 71

During the entire growing season, and close to harvesting time in particular, crops are vulnerable to predation. Agricultural experiments in salt marshes have, for example, shown that crops can be damaged by insects, cattle, and birds (figs. 63 and 64). The fencing of fields proved to be necessary to prevent such a loss of yield. Birds need trees in the vicinity of the fields to use as shelter; in the absence of trees, depredation by birds is no longer a serious threat.

1.2.5.6 Threshing, winnowing, and sievingThreshing is the first process after harvesting. It is aimed at separating the edible parts from the non-edible parts. Threshing can be followed by winnowing and sieving, during which the edible parts are cleaned to a higher degree. While threshing, if practised, takes place only once, winnowing and sieving can be applied several times before the grains are used for food preparation. Crop processing following harvesting can be rather complicated and is determined by the kind of crop, its use, the harvesting method, and the cultural traditions, which may be partly related to environmental conditions. Hulled and naked (or free-threshing and hull-less) cereals are threshed using different methods. In hulled cereals, the grain kernels are tightly enclosed by the chaff, whereas naked cereals have loose chaff. The threshing of hulled cereals is aimed at separating the spikelets from the rachis, whereas the threshing of naked cereals is aimed at separating the grain kernels from the ear. The threshing of naked cereals can be completed in one go. The grains are easily separated from the chaff on the threshing floor—hence its alternative adjective, free-threshing. The threshing remains of naked cereals consist of culm fragments; chaff (namely, glumes, lemmas, and paleae); and diaspores of field weeds (fig. 65). The lighter fragments can be removed by winnowing. The difference in husk tightness determines both the use that the threshing remains can be put to and the archaeological contexts that should be sampled.

Figure 64: Flower-heads of

Sunflower (Helianthus

annuus) with ripening fruits

are protected from bird

predation with plastic bags

(Çiflik, central Anatolia,

Turkey; August 2010).

Page 17: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

72 Handbook of plant palaeoecology | Cappers & Neef

Hulled cereals need two stages of threshing. The first threshing results in the fragmentation of the culms and spikes. Subsequent winnowing and sieving separate the spikelets from the threshing remains. Threshing remains from hulled cereals consist of culm fragments (the number depends on the reaping height) and diaspores of field weeds (fig. 66). A second threshing is necessary for dehusking the grain kernels. This can be done by pounding and grinding. To facilitate the removal of the chaff, spikelets can be slightly roasted.

Figure 65 : Threshing

remains from Bread wheat

(Triticum aestivum)

produced by a modern

threshing machine. These

remains are fragmented to

a high degree and are

relatively poor in

diaspores from associated

field weeds (Tunis, Egypt;

September 2002).

Figure 66: Threshing

remains from hulled 6-row

Barley (Hordeum vulgare

ssp. vulgare) produced by a

modern threshing

machine. These remains

contain a large number of

diaspores from associated

field weeds. Barley is only

represented by some

smaller sterile spikelets

(Calabria, Italy; July 2007).

Page 18: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

1.2 Plant ecology 73

The degree of fragmentation of the threshing remains depends on the implements used. The use of a flail or roller will bruise the crop. The same is true if animals, such as horses or oxen, are used for trampling the grain out of the crop (fig. 67). More advanced implements, such as the threshing sledge, having stones or metal on its underside, combine separating with fragmenting. Flailing and eventually rolling can be done inside, whereas trampling and sledging need more space and are done on a threshing floor that is located outside. Threshing may be delayed because of the pressure of work during the summer period. In that case, the unthreshed harvest is stored and threshing is done during the winter period at regular intervals.

When hulled cereals are ear-harvested, threshing is not necessary if the grain is to be used as fodder or for making beer, especially in the case of 2-row Barley. If used as fodder, the whole yield can be fed to the animals. There are several advantages to this. The spikes can be fragmented into their individual spikelets, and they can also be separated from the culm fragments. Fragmentation of the harvested crop also reduces the amount of space that is needed for storage. The spikelets have a higher nutritional value. And finally, spikelets are larger and are more easily chewed than the grain kernels themselves. For beer making, spikelets are isolated from the yield, but separating the grain kernels from the chaff (dehusking) is not necessary. Grain kernels are allowed to germinate, and this occurs naturally within the chaff. Only when grain is to be used for human consumption should an effort be made eventually to separate the grain kernels from the chaff. Threshing can be done off-site or on-site. In the latter case, the yield can be stored and threshing can be done in periods when less labour is required on the fields. Threshing is preferably done on a threshing floor that is clean, flat, and solid (fig. 68). The size and quality requirements for the floor also depend on the implements used for threshing. Cato (On Agriculture, 91) and Varro (On Agriculture, 11), for example, describe the requirements for a threshing floor. To facilitate the drainage of rainwater, the central part should be somewhat elevated, and the solid and well-packed floor may be coated with amurca, being the last liquid that is produced during olive pressing. This black water has antiseptic properties and protects against weedy plants, insects, and moles.

Figure 67: Wall painting

from the tomb of Mena at

Thebes (eighteenth

dynasty), showing

threshing of ears of

Emmer using longhorn

cattle. This is a

reproduction on Papyrus,

painted by Nadia Kotb.

Page 19: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

74 Handbook of plant palaeoecology | Cappers & Neef

Some crops, such as Sesame, can be threshed without special tools. When the uprooted plants have become sufficiently dry, they can be turned upside down, and the seeds can then be shaken from the fruits (fig. 69). The threshing of many crops is, however, done by animals or with special tools. By walking over the harvested crop, animals can tread the spikelets from the ears and the seeds from the fruits with their feet. Traditional tools used for threshing are flails, threshing sledges, and rollers (fig. 70). A flail is made from two rods of uneven length, connected to each other with a short chain or other strong, flexible material, such as the dried skin of an eel, which is extremely durable. The threshing sledge was used until recently around the Mediterranean and in the Near East. The most common type consists of a

Figure 68: Overview and

detail of a village

threshing floor. The floor

consists of large, flat

stones. The metal pole in

the centre was used for

fastening the rope used to

restrain the animals that

were used for threshing.

Having fallen out of use,

the threshing floor has

become a storage place

for fuel wood (Geraki,

Greece; July 2010).

Page 20: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

1.2 Plant ecology 75

wooden board with many small holes on the bottom, in which sharp stones or metal blades have been inserted (fig. 71). The use of sledge flints illustrates that even in modern times implements could be still partly made of stone. In Egypt, a different type of threshing sledge evolved: the nurag. This sledge consists of a frame that is furnished with metal or wooden rollers. Each roller carries several large metal disks (fig. 72).

Figure 69: Seeds of

Sesame (Sesamum

indicum) are shaken from

the fruits (Tunis, Egypt;

October 2003).

Figure 70: Threshing fruits

of Chickpea (Cicer

arietinum) using a roller.

Picking the fruits from the

plants and crushing the

fruits is done on the roof

(Murtazaköy, Turkey;

August 2010).

Page 21: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

254 Handbook of plant palaeoecology | Cappers & Neef

3.2.5.4.4 Subfossil remainsCharred grain kernels of Broomcorn millet are mostly preserved without chaff. The scutellum is large and the embryo may be exposed or broken off. In the latter case, the shape of the grain kernel is characterized by a hollow base (fig. 81).

3.2.5.5 Setaria (Bristle grasses)3.2.5.5.1 Classifi cation

Wild Domesticated

Setaria italica (L.) P. Beauv. Setaria italica (L.) P. Beauv.

ssp. viridis (L.) Thell. ssp. italica

Note: Panicum italica L. is a synonym of Setaria italica ssp. italica.

The progenitor of Foxtail millet (Setaria italica) is Green bristle grass (S. italica ssp. viridis). Although the wild ancestry is well defined, many floras still use the name Setaria viridis (L.) P. Beauv. for the wild progenitor. One of the synonyms of domesticated Foxtail millet is Panicum italica L.

3.2.5.5.2 EcologySetaria italica ssp. viridisGreen foxtail millet is native to Europe, the temperate part of Asia, the Indian subcontinent, and northern Africa. It is a weed that grows on both cultivated and waste ground and is thus a potential seed contaminant. Green foxtail millet propagates by means of shattering spikelets.

Setaria italica ssp. italicaFoxtail millet is propagated by sowing florets and by tillering. It grows in areas with a temperate climate and is adapted to poor soils, being less exacting than Panicum miliaceum. Soils should not be too dry or waterlogged. Foxtail millet can be harvested 2.5–3 months after sowing. If soils are not too poor, Foxtail millet produces higher yields than P. miliaceum. Mixed cropping with P. miliaceum is also practised.

Figure 81: Charred grain

kernels of Panicum

miliaceum from Tanais

(Russia), dating to the

Roman period.

Page 22: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

3.2 Morphology of fruits and seeds 255

3.2.5.5.3 MorphologyThe infructescence is a dense, spike-like panicle. Spikelets of Setaria differ from those of Panicum by the presence of a large number of long scabrid bristles at the base of each spikelet, giving the infructescence a bristly appearance (fig. 82). The dispersal unit of the wild subspecies (ssp. viridis) is a spikelet (consisting of glumes and sterile and fertile floret), whereas that of the domesticated subspecies (ssp. italica) is the fertile floret (grain kernel enclosed by the lemma and palea) (figs. 83 and 84). In both subspecies, the bristles remain attached to the axis. The spikelet of Foxtail millet has a similar structure to that of Broomcorn millet (Panicum miliaceum). One of the main differences is the presence of small papillae on both lemma and palea, which are more or less arranged in short wavy lines on the lemma (thus being transversely rugose). The papillae on the palea are limited to the central area and are sharply bordered by smooth fringes (fig. 85). As in Broomcorn millet, the colour of the hardened lemma and palea of the fertile floret varies.

Figure 82: Infructescences

(spikes) of Setaria italica

ssp. viridis (left) and

S. italica ssp. italica (right).

In the wild subspecies

(viridis), part of the florets

has been shattered,

whereas all florets are still

present in the spike of

the domesticated

subspecies (italica).

Figure 83: Spikelets and

florets, the latter with

dark flecks, of Setaria

italica ssp. viridis.

1 mm 1 cm

1 mm

Page 23: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

256 Handbook of plant palaeoecology | Cappers & Neef

Figure 84: Spikelets

and florets of Setaria

italica ssp. italica.

Figure 85: Ventral view of

fertile florets of Setaria

italica ssp. viridis (left),

Setaria italica ssp. italica

(middle), and Panicum

miliaceum (right). Fringes

of the lemma cover those

of the palea and are thus

visible in a ventral view.

Papillae are present on the

lemma and the central

part of the palea of both

subspecies of Setaria

italica. The palea of

Panicum miliaceum

is characterized

by three nerves.

Figure 86: Charred grain

kernels of Setaria italica

ssp. viridis from Lebehn

(Germany), dating to the

Late Bronze Age.

1 mm

Page 24: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

8. 1 Taxonomy 439

Literature

Most of the literature is organized in sections and also includes relevant references that are not cited in the text. Although there is some overlap among the sections because publications may cover several themes, we feel that this presentation facilitates the search for relevant literature on a certain topic. The last section concerns references from the text that are not directly related to any of the named sections.

8. 1 Taxonomy

Backer, C. A. (2000). Verklarend woordenboek van wetenschappelijke plantennamen. Amsterdam and Antwerpen: Uitgeverij L. J. Veen.

Bedigian, D. (2010). Sesame: The genus Sesamum. Boca Raton, USA: CRC Press. Berkowitz, L., K. A. Squitier & W. A. Johnson (1990). Thesaurus linguae Graecae.

New York: Oxford University Press. Estienne, H. (1816–1828). Thesaurus Graecae linguae (ab Henrico Stephano

constructus: Editio nova auctior et emendatior). London: In Aedibus Valpianis. Heywood, V. H., R. K. Brummitt, A. Culham & O. Seberg (2007). Flowering plant

families of the world. Richmond Hill, Canada: Firefly Books. Hondelmann, W. (2002). Die Kulturpflanzen der griechisch-römischen Welt:

Pflanzliche Ressourcen der Antike. Berlin: Gebrüder Borntraeger. Jasny, N. (1944). The wheats of classical antiquity. Baltimore, USA: The Johns

Hopkins University Press. Mabberley, D. J. (2008). Mabberley’s plant-book: A portable dictionary of plants,

their classification and uses (3rd ed.). Cambridge: Cambridge University Press.

8. 2 Ecology

Bonn, S., & P. Poschlod (1998). Ausbreitungsbiologie der Pflanzen Mitteleuropas. Grundlagen und Kulturhistorische Aspekte. Wiesbaden, Germany: Quelle & Meyer Verlag.

Bouman, F., D. Boesewinkel, R. Bregman, N. Devente & G. Oostermeijer (2000). Verspreiding van zaden. Utrecht: KNNV Uitgeverij.

Bunce, R. G. H., & D. C. Howard (Eds.). (1990). Species dispersal in agricultural habitats. London: Belhaven Press.

Cappers, R. T. J. (1993). Seed dispersal by water: A contribution to the interpretation of seed assemblages. Vegetation History and Archaeobotany, 2, 173–186.

Carleton, M. A. (1920). The small grains. New York: The Macmillan Company. Cavens, P. B., & D. L. Benoit (1989). Seed banks in arable land. In M. A. Leck,

V. T. Parker & R. L. Simpson (Eds.). (1989). Ecology of soil seed banks (pp. 309–328). San Diego: Academic Press.

8

Page 25: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

440 Handbook of plant palaeoecology | Cappers & Neef

Crawford, R. M. M. (1989). Studies in plant survival: Ecological case histories of plant adaptation to adversity. Oxford: Blackwell Scientific Publications.

Fathy, H. (2000). Architecture for the poor (3rd ed.). Cairo: The American University in Cairo Press.

Fenner, M. (Ed.). (2000). Seeds: The ecology of regeneration in plant communities (2nd ed.). Wallingford, UK: CABI Publishing.

Gill, N. T., & K. C. Vear (1980). Agricultural botany 2: Monocotyledonous crops. London: G. Duckworth.

Girgis, W. A. (1971). Plant indicators in the Egyptian desert. The Desert Institute Bulletin, A. R. E., 21, 511–552.

Grime, J. P, J. G. Hodson & R. Hunt (1988). Comparative plant ecology: A functional approach to common British species. London: Unwin Hyman.

Hillman, G. (1991). Phytosociology and ancient weed floras: Taking account of taphonomy and changes in cultivation methods. In D. R. Harris & K. D. Thomas (Eds.), Modelling ecological change: Perspectives from neoecology, palaeoecology and environmental archaeology (pp. 27–40). London: University College London.

Kosinová, J. (1975). Weed communities in winter crops in Egypt. Preslia, 47, 58–74.

Leck, M. A., V. T. Parker & R. L. Simpson (Eds.). (1989). Ecology of soil seed banks. San Diego: Academic Press.

Pijl, L. van der (1969). Principles of dispersal in higher plants. Berlin: Springer Verlag.

Ridley, H. N. R. (1990 [1930]). The dispersal of plants throughout the world (reprint). Koenigstein, Germany: Otto Koeltz Science Publishers.

Smith, A. (2007). Plant use at Çadir Höyük, Central Anatolia. Anatolica,33, 169–184.

Thalen, D. C. P. (1979). Ecology and utilization of desert shrub rangelands in Iraq. The Hague: Dr. W. Junk Publishers. [published doctoral dissertation, Rijksuniversiteit Groningen, the Netherlands]

Thompson, K., & J. P. Grime (1979). Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology, 76, 893–921.

Turkington, R., & J. J. Burdon (1983). The biology of Canadian weeds 57: Trifolium repens L. Canadian Journal of Plant Science, 63, 243–266.

Veen, M. van der (1992). Crop husbandry regimes. An archaeobotanical study of farming in northern England 1000 BC–AD 500. Sheffield Archaeological Monographs 3. Sheffield: J.R. Collis Publications.

Willcox, G. (1999). Agrarian change and the beginnings of cultivation in the Near East: Evidence from wild progenitors, experimental cultivation and archaeobotanical data. In J. Hather & C. Gosden (Eds.), The prehistory of food (pp. 479–500). London: Routledge.

Willcox, G. (2005). The distribution, natural habitats and availability of wild cereals in relation to their domestication in the Near East: Multiple events, multiple centres. Vegetation History and Archaeobotany, 14, 534–541.

8. 3 Flora and vegetation

Arnolds, E., & E. van der Maarel (1979). De oecologische groepen in de standaardlijst van de Nederlandse flora. Gorteria, 9, 303–312.

Page 26: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

8. 3 Flora and vegetation 441

Böhling, N., W. Greuter & T. Raus (2002). Indicator values of the vascular plants in the Southern Aegean (Greece). Braun-Blanquetia, 32, 1–108. Camerino: Dipartimento di Botanica ed Ecologia.

Bor, N. L. (1968). Flora of Iraq: Gramineae (Vol. 9). Baghdad: Ministry of Agriculture and Agrarian Reform of the Republic of Iraq.

Davis, P. H. (1970). Flora of Turkey and the East Aegean Islands: Leguminosae (Vol. 3). Edinburgh: Edinburgh University Press.

Davis, P. H. (1985). Flora of Turkey and the East Aegean Islands: Juncaceae, Cyperaceae and Gramineae (Vol. 9). Edinburgh: Edinburgh University Press.

Denters, T. (2004). Stadsplanten: Veldgids voor de stad. ’s-Graveland, the Netherlands: Fontaine Uitgevers.

Dirkse, G. M., & B. W. J. M. Kruijsen (1993). Indeling in ecologische groepen van Nederlandse blad- en levermossen. Gorteria, 19, 1–29.

Düll, R. (1991). Zeigerwerte von Laub- und Levermoosen. In H. Ellenberg, H. E. Weber, R. Düll, V. Wirth, W. Werner & D. Paulissen (Eds.), Zeigerwerte von Pflanzen in Mitteleuropa (pp. 175–214). Scripta Geobotanica 18. Göttingen, Germany: E. Goltze.

Ellenberg, H., H. E. Weber, R. Düll, V. Wirth, W. Werner & D. Paulissen (Eds.). (1991). Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18. Göttingen, Germany: E. Goltze.

Heywood, V. H., R. K. Brummitt, A. Culham & O. Seberg (2007). Flowering plant families of the world. London, UK: Royal Botanic Gardens, Kew.

Joachim, H. (1998). Gustav Hegi illustrierte Flora von Mitteleuropa: Spermatophyta: Angiospermae: Monocotyledones 1 (2) Poaceae (Echte Gräser oder Süssgräser) (Vol. 1[3]). Berlin: Parey Buchverlag.

Londo, G. (1988). Nederlandse freatofyten. Wageningen, the Netherlands: Pudoc. Mabberley, D. J. (2008). Mabberley’s plant-book: A portable dictionary of plants,

their classification and uses (3rd ed.). Cambridge: Cambridge University Press.

Maesen, L. J. G. van der & S. Somaatmadja (Eds.). (1992). Plant-resources of South-East Asia: Pulses (Vol. 1). Wageningen, the Netherlands: Pudoc.

Meijden, R. van der, C. L. Plate & E. J. Weeda (1989). Atlas van de Nederlandse flora: Minder zeldzame en algemene soorten (Vol. 3). Voerendaal, the Netherlands: Schryen-Lippertz.

Mennema, J., A. J. Quené-Boterenbrood & C. L. Plate (1980). Atlas van de Nederlandse flora: Uitgestorven en zeer zeldzame planten (Vol. 1). Amsterdam: Kosmos.

Mennema, J., A. J. Quené-Boterenbrood & C. L. Plate (1985). Atlas van de Nederlandse flora: Zeldzame en vrij zeldzame planten (Vol. 2). Utrecht: Bohn, Scheltema & Holkema.

Mulder, F. J., M. C. Geluk, I. Ritsema, W. E. Westerhoff & T. E. Wong (Eds.). (2003). De ondergrond van Nederland. Zeist, the Netherlands: TNO.

Pott, R. (1992). Die Pflanzengesellschaften Deutschlands. Stuttgart, Germany: Ulmer.

Runhaar, J., C. L. G. Groen, R. van der Meijden & R. A. M. Stevers (1987). Een nieuwe indeling in ecologische groepen binnen de Nederlandse flora. Gorteria, 13, 277–359.

Runhaar, J., W. van Landuyt, C. L. G. Groen, E. J. Weeda & F. Verloove (2004). Herziening van de indeling in ecologische soortengroepen voor Nederland en Vlaanderen. Gorteria, 30, 12–26.

Page 27: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

442 Handbook of plant palaeoecology | Cappers & Neef

Schaminée, J. H. J., A. H. F. Stortelder & E. J. Weeda (1996). De vegetatie van Nederland: Graslanden, zomen en droge heiden (Vol. 3). Uppsala, Sweden, and Leiden, the Netherlands: Opulus Press.

Schaminée, J. H. J., A. H. F. Stortelder & V. Westhoff (1995). De vegetatie van Nederland: Inleiding tot de plantensociologie—grondslagen, methoden en toepassingen (Vol. 1). Uppsala, Sweden, and Leiden, the Netherlands: Opulus Press.

Schaminée, J. H. J., K. Sýkora, N. Smits & M. Horsthuis (2010). Veldgids plantengemeenschappen van Nederland. Utrecht: KNNV Uitgeverij.

Schaminée, J. H. J., E. J. Weeda & V. Westhoff (1995). De vegetatie van Nederland: Wateren, moerassen en natte heiden (Vol. 2). Uppsala, Sweden, and Leiden, the Netherlands: Opulus Press.

Schaminée, J. H. J., E. J. Weeda & V. Westhoff (1998). De vegetatie van Nederland: Kust en binnenlandse pioniermilieus (Vol. 4). Uppsala, Sweden, and Leiden, the Netherlands: Opulus Press.

Stortelder, A. H. F., J. H. J. Schaminée & P. W. F. M. Hommel (1999). De vegetatie van Nederland: Plantengemeenschappen van ruigten, struwelen en bossen (Vol. 5). Uppsala, Sweden, and Leiden, the Netherlands: Opulus Press.

Täckholm, V., G. Täckholm & M. Drar (1941). Flora of Egypt (Vol. 1). Cairo: Faoud I University.

Tamis, W. L. M. (2005). Changes in the flora of the Netherlands in the 20th century. Gorteria supplement 6, 1–233.

Tamis, W. L. M., R. van der Meijden, J. Runhaar, R. M. Bekker, W. A. Ozinga, B. Odé & I. Hoste (2004). Standaardlijst van de Nederlandse flora 2003. Gorteria, 30, 101–195.

Townsend, C. C. (1974). Flora of Iraq: Leguminales (Vol. 3). Baghdad: Ministry of Agriculture and Agrarian Reform of the Republic of Iraq.

Townsend, C. C., & E. Guest (1980). Flora of Iraq: Cornaceae to Rubiaceae (Vol. 4[1]). Baghdad: Ministry of Agriculture and Agrarian Reform of the Republic of Iraq.

Weeda, E. J., J. H. J. Schaminée & L. van Duuren (2000). Atlas van plantengemeenschappen in Nederland: Wateren, moerassen en natte heiden (Vol. 1). Utrecht: KNNV Uitgeverij.

Weeda, E. J., J. H. J. Schaminée & L. van Duuren (2002). Atlas van plantengemeenschappen in Nederland: Graslanden, zomen en droge heiden (Vol. 2). Utrecht: KNNV Uitgeverij.

Weeda, E. J., J. H. J. Schaminée & L. van Duuren (2003). Atlas van plantengemeenschappen in Nederland: Kust en binnenlandse pioniermilieus (Vol. 3). Utrecht: KNNV Uitgeverij.

Weeda, E. J., J. H. J. Schaminée & L. van Duuren (2005). Atlas van plantengemeenschappen in Nederland: Bossen, struwelen en ruigten (Vol. 4).Utrecht: KNNV Uitgeverij.

Weeda, E. J., R. Westra, C. Westra & T. Westra (1985). Nederlandse oecologische flora: Wilde planten en hun relaties (5 vols.). Amsterdam: IVN.

Westhoff, V., & A. J. den Held (1969). Plantengemeenschappen in Nederland. Zutphen, the Netherlands: Thieme.

Westhoff, V., & E. van der Maarel (1973). The Braun-Blanquet approach. In R. H. Whittaker (Ed.), Handbook of vegetation science: Ordination and classification of communities (Vol. 5, pp. 617–726). Den Haag, the Netherlands: Dr. W. Junk Publishers.

Page 28: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

8. 4 Identifi cation 443

Zahran, M. A., & A. J. Willis (1992). The vegetation of Egypt. London: Chapman & Hall.

Zarzycki, K., H. Trzcińska-Tacik, W. Różański, Z. Szelag, J. Wołek & U. Korzeniak (Eds.). (2002). Ecological indicator values of vascular plants of Poland. Biodiversity of Poland 2. Kraków: Polish Academy of Sciences, W. Szafer Institute of Botany.

8. 4 Identifi cation

Anderberg, A. -L. (1994). Atlas of seeds: Resedaceae–Umbelliferae (Vol. 4). Stockholm: Swedish Museum of Natural History.

Baum, B. R. (1977). Oats: Wild and cultivated: A monograph of the genus Avena L. (Poaceae). Ottawa: Thorn Press Limited.

Berggren, G. (1969). Atlas of seeds: Cyperaceae (Vol. 2). Stockholm: Swedish Natural Science Research Council.

Berggren, G. (1981). Atlas of seeds: Salicaceae–Cruciferae (Vol. 3). Stockholm: Swedish Museum of Natural History.

Beug, H. -J. (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. München: Verlag Dr. Friedrich Pfeil.

Black, M., J. D. Bewley & P. Halmer (Eds.). (2006). The encyclopedia of seeds: Science, technology and uses. Trowbridge, UK: Cromwell Press.

Bothmer, R. von, N. Jacobsen, C. Baden, R. B. Jørgenses & I. Linde-Laursen (1991). An ecogeographical study of the genus Hordeum. Systematic and ecogeographical studies on crop genepools 7. Rome: International Plant Genetic Resources Institute.

Bouman, A. C. (2002). De Nederlandse veenmossen. Utrecht: KNNV Uitgeverij. Braadbaart, F. (2004). Carbonization of peas and wheat—A window into the past:

A laboratory study (Unpublished doctoral dissertation). Leiden University, the Netherlands.

Briggs, D. E. (1978). Barley. London: Chapman & Hall. Cappers, R. T. J., R. M. Bekker & J. E. A. Jans (2006). Digitale zadenatlas van

Nederland. Groningen Archaeological Studies 3. Groningen, the Netherlands: Barkhuis & Groningen University Library [with text in Dutch and English; http://www.plantenatlas.eu]

Cappers, R. T. J., R. Neef & R. M. Bekker (2009). Digital atlas of economic plants (3 vols.). Groningen Archaeological Studies 9. Groningen, the Netherlands: Barkhuis & Groningen University Library. [http://www.plantenatlas.eu]

Clayton, W. D., & S. A. Renvoize (1986). Genera Graminum: Grasses of the world. Kew Bulletin, Additional Series 13. London: Royal Botanic Gardens, Kew.

Coffman, F. A., & J. M. Key (1959). Hafer (Avena sativa L.). In H. Kappert & W. Rudorf (Eds.), Handbuch der Pflanzenzüchtung (Vol. 2, pp. 427–531). Berlin and Hamburg: Paul Parey.

Dort, K. van, C. Buter & P. van Wielink (1998). Veldgids mossen. Utrecht: KNNV Uitgeverij.

Gassner, G., B. Hohmann & F. Deutschmann (1989). Mikroskopische Untersuchung pflanzlicher Lebensmittel. Stuttgart: Gustav Fisher Verlag.

Geel, B. van (2001). Non-pollen palynomorphs. In J. P. Smol, H. J. B. Birks & W. M. Last (Eds.), Tracking environmental change using lake sediment: Terrestia, algal and silicaceous indicators (Vol. 3, pp. 99–119). Dordrecht, the Netherlands: Kluwer.

Page 29: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

444 Handbook of plant palaeoecology | Cappers & Neef

Gradstein, S. R., & H. M. H. van Melick (1996). De Nederlandse levermossen & hauwmossen. Utrecht: KNNV Uitgeverij.

Hillman, G. C. (2001). Archaeology, Percival, and the problems of identifying wheat remains. The Linnean, 3, 27–36.

Hillman, G. C., S. Mason, D. De Moulins & M. Nesbitt (1996). Identification of archaeological remains of wheat: The 1992 London workshop. Circaea,12, 195–209.

Jacomet, S. (2008). Identification of cereal remains from archaeological sites (3rd ed.). Basel: IPAS.

Jansen, P. (1951). Gramineae. In T. Weevers, J. Heimans, B. H. Danser, A. W. Kloos, S. J. van Oostroom & W. H. Wachter (Eds.), Flora Neerlandica (Vol. 1[2], pp. 1–274). Amsterdam, the Netherlands: Koninklijke Nederlandsche Botanische Vereeniging.

Jensen, H. A. (1998). Bibliography on seed morphology. Rotterdam: A. A. Balkema. Jones, G., S. Valamoti & M. Charles (2000). Early crop diversity: A ‘new’ glume

wheat from northern Greece. Vegetation History and Archaeobotany, 9,133–146.

Kalkman, C. (1972). Mossen en vaatplanten: Bouw, levenscyclus en verwantschappen van de Cormophyta. Utrecht: Oosthoek.

Kesseler, R., & W. Stuppy (2006). Seeds: Time capsules of life. London: Papadakis Publishers and Royal Botanic Gardens, Kew.

Kieć, J. (2003). Main differences between some Avena species. In L. Frey (Ed.), Problems in grass biology (pp. 239–247). Kraków, Poland: W. Szafer Institute of Botany.

Körber-Grohne, U. (1964). Bestimmungsschlüssel für subfossile Juncus-Samen und Gramineen-Früchte. Probleme der Küstenforschung im südlichen Nordseegebiet 7. Hildesheim, Germany: A. Lax.

Körber-Grohne, U. (1991). Identification key for subfossil Gramineae fruits. In (pp. 169–234 and 24 tables). Probleme der Küstenforschung im südlichen Nordseegebiet 18. Hildesheim, Germany: A. Lax

Landwehr, J. (1980). Atlas Nederlandse levermossen. Utrecht: KNNV Uitgeverij. Landwehr, J. (1984). Nieuwe atlas Nederlandse bladmossen. Zutphen, the

Netherlands: Thieme. Leonard, W. H., & J. H. Martin (1963). Cereal crops. New York: The Macmillan

Company. Maier, U. (1996). Morphological studies of free-threshing wheat ears from a

Neolithic site in south-west Germany, and the history of the naked wheats. Vegetation History and Archaeobotany, 5, 39–55.

Meijden, R. van der (2005). Heukels’ flora van Nederland (23rd ed.). Groningen, the Netherlands: Wolters-Noordhoff.

Moore, P. D., & J. A. Webb (1978). An illustrated guide to pollen analysis. London, Sydney, Auckland, and Toronto: Hodder and Stoughton.

Neef, R., Cappers, R. T. J., & R. M. Bekker (2012). Digital atlas of economic plants in archaeology. Groningen Archaeological Studies 17. Groningen, the Netherlands: Barkhuis and Groningen University Library. [http://www.plantenatlas.eu]

Nesbitt, M. (2006). Identification guide for Near Eastern grass seeds. London: University College London.

Peachey, R. A. (1951). Cereal varieties in Great Britain. London: Crosby Lockwood & Son.

Percival, J. (1921). The wheat plant. London: Duckworth.

Page 30: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

8. 5 Spores and pollen 445

Reille, M. (1992). Pollen et spores d’Europe et d’Afrique du Nord. Marseille: CNRS. Reille, M. (1998). Pollen et spores d’Europe et d’Afrique du Nord (Suppl. 2).

Marseille: CNRS. Schiemann, E. (1948). Weizen, Roggen, Gerste. Systematik, Geschichte und

Verwendung. Jena, Germany: Gustav Fisher Verlag. Siebel, H., & H. During (2006). Beknopte mosflora van Nederland en België.

Utrecht: KNNV Uitgeverij. Slageren, M. W. van (1994). Wild wheats: A monograph of Aegilops L. and

Amblyopyrum (Jaub., & Spach) Eig (Poaceae). Wageningen Agricultural University Papers 7. Wageningen, the Netherlands: Landbouwuniversiteit.

Spjut, R. W. (1994). A systematic treatment of fruit types. Memoirs of the New York Botanical Garden 70. New York: New York Botanical Garden Printing Department.

Stoffers, A. L. (1982). Compendium van de spermatophyta. Utrecht: Bohn, Scheltema & Holkema.

Stuppy, W., & R. Kesseler (2008). Fruits: Edible, inedible, incredible. London: Papadakis Publishers and Royal Botanic Gardens, Kew.

Tomlinson, P. (1985). An aid to the identification of subfossil buds, bud-scales and catkin-bracts of British trees and shrubs. Circaea, 3, 45–130.

Touw, A., & W. V. Rubers (1989). De Nederlandse bladmossen: Flora en verspreidinggsatlas van de Nederlandse Musci (Sphagnum uitgezonderd). Utrecht: KNNV Uitgeverij.

Zeist, W. van (1970). Prehistoric and early-historic food plants in the Netherlands. Palaeohistoria, 14, 41–173.

8. 5 Spores and pollen

Bakker, R. (2003). The process of neolithization in the Pleistocene areas near the North Sea coast: Evidence of early farming by the Swifterbant culture around 4000 cal. BC (doctoral dissertation, Rijksuniversiteit Groningen). Archäologische Berichte 16, 1-305. Bonn: Deutsche Gesellschaft für Ur- und Frühgeschichte e.V.

Behre, K. -E. (Ed.). (1986). Anthropogenic indicators in pollen diagrams. Rotterdam: Balkema.

Bottema, S. (1988). Back to nature? Objectives of nature management in view of archaeological research. In M. Bierma, O. H. Harsema & W. van Zeist (Eds.), Archeologie en landschap (pp. 185–206). Groningen, the Netherlands: Biologisch Archaeologisch Instituut.

Casparie, W. A. (1972). Bog development in southeastern Drente (the Netherlands) (Unpublished doctoral dissertation). Rijksuniversiteit Groningen, the Netherlands.

Faegri, K., & J. Iversen (1975). Textbook of pollen analysis (3rd rev. ed. by K. Faegri). New York: Hafner Press.

Hicks, S. (2001). The use of annual arboreal pollen deposition values for delimiting tree-lines in the landscape and exploring models of pollen dispersal. Review of Palaeobotany and Palynology, 117, 1–29.

Hicks, S., H. Tinsley, A. Huusko, C. Jensen, M. Hättestrand, A. Gerasimides & E. Kvavadze (2001). Some comments on spatial variation in arboreal pollen deposition: First records from the Pollen Monitoring Program (PMP). Review of Palaeobotany and Palynology, 117, 183–194.

Page 31: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

446 Handbook of plant palaeoecology | Cappers & Neef

Iversen, J. (1941). Landnam i Danmarks stenalder: En pollenanalytisk undersøgelse over det første landbrugs indvirkning paa vegetationsudviklingen. Danmarks Geologiske Undersøgelse II, 66, 1–68. [English text pp. 60–65]

Iversen, J. (1956). Forest clearance in the Stone Age. Scientific American, 194,36–41.

Janssen, C. R. (1974). Verkenningen in de palynologie. Utrecht: Oosthoek, Scheltema & Holkema.

Kalis, A. J., & J. Meurers-Balke (1998). Die ‘Landnam’-Modelle von Iversen und Troels-Smith zur Neolithisierung des westlichen Ostseegebietes—Ein Versuch ihrer Aktualisierung. Prähistorische Zeitschrift, 73, 1–24.

Lang, G. (1994). Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Jena and Stuttgart, Germany, and New York: Gustav Fisher Verlag.

Straka, H. (1971). Pollenanalyse und Vegetationsgeschichte (2nd ed.). Die neue Brehm-Bücherei 202. Wittenberg and Lutherstadt, Germany: A. Ziemsen Verlag.

Straka, H. (1975). Pollen- und Sporenkunde: Eine Einführung in die Palynologie. Stuttgart: Gustav Fischer Verlag.

Troels-Smith, J. (1953). Ertebøllekultur—Bondekultur. Aarbøger for Nordisk Oldkyndighed och Historie, 1953, 5–62.

Weiner, S. (2010). Microarchaeology: Beyond the visible archaeological record. Cambridge: Cambridge University Press.

8. 6 Fruits, seeds, and mosses

Cappers, R. T. J. (1994). An ecological characterization of the Holocene palaeobotanical record of the Netherlands. Acta Botanica Neerlandica, 43(2), 145–174.

Cappers, R. T. J. (1995). A palaeoecological model of the interpretation of wild plant species. Vegetation History and Archaeobotany, 4, 249–257.

Cappers, R. T. J., E. Mook-Kamps, S. Bottema, B. O. van Zanten & K. Vlierman (2000). The analysis of caulking-material as a contribution to ship building technology. Palaeohistoria, 39/40, 577–590.

Dieffenbacher-Krall, A. C. (2007). Surface samples, taphonomy, representation. In S. A. Elias (Ed.), Encyclopedia of Quaternary science (pp. 2367–2374). Oxford: Elsevier.

Jacomet, S. (2007). Use in environmental archaeology. In S. A. Elias (Ed.), Encyclopedia of Quaternary science (pp. 2384–2412). Oxford: Elsevier.

Vilsteren, V. T. van (1984). The medieval village of Dommelen: A case study for the interpretation of charred seeds from postholes. In W. van Zeist & W. A. Casparie (Eds.), Plants and ancient man: Studies in palaeoethnobotany (pp. 227–235). Rotterdam: Balkema.

Zeist, W. van & W. A. Casparie (Eds.). (1984). Plants and ancient man: Studies in palaeoethnobotany. Rotterdam: Balkema.

Zeist, W. van, K. Wasylikowa & K. -E. Behre (Eds.). (1991). Progress in Old World palaeoethnobotany. Rotterdam: Balkema.

Page 32: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

8. 7 Vegetation history 447

8. 7 Vegetation history

Bakels, C. C. (1981). Neolithic plant remains from the Hazendonk, Province of Zuid-Holland, the Netherlands. Zeitschrift für Archäologie, 15, 141–148.

Bakels, C. C. (2009). The Western European loess belt: Agrarian history, 5300 BC–AD 1000. Dordrecht, the Netherlands: Springer.

Behre, K. -E. (2008a). Landschaftsgeschichte Norddeutschlands: Umwelt und Siedlung von der Steinzeit bis zur Gegenwart. Neumünster, Germany: Wachholtz Verlag.

Behre, K. -E. (2008b). Der Neuenburger Urwald—Ein Denkmal der Kulturlandschaft. Wilhelmshaven, Germany: Brune-Mettcker Druck- und Verlagsgesellschaft.

Becker-Dillingen, J. (1927). Handbuch des Getreidebaues einschliesslich Mais, Hirse und Buchweizen. Berlin: Paul Parley.

Becker-Dillingen, J. (1928). Handbuch des Hackfruchtbaues und Handelspflanzenbaues. Berlin: Paul Parley.

Bowman, A. K., & E. Rogan (Eds.). (1999). Agriculture in Egypt: From Pharaonic to modern times. Oxford: Oxford University Press.

Brinkkemper, O., & W. J. Kuijper (1993). Zum Vorkommen der Spitzklette (Xanthium strumarium L.) in Europa. Archaeo-Physika, 13, 81–88.

Butzer, K. W. (1976). Early hydraulic civilization in Egypt: A study in cultural ecology. Chicago: The University of Chicago Press.

Cappers, R. T. J. (2006). Roman foodprints at Berenike: Archaeobotanical evidence of trade and subsistence in the Eastern Desert of Egypt. Cotsen Institute of Archaeology Monograph 55. Los Angeles: UCLA.

Caton-Thompson, G., & E. W. Gardner (1934). The desert Fayum. London: Royal Anthropological Institute of Great Britain and Ireland.

Collins, S., & J. Conolly (Eds.). (2007). The origins and spread of domesticated plants in south-west Asia and Europe. Walnut Creek, USA: Left Coast Press.

Heer, O. (1865). Die Pflanzen der Pfahlbauten. Neujahrsblatt der Naturforschenden Gesellschaft in Zürich 68. Zürich: Naturforschenden Gesellschaft.

Harlan, J. R. (1992). Crops and man. Madison: American Society of Agronomy. Harlan, J. R. (1995). The living fields: Our cultural heritage. Cambridge: Cambridge

University Press. Harris, D. R. (1996). The origins and spread of agriculture and pastoralism in

Eurasia. London: UCL Press. Harris, D. R., & G. C. Hillman (Eds.). (1989). Foraging and farming: The evolution

of plant exploitation. London: Unwin Hyman. Hillman, G. C. (1981). Reconstructing crop husbandry practices from charred

remains of crops. In R. Mercer (Ed.), Farming practice in British prehistory (pp. 123–162). Edinburgh: University Press.

Jas, R. M. (Ed.). (2000). Rainfall and agriculture in northern Mesopotamia: Proceedings of the third MOS symposium, Leiden 1999. MOS Studies 3/Uitgaven van het Nederlands Historisch-Archaeologisch Instituut te İstanbul 88. Leiden: Nederlands Instituut voor het Nabije Oosten.

Körber-Grohne, U. (1967). Geobotanische Untersuchungen auf der Feddersen Wierde. Wiesbaden, Germany: Franz Steiner Verlag.

Körber-Grohne, U. (1988). Nutzpflanzen in Deutschland: Kulturgeschichte und Biologie. Stuttgart: Konrad Theiss Verlag.

Page 33: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

448 Handbook of plant palaeoecology | Cappers & Neef

Körber-Grohne, U. (1990). Gramineen und Grünlandvegetationen vom Neolithikum bis zum Mittelalter in Mitteleuropa. Bibliotheca Botanica 139. Stuttgart, Germany: E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller).

Küster, H. (1995). Geschichte der Landschaft in Mitteleuropa: Von der Eiszeit bis zur Gegenwart. München, Germany: Verlag C. H. beck.

Lang, G. (1994). Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Jena, Germany: Gustav Fischer Verlag.

Lohmeyer, W., & H. Sukopp (1992). Agriophyten in der Vegetation Mitteleuropas. Schriftenreihe für Vegetationskunde 25. Bonn-Bad Godesberg, Germany: Bundesforschungsanstalt für Naturschutz und Landschaftsökologie, and Münster-Hiltrup, Germany: Vertrieb, Landwirtschaftsverlag.

Marcus, J., & C. Stanish (2006). Agricultural strategies. Los Angeles: Cotsen Institute of Archaeology.

Nesbitt, M. (2002). When and where did domesticated cereals first occur in south-west Asia? In R. T. J. Cappers & S. Bottema (Eds.), The dawn of farming in the Near East (pp. 113–132). Berlin: Ex oriente.

Plas, D. van der, B. Becking & D. Meijer (Eds.). (1993). Landbouw en irrigatie in het oude Nabije Oosten. Supplementen Ex Oriente Lux 2. Leuven, Belgium: Peeters.

Rindos, D. (1984). The origins of agriculture: An evolutionary perspective. Orlando, USA: Academic Press.

Roberts, N. (1998). The Holocene: An Environmental History. Malden, USA: Blackwell Publishers.

Simmonds, N. W. (Ed.). (1997). Evolution of crop plants. Hong Kong: Longman Group.

Smith, B. D. (1992). Rivers of change: Essays on agriculture in eastern North America. Washington: Smithsonian Institution Press.

Smith, B. D. (1995). The emergence of agriculture. New York: Scientific American Library.

Spek, T. (2004). Het Drentse esdorpenlandschap: Een historisch-geografische studie. Utrecht: Stichting Matrijs.

Streefkerk, J. G., & W. A. Casparie (1987). De hydrologie van hoogveensystemen: Uitgangspunten voor het beheer. Utrecht: Staatsbosbeheer, and Groningen, the Netherlands: Biologisch Archaeologisch Instituut.

Vavilov, N. I. (1957). World resources of cereals, leguminous seed crops and flax, and their utilization in plant breeding. Moscow: The Academy of Sciences of the USSR.

Vera, F. (1997). Metaforen voor de wildernis: Eik, hazelaar, rund en paard. Den Haag: Ministerie van Landbouw, Natuurbeheer en Visserij.

Willerding, U. (1991). Präsenz, Erhaltung und Repräsentanz von Pflanzenresten in archäologischem Fundgut. In W. van Zeist, K. Wasylikowa & K. -E. Behre (Eds.), Progress in Old World palaeoethnobotany (pp. 25–51). Rotterdam: A. A. Balkema.

Yasuda, Y., H. Kitagawa & T. Nakagawa (2000). The earliest record of major anthropogenic deforestation in the Ghab Valley, northwest Syria: A palynological study. Quaternary International, 73/74, 127–136.

Zeist, W. van & Palfenier-Vegter, R. M. (1981). Seeds and fruits from the Swifterbant S3 site: Final reports on Swifterbant IV. Palaeohistoria, 23,105–168.

Page 34: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

8. 8 Food economy 449

Zeven, A. C. (Ed.). (1997). De introductie van onze cultuurplanten en hun begeleiders van het Neolithicum tot 1500 AD. Wageningen, the Netherlands: Vereniging voor Landbouwgeschiedenis.

Zohary, M. (1973). Geobotanical foundations of the Middle East (2 vols.). Stuttgart: Gustav Fisher Verlag.

Zohary, D., & M. Hopf (1973). Domestication of pulses in the Old World. Science, 182, 887–894.

Zohary, D., & M. Hopf (2000). Domestication of plants in the Old World (3rd ed.). Oxford: Oxford University Press.

8. 8 Food economy

Behre, K. -E. (1994). The history of rye cultivation in Europe. Vegetation History and Archaeobotany, 1, 141–156.

Behre, K. -E. (2008). Collected seeds and fruits from herbs as prehistoric food. Vegetation History and Archaeobotany, 17, 65–73.

Bogaard, E. (2004). Neolithic farming in Central Europe. London: Routledge. Caneva, I., M. Frangipane & A. Palmieri (1989). Recent excavations at Maadi

(Egypt). In L. Krzyzaniak & M. Kobusiewicz (Eds.), Late prehistory of the Nile Basin and the Sahara (pp. 287–293). Poznań, Poland: Muzeum Archeologiczne w Poznaniu.

Cappers, R. T. J. (2008). Plant remains from the Late Neolithic and Early Chalcolithic levels. In J. Roodenberg & S. Alpaslan Roodenberg (Eds.), Life and death in a Prehistoric settlement in northwest Anatolia: The Ilıpınar excavations (Vol. 3, pp. 117–148). Leiden: Nederlands Instituut voor het Nabije Oosten.

Cappers, R. T. J. (in press). Plant remains from late PPNB and Pottery Neolithic at Sabi Abyad, northern Syria. In P. M. M. G. Akkermans (Ed.), Excavations at the Neolithic tell Sabi Abyad (Syria: 1996–1999). Leiden: Rijksmuseum voor Oudheden.

Cappers, R. T. J., S. Bottema, H. Woldring, J. van der Plicht & H. J. Streurman (2002). Diachrone vegetation development during the Pleistocene/Holocene transition: Implications for modelling the emergence of farming. In R. T. J. Cappers & S. Bottema (Eds.), The dawn of farming in the Near East (pp. 3–14). Berlin: Ex oriente.

Cappers, R. T. J., & A. Erkal (in press). Plant remains from Late Chalcolithic Tell Kurdu. In R. Ozbal & F. Gerritsen (Eds.), Tell Kurdu: The sixth millennium Amuq C levels. (Vol. 1). Oriental Institute Publications. Chicago: The Oriental Institute of the University of Chicago Press.

Cappers, R. T. J., & D. C. M. Raemaekers (2008). Cereal cultivation at Swifterbant? About being a Neolithic wetland farmer in the western part of the North Europaean Plain. Current Anthropology, 49, 385–402.

Cappers, R. T. J., & J. A. G. van Rooij (2008). Plantenresten uit Midlaren: De reconstructie van akkervegetaties. In J. Nicolay (Ed.), Archeologie van Midlaren (pp. 219–233). Eelde, the Netherlands: Barkhuis.

Cappers, R. T. J., L. Sikking, J. C. Darnell & D. Darnell (2007). Food supply along the Theban desert roads (Egypt): The Gebel Romaa, Wadi el-Huôl, and Gebel Qarn el-Gir caravansary deposits. In R. T. J. Cappers (Ed.), Fields of change: Progress in African Archaeobotany (pp. 127–138). Groningen Archaeological Studies 5. Groningen, the Netherlands: Barkhuis and Groningen University Library. [Proceedings of the 4th International Workshop of African Archaeobotany]

Page 35: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

450 Handbook of plant palaeoecology | Cappers & Neef

Dalby, A. (2003). Food in the ancient world from A to Z. London: Routledge. Evans, L. T. (1993). Crop evolution, adaptation and yield. Cambridge: Cambridge

University Press. Gowayed, S. (2009). Egyptian wheat (Unpublished doctoral dissertation).

Universität Kassel, Germany. Henrey, D. O. (1989). From foraging to agriculture: The Levant at the end of the Ice

Age. Philidelphia: University of Pennsylvania Press. Kelly, R. L. (1995). The foraging spectrum: Diversity in hunter-gatherer lifeways.

Washington: Smithsonian Institution Press. Kislev, M. E., D. Nadel & I. Carmi (1992). Epipaleolithic (19,000 BP) cereal and

fruit diet at Ohalo II, Sea of Galilee, Israel. Review of Palaeobotany and Palynology, 73, 161–166.

Miller, N. F. (1988). Ratios in paleoethnobotanical analysis. In C. A. Hastorf & V. S. Popper (Eds.), Current Paleoethnobotany: Analytical methods and cultural interpretations of archaeological plant remains (pp. 72–85). Chicago: The University of Chicago Press.

Murray, M. A. (2000). Cereal production and processing. In P. T. Nicholson & I. Shaw (Eds.), Ancient Egyptian materials and technology (pp. 505–536). Cambridge: Cambridge University Press.

Samuel, D. (2000). Brewing and baking. In P. T. Nicholson & I. Shaw (Eds.), Ancient Egyptian materials and technology (pp. 537–576). Cambridge: Cambridge University Press.

Slicher van Bath, B. (1987). De agrarische geschiedenis van West-Europa (500–1850) (6th ed.). Utrecht: Het Spectrum.

Thanheiser, U. (1991). Untersuchungen zur Landwirtschaft der vor- und frühdynastischen Zeit in Tell-el-Fara’in - Buto. Ägypten und Levante: Zeitschrift für ägyptische Archäologie und deren Nachbargebiete, 2, 39–45.

Thanheiser, U. (1994). Über den Ackerbau in Dynastischer Zeit: Ergebnisse der Untersuchung von Pflanzenresten aus Tell el-Da’a (Unpublished doctoral dissertation). Vienna University.

Thanheiser, U., J. Walter & C. A. Hope (2002). Roman agriculture and gardening in Egypt as seen from Kellis. In C. A. Hope & G. E. Bowenn (Eds.), Dakhleh Oasis Project: Preliminary reports on the 1994–5 to 1998–9 field seasons (pp. 299–310). Oxford: Oxbow.

Vincentini, O., F. Maialetti, L. Gazza, M. Silano, M. Dessi, M. de Vincenzi & N. E. Pogna (2007). Environmental factors of celiac disease: Cytotoxicity of hulled wheat species Triticum monococcum, T. turgidum ssp. dicoccum and T. aestivum ssp. spelta. Journal of Gastroenterology and Hepatology, 22,1816–1822.

Wasylikowa, K., & J. Dahlberg (1999). Sorghum in the economy of the early nomadic tribes at Napta Playa, southern Egypt. In M. van der Veen (Ed.), The exploitation of plant resources in ancient Africa (pp. 11–32). New York: Kluwer Academic/Plenum Press.

Wendrich, W., S. Holdaway, R. T. J. Cappers & R. Phillipps (2012). A research design to investigate the Fayum Neolithic. In Y. Tristant & M. Ghilardi (Eds.), Archéologie du paysage: L’Égyptee et le monde Méditerranéen. Bibliothèque d’Étude. Cairo: Institut Français d’Archéologie Orientale.

Page 36: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

8. 9 Fuel 451

8. 9 Fuel

Little, E. L. (1983). Common fuelwood crops: A handbook for their identification. Morgantown, USA: Communi-Tech Associates.

Miller, N. F. (1984). The interpretation of some carbonized cereal remains as remnants of dung cake fuel. Bulletin on Sumerian agriculture, 1, 45–47.

Miller, N. F & T. L. Smart (1984). Intentional burning of dung as fuel: A mechanism for the incorporation of charred seeds into the archaeological record. Journal of Ethnobiology, 4(1), 15–28.

Neef, R., & S. Bottema (1991). Mest als bron voor verkoold plantaardig material uit opgravingen in het Nabije Oosten: Waarnemingen en experimenten. Paleo-Aktueel, 2, 72–76.

Smith, W. (1998). Fuel for thought: Archaeobotanical evidence for the use of alternatives to wood fuel in Late Antique North Africa. Journal of Mediterranean Archaeology, 11, 191–205.

8. 10 Additional references cited

Berger, J., S. Abbo & N. C. Turner (2003). Plant genetic resources: Ecogeography of annual wild Cicer species: The poor state of the world collection. Crop Science, 43, 1076–1090.

Boak, A. E. R. (1940). Some early Byzantine tax records from Egypt. Harvard Studies in Classical Philology, 51, 35–60.

Board on Science and Technology for International Development (1996). Lost crops of Africa: Grains (Vol. 1). Washington: National Academy Press.

Breedveld, B. C., J. Hammink & H. M. van Oosten (1996). Nederlandse voedingsmiddelentabel. Den Haag: Voorlichtingsbureau voor de Voeding.

Cappers R. T. J. (1998). Archaeobotanical remains. In S. Sidebotham & W. Z. Wendrich (Eds.), Berenike 1996: Report on the excavations at Berenike (Egyptian Red Sea coast) and the survey of the Eastern Desert (pp. 289–330). Leiden: Research School CNWS.

Cappers, R. T. J. (2003). Plantenresten uit een beerput van het voormalige Norbertijnenklooster St. Gerlach (Zuid-Limburg). Historische en heemkundige studies in en rond het Geuldal, Jaarboek 2003, 277–287.

Cappers, R. T. J. (2006). The reconstruction of agricultural practices in ancient Egypt: An ethnoarchaeobotanical approach. Palaeohistoria, 47/48, 429–446.

Cappers, R. T. J., & R. Hamdy (2007). Ancient Egyptian plant remains in the Agricultural Museum (Dokki, Cairo). In R. T. J. Cappers (Ed.), Fields of change: Progress in African archaeobotany (pp. 165–214). Groningen Archaeological Studies 5. Groningen, the Netherlands: Barkhuis & Groningen University Library. [Proceedings of the 4th International Workshop of African Archaeobotany]

Cappers, R. T. J., & S. A. Mulder, met bijdragen van O. Brinkkemper, F. Dallmeijer & J. -M. A. W. Morel (2007). Breeuwselonderzoek. In E. Jansma & J. -M. A. W. Morel (Eds.), Een Romeinse Rijnaak, gevonden in Utrecht-De Meern: Resultaten van het onderzoek naar de platbodem ‘De Meern 1’ (pp. 313–318). Rapportage Archeologische Monumentenzorg 144 (Vol. A). Amersfoort, the Netherlands: Rijksdienst voor het Cultureel Erfgoed.

Casson, L. (1989). The Periplus Maris Erythraei: Text with introduction, translation, and commentary. Oxford: Princeton University Press.

Page 37: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

452 Handbook of plant palaeoecology | Cappers & Neef

Crawford, D. J. (1979). Food: Tradition and change in Hellenistic Egypt. World Archaeology, 11, 136–146.

Columella, L. J. M (Vol 1, Books I-IV: 1960; Vol II, Books V-IX: 1968; Vol III, Books X-XII: 1968 ). Res Rustica. Harvard, USA: Harvard University Press, The Loeb Classical Library.

Crawford, P. (2003). Weeds as indicators of land-use strategies in ancient Egypt. In K. Neumann, A. Butler & S. Kahlheber (Eds.), Food, fuel and fields: Progress in African archaeobotany (pp. 107–121). Köln, Germany: Heinrich-Barth-Institut.

Cremer, J., M. Partzsch, G. Zimmermann, C. Schwär & H. Goltz (1991). Acker- und Gartenwildkräuter. Berlin: Deutscher Landwirtschaftsverlag.

Duke, J. A. (1981). Handbook of legumes of world economic importance. New York: Plenum Press.

Gowayed, S. (2009). Egyptian wheat (Unpublished doctoral dissertation).Universität Kassel, Germany.

Hammer, K. (1984). Das Domestikationssyndrom. Kulturpflanze, 32, 11–34. Hansen, S., M. Toderaş, A. Reingruber, I. Gatsov, F. Klimscha, P. Nedelcheva,

R. Neef, M. Prange, T. D. Price, J. Wahl, B. Weninger, H. Wrobel, J. Wunderlich & P. Zidarov (2008). Der kupferzeitliche Siedlungshügel Măgura Gorgana bei Pietrele in der Walachei: Ergebnisse der Ausgrabungen im Sommer 2007. Eurasia Antiqua, 14, 19–100.

Hillman, G., & M. S. Davies (1992). Domestication rate in wild wheats and barley under primitive cultivation: Preliminary results and archaeological implications of field measurements of selection coefficient. In P. C. Anderson (Ed.), Préhistoire de l’argriculture: Nouvelles approaches expérimentales et ethnographiques (pp. 113–158). Paris: CNRS.

Horne, L. (1994). Village spaces: Settlement and society in northeastern Iran. Washington: Smithsonian Institution Press.

Jacomet, S., & A. Kreuz (1999). Archäobotanik: Aufgaben, Methoden und Ergebnisse vegetations- und agrargeschichtlicher Forschung. Stuttgart, Germany: Ulmer Verlag.

James, T. G. H. (1993). Het leven op het platteland in het oude Egypte. In D. van der Plas, B. Becking & D. Meijer (Eds.), Landbouw en irrigatie in het oude Nabije Oosten (pp. 9–40). Leuven, Belgium: Peeters.

Jones, G. E. M. (1984). Interpretation of archaeological plant remains: Ethnographic models from Greece. In W. van Zeist & W. A. Casparie (Eds.), Plants and ancient man: Studies in palaeoethnobotany (pp. 43–61). Rotterdam: Balkema.

Kemp, B. (2000). Soil (including mud-brick architecture). In P. T. Nicholson & I. Shaw (Eds.), Ancient Egyptian materials and technology (pp. 78–103). Cambridge: Cambridge University Press.

Kemp, P. R. (1989). Seed banks and vegetation processes in deserts. In M. A. Leck, V. T. Parker & R. L. Simpson (Eds.), Ecology of soil seed banks (pp. 257–281). San Diego: Academic Press.

Kilian, B., K. Mammen, E. Millet, R. Sharma, A. Graner, F. Salamini, K. Hammer & H. Özkan (2011). Aegilops. In C. Kole (Ed.), Wild crop relatives: Genomic and breeding resources: Cereals (pp. 1–76). Berlin: Springer Verlag.

Kilian, B., H. Özkan, C. Pozzi & F. Salamini (2009). Domestication of the Triticeae in the Fertile Crescent. In C. Feuillet & G. J. Muehlbauer (Eds.), Genetics and genomics of the Triticeae (pp. 81–119). Plant Genetics and Genomics: Crops and Models 7. Berlin: Springer.

Page 38: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

8. 10 Additional references cited 453

Kislev, M. E. (1980). Triticum parvicoccum sp. nov., the oldest naked wheat. Israel Journal of Botany, 28, 95–107.

Kreuz, A. (1995). On-site and off-site data—Interpretative tools for a better understanding of early Neolithic environments. In H. Kroll & R. Pasternak (Eds.), Res Archaeobotanicae (pp. 117–134). Kiel, Germany: Oetker-Voges-Verlag.

Kroll, H. (1998). Die Kultur- und Naturlandschaften des Titeler Plateaus im Spiegel der metallzeitlichen Pflanzenreste von Feudvar. In B. Hänsel & P. Medovic (Eds.), Feudvar I: Das Plateau von Titel und die Šajkaška: Archäologische und naturwissenschaftliche Beiträge zu einer Kulturlandschaft (pp. 305–317). Prähistorische Archäologie in Südosteuropa 13. Kiel, Germany: Oetker/Voges.

Langer, R. H. M., & G. D. Hill (1982). Agricultural plants. Cambridge: Cambridge University Press.

Maesen, L. J. G. van der (1972). Cicer L., a monograph of the genus, with special reference to the chickpea (Cicer arietinum L.), its ecology and cultivation. Mededelingen Landbouwhogeschool Wageningen 10. Wageningen, the Netherlands: Landbouwhogeschool Wageningen.

McDonald, C. M. (1968). The breeding of crop ideotypes. Euphytica, 17, 385–403. Nesbitt, M. (2001). Wheat evolution: Integrating archaeological and biological

evidence. The Linnean, 3, 37–59. Newton, C. (2004). Plant tempering of Predynastic pisé at Adaïma in Upper

Egypt: Building material and taphonomy. Vegetation History and Archaeobotany, 13, 55–64.

Reynolds, P. (1981). Deadstock and livestock. In R. Mercer (Ed.), Farming practice in British prehistory (pp. 97–122). Edinburgh: Edinburgh University Press.

Reynolds, P. (1993). Zur Herkunft verkohlter Getreidekörner in urgeschichtlichen Siedlungen—Eine alternative Erklärung. In A. J. Kalis & J. Meurers-Balke (Eds.), 7000 Jahre bäuerliche Landschaft: Entstehung, Erforschung, Erhaltung: 20 Aufsätze zu Ehren von Karl-Heinz Knörzer. Archäo-Physika, 13, 187–206.

Roemer, T., & W. Rudolf (1933). Handbuch der Pflanzenzüchtung. Berlin: Verlagsbuchhandlung Paul Parey.

Schuster, W. H. (1992). Ölpflanzen in Europa. Frankfurt am Main, Germany: DLG-Verlag.

Shillito, L. -M. (2011). Grains of truth or transparent blindfolds? A review of current debates in archaeological phytolith analysis. Vegetation History and Archaeobotany, 20, 1–12.

Siemes, H. (2005). Boeren van toen. Doetinchem, the Netherlands: Reed Business Information.

Smith, W. (2003). Archaeobotanical investigations of agriculture at Late Antique Kom el-Nana (Tell el-Amarna). London: Egypt Exploration Society.

Spurr, M. S. (1986). Arable cultivation in Roman Italy c. 200 B.C.–c. A.D. 200. Journal of Roman Studies Monographs 3. Oxford: Oxbow Books.

Thanheiser, U., & C. König (2008). Plant remains from habitation areas at Kellis: Some considerations concerning their accumulation. In M. F. Wiseman (Ed.), The Oasis Papers 2: Proceedings of the second International Conference of the Dakhleh Oasis Project (pp. 141–150). Oxford: Oxbow Books.

Veen, M. van der (1984). Sampling for seeds. In W. van Zeist & W. A. Casparie (Eds.), Plants and ancient man: Studies in palaeoethnobotany. Rotterdam: Balkema.

Page 39: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

454 Handbook of plant palaeoecology | Cappers & Neef

Veen, M. van der (1999). The economic value of chaff and straw in arid and temperate zones. Vegetation History and Archaeobotany, 8, 211–224.

Wang, S., X. Li, K. Wang, X. Wang, S. Li, Y. Zhang, G. Guo, F. J. Zeller, S. L. K. Hsam & Y. Yan (2011). Phylogenetic analysis of C, M, N, and U genomes and their relationships with Triticum and other related genomes as revealed by LMW-GS genes at GLU-3 loci. Genome, 54(4), 273–284.

Weber, S. A. (1992). Plants and Harappan subsistence. New Delhi: Pauls Press. Weiss, E. A. (1971). Castor, sesame and safflower. London: Leonard Hill. Wertheim, S. J. (1981). De teelt van hazelnoten. Wilhelminadorp, the Netherlands:

Proefstation voor de Fruitteelt en het Consulentschap in Algemene Dienst voor de Fruitteelt.

Westphal, E. (1974). Pulses in Ethiopia, their taxonomy and agricultur al significance. Wageningen, the Netherlands: Pudoc.

Wick, L., G. Lemcke & M. Sturm (2003). Evidence of Late Glacial and Holocene climatic change and human impact in eastern Anatolia: High-resolution pollen, charcoal, isotopic and geochemical records from the laminated sediments of Lake Van, Turkey. The Holocene, 13, 665–675.

Wirth, E. (1971). Eine geographische Landeskunde. Darmstadt, Germany: Wissenschaftliche Buchgesellschaft.

Zade, A. (1933). Pflanzenbaulehre für Landwirte. Berlin: Verlagsbuchhandlung Paul Parey.

Zeist, W. van (1967). Archaeology and palynology in the Netherlands. Review of Palaeobotany and Palynology, 4, 45–65.

Zeist, W. van & G. J. de Roller (2000). The plant remains. In M. Verhoeven & P. M. M. G. Akkermans (Eds.), Tell Sabi Abyad II: The Pre-pottery Neolithic B settlement: Report on the excavations of the National Museum of Antiquities Leiden in the Balikh valley, Syria (pp. 137–146). Istanbul: Nederlands Historisch-Archaeologisch Instituut te İstanbul.

Zeist, W. van & W. Waterbolk-van Rooijen (1995). Floral remains from Late-Neolithic Ilıpınar. In J. Roodenberg (Ed.), The Ilıpınar excavations I: Five seasons of fieldwork in NW Anatolia, 1987–91 (pp. 159–166). Istanbul: Nederlands Historisch-Archaeologisch Instituut te İstanbul.

Zeist, W. van & W. Waterbolk-van Rooijen (1996). The cultivated and wild plants. In P. M. M. G. Akkermans (Ed.), Tell Sabi Abyad: The Late Neolithic settlement (pp. 521–550). Istanbul: Nederlands Historisch Archaeologisch Instituut te İstanbul.

Page 40: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in
Page 41: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

Stripping Date palm (Phoenix dactylifera) leaves (Marazig, Egypt; February 2010).

Page 42: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

9.1 Taxonomic and syntaxonomic index 457

Abelmoschus esculentus, 425Abies, 166Acacia, 61 A. nilotica, 180 A. tortilis, 30-31, 42, 46, 89, 103, 423Acer, 161, 361, 366 A. pseudoplatanus, 164, 168, 243Ador, 19Adoreum, 19Adoxaceae, 348Aegilops, 24, 91, 252, 320, 322, 396 Ae. bicornis, 286, 321 Ae. biuncialis, 286 Ae. caudata, 286, 321 Ae. columnaris, 286 Ae. comosa var. somosa, 286 Ae. comosa var. subventricosa, 286 Ae. crassa, 286 Ae. cylindrica, 285-288, 290, 321 Ae. geniculata, 286 Ae. juvenalis, 286 Ae. kotschyi, 286 Ae. longissima, 286, 321 Ae. neglecta, 286 Ae. peregrina var.

brachyathera, 286 Ae. peregrina var. peregrina, 286 Ae. searsii, 286, 321 Ae. sharonensis, 286, 321 Ae. speltoides, 25, 285-289, 321 Ae. speltoides var. ligustica,

286-288, 321 Ae. speltoides var. speltoides,

286-289, 321 Ae. squarrosa, 285-286 Ae. tauschii, 25, 285-287, 289-291 Ae. triuncialis, 286

Ae. triuncialis var. persica, 286 Ae. triuncialis var. triuncialis,

286 Ae. umbellulata, 286 Ae. uniaristata, 286 Ae. vavilovii, 286 Ae. ventricosa, 286Aegopodium podagraria, 35Aerva javanica, 46, 103Agrostemma githago, 88, 92, 115, 246,

341Aizoon canariense, 45-46, 102Alhagi graecorum, 90, 116, 429,

432-433Alica, 19Alisma, 217-218 A. plantago-aquatica, 339Alismataceae, 339Allium cepa, 50, 114, 184Alnetea glutinosae, 99Alnus, 160, 359-360, 364 A. glutinosa, 164, 168, 345, 361Alopecurus aequalis, 110 A. myosuroides, 115 A. pratensis, 138, 340Alstroemeria, 133Amaranthus graecizans, 103-104Ammi majus, 211Ammophila arenaria, 340Ammophiletea, 99Anagallis, 245, 347 A. arvensis, 207-208, 210, 346 A. arvensis ssp. arvensis, 346Ananas comosus, 39Anchusa arvensis, 14 A. officinalis, 14Andromeda polifolia, 187

99 Indices

9.1 Taxonomic and syntaxonomic index

Accepted names are in roman face. Synonyms, invalid names and names mentioned in classical texts are in italics. Bold face signifies syntaxon names.

Page 43: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

458 Handbook of plant palaeoecology | Cappers & Neef

Angelica sylvestris, 106-107Angiosperms, 26, 96, 132, 135, 166, 240Anisantha sterilis, 95 A. tectorum, 95Anthemis, 126Antirrhinum, 96, 245Apera spica-venti, 115Aperion spicae-venti, 114Aphaka, 19Apiaceae, 14, 27, 159, 170, 208, 243-244,

347-348Apium, 14Aquifoliaceae, 169-170Arabidopsis thaliana, 22-23, 115Arabis, 20Arachis hypogaea, 187, 246Araliaceae, 170Areca, 14Arecaceae, 14Argania spinosa, 125Arinca, 19Aristida adscensionis, 89, 102 A. funiculata, 45, 89, 102, 104 A. mutabilis, 102, 104Armenia, 269 A. maritima, 341Armoracia rusticana, 246Arnebia hispidissima, 102-103Arrhenatherum elatius, 138Artedia squamata, 287Artemisia, 356, 365, 376 A. vulgaris, 111Artemisietea herbae-albae, 123Artemisietea vulgaris, 99, 107, 111Asplenietea trichomanis, 99,

107-108Aster, 14Asteraceae, 14, 27, 29, 123, 170-171, 208,

349Asteretea tripolii, 99, 123Astragaletea, 123Astragalus, 429-430 A. eremophilus, 89, 102 A. vogelii, 89, 102-103Atriplex littoralis, 164 A. patula, 14, 29, 115, 342 A. patula var. bracteata, 14 A. portulacoides, 36 A. prostrata, 29 A., 92, 117, 205, 217, 251-252, 319Avena, 92, 117, 205, 217, 251-252, 319 A. abyssinica, 21, 257-258, 264

A. barbata, 257-260 A. brevis, 21, 257-258, 264 A. byzantina, 257 A. diffusa var. segetalis, 257 A. diffusa var. vogelensis, 257 A. fatua, 118, 208, 210, 250, 257-258,

260-261, 267, 320 A. fatua var. glabrata, 260 A. ludoviciana, 257 A. nuda, 21, 257-259, 262-263, 267 A. nudibrevis, 257 A. orientalis, 257 A. sativa, 18, 21, 114, 209, 257-259,

264-268, 320, 383 A. sterilis, 209, 250, 257-258,

261-262, 267, 320 A. strigosa, 21, 257-258, 263-264, 320Balanites aegyptiacus, 31, 194, 196, 423Bellis perennis, 108Beta vulgaris, 53-54, 80, 114, 117-118,

209-210, 217, 225 B. vulgaris ssp. vulgaris, 133Betula, 164, 244, 356, 358, 365-366, 372 B. nana, 353-354 B. pendula, 29, 168, 353, 359 B. pubescens, 164, 168, 353, 363Betulaceae, 168, 345Bidens tripartita, 110, 349Bidentetea tripartitae, 99, 107, 110Bolboschoenus maritimus, 339Boraginaceae, 244, 346Borago officinalis, 346Brassica, 14, 191, 225 B. carinata, 25 B. juncea, 25 B. napus, 25, 114, 425 B. nigra, 25, 217, 345 B. oleracea, 25 B. rapa, 25, 106, 114, 168Brassicaceae, 14, 20, 22, 135, 164, 168,

209, 239, 245, 338, 345Bromopsis erecta, 138Bromus secalinus, 95, 383Bryophyta, 131Cakiletea maritimae, 99Calluna, 160, 245 C. vulgaris, 147, 149, 164, 169, 356, 357Calluno-Ulicetea, 98, 123Caltha, 244Camelina, 20-21, 338, 402 C. alyssum, 122, 337 C. sativa, 20-21, 337-338, 402

Page 44: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

9.1 Taxonomic and syntaxonomic index 459

C. sativa ssp. microcarpa, 337 C. sativa ssp. pilosa, 337 C. sativa ssp. sativa, 337-338Campanula, 245 C. rapunculus, 348Campanulaceae, 348Cannabaceae, 345Cannabis sativa, 21, 334-335, 345 C. sativa ssp. sativa, 334-335 C. sativa ssp. spontanea, 334Capparis spinosa, 116, 191Capsella bursa-pastoris, 345Carduus crispus, 111Carex, 244 C. acuta, 15 C. elata, 15 C. flava, 15 C. hostiana, 15 C. inflata, 15 C. lepidocarpa, 15 C. nigra, 14-15 C. oederi, 15 C. otrubae, 15 C. riparia, 339 C. rostrata, 15 C. serotina, 15 C. trinervis, 15 C. vesicaria, 15 C. vulpina, 15, 340Carpinus, 366 C. betulus, 168, 364Carthamus tinctorius, 217, 402Carum carvi, 114Caryophyllaceae, 123, 209, 341-342Cassia, 17 C. fistula, 20Castanea, 244Caucalidion platycarpi, 114Caylusea hexagyna, 102, 104Cenchrus ciliarus, 103Centaurea cyanus, 115, 123, 157, 170,

238, 349, 356Centropodia forskalii, 103Cerastium, 245 C. fontanum ssp. vulgare, 341Ceratophyllaceae, 167Ceratophyllum, 167Charetea fragilis, 98Chelidonium majus, 108Chenopodiaceae, 123, 160, 167, 342,

356, 376

Chenopodium album, 29, 33, 115, 167, 342

C. ficifolium, 164 C. murale, 104, 209, 211, 217-218 C. polyspermum, 115 C. rubrum, 110Cicer arietinum, 18, 21, 64, 75, 77,

326-328, 399 C. arietinum ssp. arietinum,

326-328 C. reticulatum, 326Cicercula, 18Cichorium endivia, 114Cirsium, 29 C. vulgare, 111, 349Citrullus colocynthis, 103-104 C. lanatus, 187, 218, 404Citrus, 245-246Cladium mariscus, 187Clusia, 14Clusiaceae, 14Cocos nucifera, 245Coelachyrum brevifolium, 45, 102Coelastrum, 165Coix lacryma-jobi, 20Colchicum, 245Comarum palustris, 187Compositae, 14Coniochaeta lignaria, 165Coniochaetaceae, 165Convolvulaceae, 346Convolvulo-Filipenduletea, 99Convolvulus, 157, 205 C. arvensis, 115-116, 209-211, 217, 346Conyza canadensis, 96Coriandrum sativum, 217, 384Cornus, 245Coronilla, 245Corylus, 159-160, 359, 361, 364-366 C. avellana, 21, 30, 164, 168, 225Crambe maritima, 28Crassulaceae, 39Crotalaria aegyptiaca, 45, 103-104 C. microphylla, 102, 104Cruciferae, 14Cucumis melo, 240, 404 C. sativus, 30, 217, 404Cucurbitaceae, 245Cupressaceae, 132, 166Cuscuta epilinum, 122Cymbalaria muralis, 108, 110

Page 45: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

460 Handbook of plant palaeoecology | Cappers & Neef

Cynosurus cristatus, 138Cyperaceae, 164, 167, 217-218, 244,

339-340, 355Cyperus, 217-218 C. conglomeratus, 103-104 C. esculentus, 95, 123Dactylis glomerata, 138Danthonia decumbens, 87Datura, 245 D. stramonium, 115Daucus carota, 54, 114, 225, 347Dennstaedtiaceae, 165-166Dichanthium foveolatum, 89, 103-104Digitalis, 96Digitaria, 249Digitario-Setarion, 114Dipsacaceae, 348Dipsacus fullonum, 348Ecballium elaterium, 111-112Echinochloa, 249 E. colona, 209 E. crus-galli, 108Eleocharis, 217-218 E. palustris, 340Elytrigia repens, 111, 115Emex spinosa, 209-210Empetraceae, 356Empetrum, 245 E. nigrum, 169, 187, 356, 357Emys orbicularis, 363Epilobietea angustifolii, 99Epilobium hirsutum, 343Epipactis palustris, 29Equisetum arvense, 131Eragrostis cilianensis, 102 E. ciliaris, 45, 102-105 E. ciliaris var. laxa, 105Erica tetralix, 147, 149, 169, 346Ericaceae, 123, 143, 169, 346, 355-356Eriophorum, 147, 159 E. vaginatum, 167Erodium, 244 E. cicutarium, 343Erophila verna, 115Ervum, 19Eucalyptus, 154Euphorbia, 244 E. granulata, 102, 207 E. helioscopia, 209, 343 E. prostrata, 207Euphorbiaceae, 343Euphrasia, 96

Faba, 13-14, 19Faba vulgaris, 13Fabaceae, 13-14, 27, 48, 116, 123, 135,

239, 244, 247, 343-344, 399, 432Fabales, 13Fagaceae, 167-168Fagonia, 103Fagopyrum, 244 F. esculentum, 21, 114, 148, 369Fagus, 244, 364, 366 F. sylvatica, 164, 167Fallopia convolvulus, 115-116, 157Far, 19 F. adoreum, 19Farsetia ramosissima, 89, 103Festuca gigantea, 167 F. rubra, 106, 138Festuco-Brometea, 98Ficaria verna, 137, 246Ficus, 42 F. carica, 218, 225, 243, 345, 399,

404-405 F. sycomorus, 61, 405Filicales, 131Foeniculum vulgare, 348Formica rufa, 32Forsskålea tanacissima, 89, 103Fragaria vesca, 344Franguletea, 99Fraxinus, 244, 360-361, 365-366 F. excelsior, 169, 362Fumaria officinalis, 116, 340-341Fumariaceae, 340-341Fumario-Euphorbion, 114Fungi, 27, 131, 143, 161, 189Galanthus, 161Galeopsis, 115 G. bifida, 15 G. speciosa, 15, 347 G. tetrahit, 15, 157Galinsoga, 157Galio-Urticetea, 99Galium, 161, 205, 217, 244 G. aparine, 115, 346 G. spurium, 95 G. verum, 169Gentiana, 245Geraniaceae, 343Geranium, 244 G. phaeum, 343Gisekia pharnaceoides, 104Glycine max, 23

Page 46: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

9.1 Taxonomic and syntaxonomic index 461

Gossypium, 425Gramineae, 14, 138Gratiola, 96Grossulariaceae, 342Guttiferae, 14Gymnosperms, 132, 135, 166, 239Halopeplis perfoliata, 45Hedera, 365 H. helix, 37, 134, 164, 170, 363Helianthemum, 356Helianthus annuus, 31, 69, 71, 81, 187,

240, 384, 407Helicoon dubium, 165 H. fuscosporum, 165Hieracium pilosella, 164Hippophae, 353 H. rhamnoides, 355Hippuridaceae, 97Hippuris vulgaris, 96Holosteum umbellatum, 115Homo sapiens, 380Hordeum, 133, 251-252, 365, 396 H. bogdanii, 275 H. bulbosum, 126 H. cantherinum, 18 H. distichum, 16, 18 H. galaticum, 18 H. hexastichum, 18, 273 H. murinum, 275 H. spontaneum, 16 H. tetrastichum, 273 H. vulgare, 16, 18, 21, 32, 39, 65, 72,

92, 114, 119, 167, 209, 217-218, 223, 226, 246, 250, 273-274, 277-285, 287, 291, 320-321, 375, 388, 392, 399, 405, 407, 414

H. vulgare ssp. distichon, 16, 18, 21, 92, 119, 250, 273, 277-280, 283, 287, 291, 320-321, 388, 392, 405

H. vulgare ssp. spontaneum, 16, 32, 273-274, 277-278, 320-321

H. vulgare ssp. vulgare, 16, 18, 21, 65, 72, 209, 217-218, 246, 250, 273, 277, 280-282, 284, 287, 291, 320-321, 388, 405, 407, 414

Humulus lupulus, 345Hydrodictyaceae, 165Hyoscyamus, 245 H. niger, 111, 346Hypericaceae, 343Hypericum perforatum, 343Hyphaene thebaica, 17

Ilex, 38, 245, 361, 365 I. aquifolium, 37, 164, 169, 170Indigofera, 40 I. articulata, 103-104Ipomoea, 24Iris, 245 I. pseudacorus, 30Isatis tinctoria, 21Isoetaceae, 131Isoeto-Nanojuncetea, 99Jatropha curcas, 425Juglans, 245 J. regia, 12, 225, 242Juncaceae, 245, 339Juncaginaceae, 339Juncus gerardii, 106 J. maritimus, 220 J. squarrosus, 339Juniperus, 353 J. communis, 166, 354Kickxia, 207Koelerio-Corynephoretea, 98, 123Labiatae, 14Lactuca, 114, 225 L. sativa, 114Lamiaceae, 14, 217, 244, 347Lamium, 14 L. purpureum, 347Lathyrus, 205 L. cicera, 331 L. hirsutus, 343 L. sativus, 18, 21, 116, 246, 330-332,

397-399 L. tuberosus, 123Launaea capitata, 102Leguminosae, 14Lemnetea minoris, 98Lens, 152, 162-163 L. culinaris, 13, 18, 21, 116, 217,

322-324, 397-399 L. culinaris ssp. culinaris, 322-324 L. culinaris ssp. orientalis, 322-323 L. esculenta, 322Leontodon autumnalis, 164 L. saxatilis, 33-34, 349Lepidium coronopus, 108, 207 L. sativum, 20Liguliflorae, 164Liliaceae, 166Lilium bulbiferum ssp. croceum, 123 L. martagon, 166Limonium vulgare, 36

Page 47: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

462 Handbook of plant palaeoecology | Cappers & Neef

Limosella, 96Linaceae, 343Linaria, 96Linum bienne, 333 L. usitatissimum, 20-21, 64, 79, 114,

217, 238, 333-334, 343, 399, 402 L. usitatissimum ssp.

angustifolium, 333 L. usitatissimum ssp.

usitatissimum, 333-334Lithospermum arvense, 431Littorella uniflora, 97Littorelletea, 98Lolium, 209-210, 217 L. perenne, 33, 138 L. remotum, 122Lonicero-Rubetea plicati, 99Lotononis platycarpa, 45, 102-103Lotus hebranicus, 103Lupinum, 18Lupinus albus, 18, 21, 217, 401Lycopodiaceae, 131, 165Lycopodiella inundata, 157Lycopodium, 154 L. clavatum, 165Lycopus europaeus, 347Lysimachia nummularia, 246Malus sylvestris, 21, 190Malva, 244 M. moschata, 164, 168 M. parviflora, 217, 345-346Malvaceae, 168, 345, 346, 425Matricaria discoidea, 108Medicago, 217, 237 M. intertexta, 209 M. lupulina, 343-344Melampyro-Holcetea mollis, 98Melampyrum, 96Melandrium album, 15 M. rubrum, 15Melilotion indici, 210Melilotus indicus, 209-210 M. messanensis, 80, 209Menyanthaceae, 170Menyanthes trifoliata, 164, 170, 187Mercurialis, 244Milium, 18Molinio-Arrhenatheretea, 98, 123Monsonia nivea, 103-104 M. senegalensis, 102Montio-Cardaminetea, 98Moraceae, 345

Morettia, 89Moringa peregrina, 45Musa, 24, 246Myosotis arvensis, 115 M. scorpioides, 346Myriophyllum, 220Myrsinaceae, 346Myrtus communis, 154Najas, 218-220Nardetea, 98Narthecium ossifragum, 147Nasturtium, 20Neurada procumbens, 31Nicotiana tabacum, 23Ocimum basilicum, 113Odontites vernus ssp. serotinus, 14Olea, 245, 404 O. europaea, 21, 198, 218, 236-237,

241Oleaceae, 169Onagraceae, 343Ophiostoma ulmi, 365Orbiliaceae, 165Orchidaceae, 29, 245Orobanchaceae, 29, 96Oryza glaberrima, 13 O. sativa, 13, 18, 21, 39, 407Oxalis, 245 O. acetosella, 28Oxycocco-Sphagnetea, 98Paliurus spina-christi, 126Palmae, 14Panicum, 19, 249, 319 P. italica, 254 P. miliaceum, 18, 21, 252-257, 320,

414 P. turgidum, 103Papaver, 123, 136, 245 P. rhoeas, 94, 115, 157 P. somniferum, 21, 238, 340 P. somniferum ssp. somniferum,

340Papaveraceae, 340Papaveretalia rhoeadis, 114Papilionoidae, 325Parietaria judaica, 108Parvocaricetea, 98Pastinaca sativa, 114, 348 P. sativa ssp. sativa, 348Pediastrum simplex, 165Pedicularis, 96Peganum harmala, 202

Page 48: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

9.1 Taxonomic and syntaxonomic index 463

Pennisetum, 39Persicaria hydropiper, 110 P. lapathifolia, 341 P. maculosa, 115Petroselinum crispum, 191Phalaris canariensis, 209 P. minor, 209-211 P. paradoxa, 209-210, 217Phaseolus vulgaris, 397Phoenix dactylifera, 27, 57, 143-144,

180, 182, 187, 198, 218, 402, 407Phragmitetea, 98Phymatosorus scolopendria, 131Pinaceae, 37, 132, 166Pinguicula, 147Pinus, 144, 160, 287, 355- 356, 358-359,

361, 364, 378 P. contorta, 132 P. pinea, 236 P. sylvestris, 164, 166, 353, 360, 372Piper nigrum, 174-175Pistacia, 94, 245Pisum, 326 P. humile, 322 P. sativum, 19, 21, 114, 116, 247, 322,

324-325, 397, 399 P. sativum ssp. elatius var. elatius,

324 P. sativum ssp. elatius var. pumilio,

322, 324-325 P. sativum ssp. sativum, 324-325Plantaginaceae, 96-97, 169, 347Plantaginetea majoris, 98, 107Plantago, 209, 212, 245, 339, 356, 366 P. coronopus, 97, 108 P. lanceolata, 97, 164, 169, 365 P. major, 108, 158, 347 P. major ssp. major, 347Plumbaginaceae, 123, 341Poa, 14Poaceae, 13-14, 123, 160, 164, 167, 209, 217,

239, 244, 247-248, 340, 355, 365Poaceae tribe Triticeae, 248Polycarpaea repens, 103 P. robbairea, 103Polygala irregularis, 102Polygonaceae, 148, 341Polygonum aviculare, 108-109, 115, 341 P. monspeliensis, 209-211Populus, 363 P. tremula, 167Portulaca oleracea, 62-63

Potametea, 98Potamogeton, 166, 220 P. crispus, 212 P. lucens, 106 P. natans, 339 P. perfoliatus, 218-219 P. vaginatus, 187Potamogetonaceae, 166, 339Potentilla anserina, 108, 344 P. indica, 243Prunella vulgaris, 347Prunus domestica ssp. domestica, 344 P. dulcis, 245, 399 P. mahaleb, 245 P. persica, 20, 245 P. persica var. compressa, 20 P. persica var. persica, 20Pseudofumaria lutea, 108-109Pteridium aquilinum, 165-166Puccinellia distans ssp. distans, 340Pulicaria undulata, 103, 126Punica granatum, 404Pyrus communis, 344Quercetea robori-petraeae, 99Quercetum-mixtum, 365Querco-Fagetea, 99Quercus, 161, 244, 287, 359, 361, 364-366 Q. brantii, 378 Q. calliprinos, 38 Q. cerris, 38, 378 Q. cerris-type, 378 Q. coccifera, 38 Q. ilex, 38 Q. infectoria, 378 Q. ithaburensis, 38, 378 Q. libani, 378 Q. petraea, 378 Q. pubescens, 378 Q. robur, 38, 164, 168, 362, 378Ranunculaceae, 340Ranunculus, 244 R. aquatilis, 340 R. repens, 340 R. sceleratus, 110 R. subg. Batrachium, 14, 217-218Raphanus, 217, 245Reichardia tingitana, 102, 104Rhamno-Prunetea, 99Rhamnus, 245 R. frangula, 159Rhinanthus angustifolius, 96 R. minor, 96

Page 49: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

464 Handbook of plant palaeoecology | Cappers & Neef

Rhodanthe humboldtiana, 29Rhynchospora, 149Ribes rubrum, 342Ricinus, 244 R. communis, 113, 247Rorippa palustris, 110Rosaceae, 344Rostraria pumila, 102-103Rubiaceae, 169, 243, 346Rubus, 245 R. fruticosus, 32, 225, 344 R. idaeus, 32, 225Rumex, 209, 217, 356, 365 R. crispus, 126, 341 R. maritimus, 110 R. palustris, 110 R. vesicarius, 45, 102, 104Ruppieta, 98Ruta graveolens, 191Saccharum officinarum, 39, 133Sagina nodosa, 341 S. procumbens, 108Saginetea maritimae, 99Salicaceae, 167Salicetea albae, 99Salicornia europaea, 15, 36, 106, 342Salix, 143, 353-354 S. alba, 167 S. caprea, 134Saltera, 20Sambucus, 245 S. nigra, 242, 348Sanguisorba minor, 356Sapindaceae, 168, 243Scandix pecten-veneris, 115Scandulae sive speltae, 19Scenedesmaceae, 165Scheuchzerietea, 98Schoenoplectus lacustris, 353Scirpus supinus, 217-218Scleranthus annuus ssp. annuus, 341Scolytus, 365Scrophularia canina, 347Scrophulariaceae, 14, 96, 347Secale, 251-252, 396 S. cereale, 19, 21, 25, 114, 133, 157, 167,

248, 250, 269, 271-272, 317, 320-321, 383, 388, 414, 431

S. cereale f. clausopaleatum, 269 S. cereale ssp. cereale, 321, 388 S. cereale ssp. vavilovii, 250 S. iranicum, 269

S. montanum, 269 S. sylvestre, 269 S. vavilovii, 269-271Sedo-Scleranthetea, 98Senna alexandrina, 20 S. italica, 103-104Sequoiadendron giganteum, 239Sesamum indicum, 64, 75, 336-337,

384, 402-403, 425-426 S. indicum ssp. indicum, 336 S. indicum ssp. malabaricum, 336Setaria, 249, 252, 319 S. italica, 19, 21, 254-256, 320 S. italica ssp. italica, 254-256 S. italica ssp. viridis, 254-256 S. viridis, 254, 320Silene dioica, 15, 342 S. latifolia ssp. alba, 14-15Siligo, 19Similago, 19Sinapis arvensis, 94, 117, 119-120,

209-210, 217Sisymbrium officinale, 108, 111Sitellus suslyka, 182Solanaceae, 169, 346Solanum, 24, 53, 245 S. dulcamara, 169, 353 S. lycopersicum, 53, 407 S. melongena, 407 S. nigrum, 346Sonchus, 29, 211 S. arvensis, 96, 205 S. asper, 205, 349 S. oleraceus, 210Sordaria, 165Sordariaceae, 165Sorghum, 248, 408, 410 S. bicolor, 39-40, 69, 80, 84, 89, 117,

406, 425, 432-433Spalax, 182Sparganiaceae, 339Sparganium erectum, 30, 339Spartinetea, 99Speltae mundae, 19Spergula arvensis, 342Spergularia rubra, 108 S. salina, 342Sperguletalia arvensis, 114Sphagnaceae, 165Sphagnum, 146-148, 164, 230, 354, 363 S. cuspidatum, 165, 368Spinacia oleracea, 114

Page 50: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

9.1 Taxonomic and syntaxonomic index 465

Stachys palustris, 347Stellaria media, 342Stellarietea mediae, 99, 112-114Stipagrostis hirtigluma, 102 S. plumosa, 103 S. uniplumis, 102, 104Suaeda monoica, 45Tamarix, 180 T. aphylla, 45 T. nilotica, 43, 44Taraxacum officinale, 170Taxaceae, 132, 166Taxus, 361 T. baccata, 166, 239Thalictrum, 356Thelypteridaceae, 166Thelypteris palustris, 164, 166Thero-Salicornietea, 99Thlaspi arvense, 345Tilia, 143-144, 153, 244, 360-361,

364-366, 368 T. x vulgaris, 168, 362Tiphe, 19Tragum, 19Tribulus terrestris, 89, 102Trichodesma africanum, 103 T. ehrenbergii, 89, 102, 104Trichophorum cespitosum ssp.

germanicum, 147Trifolio-Geranietea sanguinei, 98Trifolium, 48, 126, 217 T. alexandrinum, 53, 62, 127, 237 T. dubium, 344 T. repens, 87, 106, 108 T. resupinatum, 210Triglochin maritima, 339Tripleurospermum maritimum, 164,

171, 349Triraphis pumilio, 45, 102-104Trisetum flavescens, 138Triticeae, 248, 396Triticosecale, 25Triticum, 39, 80, 133, 241, 248, 251-252,

286, 365, 393, 395 T. aegilopoides, 293 T. aestivo-compactum, 292 T. aestivum, 19, 21, 24-25, 68, 70, 72,

78, 82, 114, 118, 136, 157, 184-185, 193, 207-208, 210, 224, 247, 249, 291-294, 296-297, 302-305, 308, 314-318, 320-321, 381, 388, 392, 394, 396, 406, 407, 431

T. aestivum ssp. aestivum, 19, 21, 24, 136, 157, 184-185, 193, 224, 247, 291-294, 296-297, 302-305, 308, 315-317, 321, 388, 392, 394, 396, 406

T. aestivum ssp. compactum, 19, 21, 291-294, 304, 317-318, 388, 396

T. aestivum ssp. macha, 291, 294, 304 T. aestivum ssp. spelta, 19, 21,

291-294, 296, 302, 304-305, 314-315, 321, 388, 396, 406

T. aestivum ssp. sphaerococcum, 291-292, 294, 304

T. aestivum ssp. vavilovii, 291 T. aestivum/durum, 316, 318, 320 T. araraticum, 292 T. baeoticum, 292-293 T. carthlicum, 292 T. compactum, 292 T. dicoccoides, 292 T. dicoccon, 292 T. dicoccum, 292 T. monococcum, 19, 21, 24-25, 183,

241, 291-295, 297-298, 303, 305, 310-312, 320-321, 375, 388-389, 392, 396, 406

T. monococcum ssp. aegilopoides, 291-295, 297, 303, 320-321

T. monococcum ssp. monococcum, 291, 293-295, 298, 303, 305, 310-312, 320-321, 388-389, 392, 396

T. oriëntale, 292 T. palaeocolchicum, 292 T. parvicoccum, 293 T. polonicum, 292 T. pyramidale, 292 T. ramosum, 19 T. robus, 19 T. sinskajae, 298 T. spelta, 292 T. thaoudar, 293 T. timopheevii, 21, 24-25, 291-295,

299, 303-304, 311-312, 321, 388-389

T. timopheevii ssp. armeniacum, 291-292, 299, 303

T. timopheevii ssp. timopheevii, 291, 293-295, 299, 304, 311-312, 321, 388-389

T. turanicum, 292 T. turgidum, 16, 18-19, 21, 24-25, 53,

86, 144, 180, 183, 185, 207, 217-218, 237, 247, 250, 275,

Page 51: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

466 Handbook of plant palaeoecology | Cappers & Neef

291-294, 296, 299-301, 303-309, 312-318, 320-321, 375, 381, 388, 390-392, 394, 396, 399, 405-406, 408, 414

T. turgidum ssp. carthlicum, 292, 294, 304

T. turgidum ssp. dicoccoides, 275, 291-292, 294, 296, 299-300, 303, 320-321, 381

T. turgidum ssp. dicoccon, 16, 18-19, 21, 53, 86, 183, 250, 291-294, 296, 299-301, 304-307, 312-314, 318, 320-321, 375, 381, 388, 390, 392, 396, 399, 405, 414

T. turgidum ssp. durum, 18-19, 21, 25, 144, 180, 185, 207, 217-218, 237, 247, 291-294, 296, 301, 304-305, 308-309, 314-317, 321, 381, 388, 392, 394, 396, 406, 408

T. turgidum ssp. paleocolchicum, 291-292, 294, 304

T. turgidum ssp. polonicum, 291-292, 294, 304

T. turgidum ssp. turanicum, 291-292, 294, 304

T. turgidum ssp. turgidum, 18-19, 21, 294, 296, 301, 304, 388, 390-391, 394

T. turgidum var. mirabile, 390 T. turgidum var. pseudocervinum,

390 T. urartu, 24-25, 291, 297, 303 T. vulgare, 292 T. zhukovskyi, 25, 291, 293-294Tuberculatisporites mamillarius,

186-187Tulipa sylvestris, 95Typha, 230 T. latifolia, 353Ulmaceae, 167Ulmus, 359, 364-366 U. minor, 164, 167, 361Umbelliferae, 14Urtica urens, 111Ustilago hordei, 285Utricularia, 147Vaccinio-Betuletea pubescentis, 99Vaccinio-Piceetea, 99Vaccinium, 246 V. myrtillus, 346Valeriana officinalis, 348

Valerianaceae, 348Veronica, 96 V. anagallis-aquatica, 347 V. arvensis, 115 V. hederifolia, 97, 115 V. officinalis, 97 V. triphyllos, 115Vicia, 205 V. ervilia, 13, 19, 21, 328-330, 332,

398 V. faba, 13, 19, 21, 80, 113, 217, 246,

328-331, 397 V. faba var. equina, 13, 19, 21, 80,

328-330 V. faba var. faba, 13, 19, 21, 328-330 V. faba var. major, 21, 328 V. faba var. minor, 21, 328 V. faba var. minuta, 13, 19, 21,

328-329 V. faba var. paucijuga, 328-329 V. hirsuta, 16, 95, 115, 117, 120-122,

405, 414, 418 V. sativa, 13, 19, 21 V. sativa ssp. nigra, 13 V. sativa ssp. sativa, 13Vigna unguiculata ssp. unguiculata, 80Viola, 247 V. tricolor, 343Violaceae, 343Viscum, 365 V. album, 363Vitaceae, 342, 343Vitis, 245-246 V. vinifera, 21, 24, 190, 218, 225,

342-343, 404Xanthium strumarium, 28, 96Zannichellia palustris, 217-218Zea, 13 Z. mays, 39, 69, 117, 184, 407Zilla spinosa, 31, 89, 103-104, 126Ziziphus spina-christi, 218, 236Zosteretea, 98Zygophyllum coccineum, 45, 103-104 Z. simplex, 45-46, 102-103

Page 52: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

9.2 Subject index 467

Abaxial, 250-251, 278-279, 281, 303, 306-307, 312

Abiotic, 34, 93, 97, 135Achene, 244Achenium, 244Acidity, 34, 106, 113, 141, 147, 188-189Acute, 304Adaptation, 25, 29-30, 33, 37-38, 40, 45,

108, 147, 204, 385-386, 393, 396Adaxial, 250-251, 278-279, 281,

289-290, 298, 300, 306-307aDNA, 128After-grazing, 90-91After-ripening, 64, 68, 81, 120, 376, 382Agadir, 86A-genome, 291Agriculture, 18, 33, 35, 39, 43, 47-48,

51-52, 54, 58-59, 68-69, 71, 73, 78-79, 83, 91, 101, 105, 112, 115, 123, 127, 130, 157-158, 189, 202, 204-205, 207, 214, 216, 218-221, 228-229, 248, 273, 365-366, 369, 377-378, 380, 386-387, 392, 405-407, 416, 425, 428, 432

Agriophyte, 95Algae, 143, 165Alkaline, 269, 296Alkalinity, 323Allergy, 396Allerød, 351-353, 356, 358-359Alliance, 97, 113-114Allopolyploidy, 24, 291Amurca, 73, 86Anaerobic, 145Angiosperm Phylogeny Group, 26, 96Annual, 39-41, 44-45, 58, 113-114, 122, 148,

210, 213, 269, 273, 287, 333, 336, 352, 371, 376, 378-380, 385, 428

Annulus, 163, 365Anther, 132-133Anthropogenic, 104-105, 157-158, 366Antibiotic, 189AP, 154, 352, 364Arable, 29, 33, 35, 39, 58, 86-88, 112-113,

115-117, 122-123, 127, 136, 139, 144, 149-150, 157, 186, 200, 205, 207, 212, 216, 222-223, 274, 287, 325-326, 333, 337, 366, 369-370, 383, 405, 414-415, 428

Arboreal, 154, 356, 364Archaeophyte, 95Ard, 54-57, 87Arid, 45, 182, 193-194, 378Aril, 32, 239Ascospore, 165Ash, 63, 90, 91, 125, 148, 174, 204, 211,

214-216, 220, 222, 229, 337, 360-363, 365-366, 402, 413-414, 417, 423-424, 431-432

Assimilation, 35Association, 48, 97-98, 105, 138, 294Atlanticum, 351, 358, 360-361, 363-365,

368ATP, 24, 47Autopolyploidy, 24Awn, 117, 249-252, 257-259, 261-264,

267, 270, 274-275, 277, 279-281, 284, 288-290, 297, 300, 302-304, 308, 320, 385-386

Bacteria, 48, 129, 189Baculate, 163Baking, 377, 392, 396, 409, 423-424Berry, 225, 245-246Biennial, 113, 333Bin, 83-85, 180, 418Biomolecule, 128Biotic, 34, 93, 97, 106, 136, 141Biotope, 211, 414Bisexual, 27, 132-133Bog, 98, 139, 146-148, 150, 187, 368-369Bølling, 352-353, 358Boreal, 351, 357-361, 364, 370, 372Brackish, 98Bract, 34, 117, 240, 244, 249-251, 349Brewing, 188-189Brittle-rachised, 20, 67, 250, 295, 303,

305, 376, 381, 383-386Broadcast-sown, 52-54, 112, 114-115, 415Buoyancy, 225Burning, 8, 47, 90-92, 140, 183, 193-195,

201, 203, 221, 247, 337, 365, 402C3-plant, 38-39, 129, 410C4-plant, 38-39, 103, 252, 410Calcareous, 85, 101, 108, 273Calcifuge, 269, 294, 296Calcium, 47, 269, 294CAM-plant, 38-39Capsula, 245

9.2 Subject index

Page 53: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

468 Handbook of plant palaeoecology | Cappers & Neef

Capsule, 131, 244-245, 336-337Carbohydrate, 128, 133, 371, 396Carnivorous, 147Carpel, 27, 132, 244-245Carpellate, 27, 133Caryopsis, 244, 250, 275Caulking, 230Cerealia, 157-158, 248, 365, 379Cesspit, 193, 203-204, 222, 224-225, 387Chaff, 71-73, 78, 180, 186, 202, 205, 207,

210-212, 214, 217, 220-221, 225, 237, 240-241, 247-250, 254, 267, 276, 283, 293, 303-304, 308, 310, 313, 318-320, 381-383, 385-386, 391, 406, 413, 416, 428

Chalaza, 247Charcoal, 221, 229, 417, 423-424Charring, 91-92, 100, 138-140, 174, 183,

186-187, 190, 192-195, 200-201, 205, 217-218, 220-221, 223, 231-234, 250, 254, 256-257, 267-268, 272, 276, 283-285, 290, 304-307, 310-319, 324, 326-328, 330-332, 334, 337-338, 388, 399, 402, 410, 413-414, 418-419, 424, 431-432

Chemosynthesis, 35Chromosome, 22-24, 291Classification, 13, 16, 20, 22, 26, 94,

96-97, 106-107, 130, 239, 244, 248, 250, 252, 254, 257, 269, 273, 285-286, 291-293, 322, 324, 326, 328, 331, 333-334, 336-337

Clavate, 163-164Climate, 29, 34, 36-39, 45, 93, 123-124,

129, 145-146, 148, 154, 193, 229, 252, 254, 258-259, 296, 328, 333, 335-336, 351-353, 356-358, 363-365, 367, 376, 380, 385, 390, 392-393, 397, 428

Clubmoss, 157, 165CML-classification, 106CO2, 35, 38, 39, 47Coeliac disease, 396, 410Colporate, 160Colpus, 160-161, 163Columella, 18-19, 68, 162-163, 189, 191,

212Competition, 35-36, 53-54, 62, 86, 115,

122, 372, 386Cone, 83, 131-132, 239, 294Connate, 240

Contamination, 69, 80, 87, 91, 95, 105, 128-130, 135, 137-138, 152, 178, 182, 184, 186-187, 192, 215, 221, 227, 229, 232, 406, 419

Cooking, 377, 382, 392, 398, 409Coring, 144, 151, 204, 367Cotyledon, 247, 251, 322-323, 327, 330,

338Coverage, 26, 92-93, 100-104, 124, 144,

152-153, 192, 256, 296, 363, 367, 371-372

Crossbreeding, 15Cross-pollination, 27, 133-134, 252, 327,

388Cultivation, 24, 47-48, 63-64, 122,

148-149, 204, 212, 229, 291, 295-296, 328, 366, 369, 378, 380-381, 393, 397, 403, 405, 407-408, 410, 416, 421

Decay, 29, 86, 108, 129-130, 135-138, 145, 147, 191, 193, 224, 331, 413

Deciduous, 38, 101, 325, 366, 378Decumbent, 108-109, 332Deflation, 182, 220Deforestation, 139, 366Dehiscence, 120, 122, 244-245, 333, 336,

383-384, 417Dehusking, 72-73, 86, 226, 377, 383, 391Depletion, 47-48, 50, 368, 403Desiccation, 187, 205, 216, 304, 331Dew, 43-45, 58, 68, 103, 189, 257, 382D-genome, 291, 396Diaspore, 28-30, 32-33, 53-54, 63, 69,

71-72, 76, 79-80, 83, 92, 95-96, 100, 115, 117, 128, 131, 135, 146, 174-175, 183-186, 202, 205-207, 209-212, 215-216, 218-220, 231-232, 246, 250, 257-258, 260-261, 267, 287, 380-381, 418, 432

Dicotyledon, 247Diet, 20, 26, 129-130, 173, 175, 201, 203,

225-226, 371, 387, 391, 396-397, 403, 428, 431

Dioecious, 27, 143, 335Diploid, 23-25, 257, 291, 297, 305-307,

404Disarticulation, 249, 258, 260-261, 264,

266-267, 277, 286-288, 290, 303-304, 312, 314, 320, 386

Disarticulation scar, 249-250, 260-261, 264, 267, 303-304, 320, 386

Page 54: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

9.2 Subject index 469

Disease, 54, 192, 295, 328, 365, 377, 396-397, 410

Dissemination, 17, 250Disturbance, 35, 91, 104, 107, 115, 123,

125, 175, 365DNA, 22, 24, 26, 47, 96, 128-129, 189Domestication, 15-16, 21, 23-25, 27, 39,

56, 63-64, 67, 83, 85, 107, 116, 129-130, 212, 214, 220-221, 246-250, 252, 254-255, 257-260, 267, 269, 273-276, 286, 291-293, 295-296, 301, 303-304, 310, 319, 322-329, 331-334, 336-337, 365, 375-377, 379-381, 383-388, 390, 393, 405-407, 409

Dormancy, 29, 33, 87, 128, 138, 377, 385-386

Drainage, 73, 149, 369Draining, 40, 148, 232, 269, 296, 325,

368-369Drought, 39, 45, 46, 103, 269, 273, 287,

294, 296, 328, 353, 380Drought-resistant, 296, 328Drought-tolerant, 287, 380Dryas, 352, 355-356Dry-sieved, 216Dung, 47-51, 54, 63, 92, 106, 111, 143, 151,

194-195, 197, 211-213, 216, 220-221, 236, 369, 378, 382, 393, 409, 413-414, 422-432

Dung cake, 92, 194, 211-213, 216, 382, 393, 409, 413-414, 424-430, 432

Echinate, 163-164Ecotope, 97, 106Ectexine, 162Edaphic, 34, 123, 246Elaiosome, 32Eldest Dryas, 352, 358Embryo, 247, 249, 251, 254, 267, 322,

327, 338Endexine, 162Endocarp, 32, 194-196, 198, 212, 225,

236-237, 241, 245, 339, 344, 348, 402, 404

Endosperm, 225, 245, 247, 249, 304, 392, 395-396, 406, 409-410

Environment, 25, 38, 43, 45-46, 91-92, 101, 105, 107, 129, 135-140, 143, 145-147, 154, 182, 188-189, 191, 194, 204, 273, 286, 296, 333, 375-376, 392

Enzyme, 26, 38, 47, 189Ephemeral, 44-46, 101-104, 376Epicarp, 30, 239, 241, 245, 339Epidermis, 35, 37, 171Epipalaeolithic, 379Epithet, 14, 16Erosion, 47, 58, 182, 186, 215Ethnoarchaeobotanical, 86, 204Ethnographic, 207Eutrophic, 98, 147Evaporation, 37-39, 41, 43, 63, 111, 190,

245, 352Evergreen, 37, 38Excrement, 30, 32, 111, 224-225Exine, 159Exocarp, 239, 241-242Exotic, 154Exploitation, 51, 150, 211, 366, 368,

378-380, 425Faeces, 175, 203, 224-225, 403, 405Fallow, 48, 104, 111, 113, 116, 122, 212,

216, 325, 433Famine, 56, 331Farmer, 48, 53-54, 57-58, 61-62, 65, 67,

80, 86, 117, 122, 127, 212-213, 365-366, 377, 381-382, 385-387, 392-393, 395, 416

Farming, 18, 219, 352, 375-378, 380, 386, 428

Fenestrate, 163-164Fermentation, 188-189, 191Fern, 160, 164-165Fertile, 15, 205, 252, 255-256, 258-259,

263, 273, 275-276, 278-279, 281-282, 287, 291, 298, 316-317, 375, 378-380, 388-390

Fertility, 51, 100, 157, 248, 257, 259, 274, 325, 390

Fertilizer, 48, 50-52, 54, 431Fertilizing, 26, 27, 43, 48, 51, 133, 139, 143,

148, 188, 239, 332, 370, 377, 388Fibre, 64, 230, 333-335, 371, 403, 418, 425Firewood, 393, 432Flail, 73-74Floatation, 229, 231-234, 399-400Flora, 16, 22, 40, 93-96, 100, 107, 137,

139, 140, 205, 207, 212, 215-216, 254, 304, 353

Floret, 249-268, 275-276, 279-282, 284-285, 288-290, 297, 302, 304, 316-317, 319-320, 388-390, 415

Page 55: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

470 Handbook of plant palaeoecology | Cappers & Neef

Fodder, 56, 73, 127, 194, 212, 220, 273, 323, 365-366, 382-383, 392, 396, 406-407, 409, 413, 428, 432

Follicle, 244Folliculus, 244Food economy, 26, 174, 223, 377,

387-388, 405, 418, 421Foragers, 370, 372, 377-378Foraging, 375, 378, 380Fossil, 140Fossilization, 138Fractionation, 129Fragmentation, 26, 72-73, 92, 98, 128,

195, 250, 285, 305, 413Freatophyte, 46Free-threshing, 67-68, 71, 204,

207-208, 211-212, 249, 269, 271, 298, 305, 318, 381-383, 385, 392, 396, 408-409, 411, 415-416, 428

Fructose, 189Fruitcoat, 225, 335Fuel, 47, 63, 74, 84, 92, 125, 148, 150, 173,

180, 194, 212, 220, 229, 337, 369, 378, 382-383, 392-393, 395-396, 402-403, 409, 422-426, 428, 430, 432, 433

Fungus, 27, 165, 285, 355, 365Funiculus, 32, 121-122, 246-247, 249,

331, 397Garum, 191Gatherer, 377Gathering, 67, 258, 377, 379, 406Genome, 22-25, 129, 257, 286, 291-292,

396Germ, 138, 144, 204, 247, 249, 256, 258,

293, 311, 318, 353, 382, 416Germination, 27, 29, 31-35, 39, 46,

52-54, 87, 135-138, 285, 323, 325, 377, 385-386, 415

Glacial, 146, 148, 351-353, 356-358Glucose, 35, 38, 146, 189, 363Glume, 71, 247-253, 255, 262, 270-271,

274-275, 277, 280-282, 284, 288-290, 297-299, 302-308, 311-312, 317, 321, 381, 388, 410, 413, 431

Gluten, 395-396, 409-410Granary, 33, 83, 86, 179, 223, 231, 388, 405Grassland, 98, 101, 123, 127, 139, 212, 287,

322, 333, 356, 366, 425, 428, 432Grazing, 47, 91-92, 123, 125-130, 206, 211,

216, 269, 369, 386, 414, 428-429

Grinding, 72, 225-226, 377, 392, 395-396, 406-407, 409

Groundwater, 34, 36-37, 40-42, 46, 50, 98, 123, 145, 147, 154, 188, 352, 363, 368

Growth-forms, 100Gyttja, 146, 155Habitat, 97, 106, 269, 273Halophytic, 45Haploid, 23Harrowing, 47, 52, 54, 57Harvest, 48, 58, 73, 91-92, 113, 117, 121,

173-174, 205, 207, 211, 223, 246, 314, 331, 380, 387, 395, 414-416

Harvesting, 47-48, 63-64, 66,-69, 71, 90, 115-117, 120, 122, 189, 205-206, 211-212, 220, 246, 249, 252, 258, 271, 308, 376-377, 380, 382, 384-387, 392, 395-396, 414-418

Health, 392, 395-396, 404Hearth, 230, 413Heating, 138, 188, 378, 393, 396, 413,

423, 431Hemiparasite, 363Herbaceous, 41, 46, 62, 94, 154, 393,

422-423, 425, 432Herbivore, 129, 220Hexaploid, 15, 19, 24-25, 257, 291, 302,

305, 316, 381, 394Hilum, 32, 122, 247, 249, 251, 259, 271,

274, 276, 320, 322-323, 325-326, 329, 331

Hoe, 54-57, 87, 89, 90Hoeing, 54, 87, 112Holocene, 139-140, 146, 148, 178, 351,

357-359, 370, 376, 378Holoparasite, 363Homozygotous, 23Hulled, 18-19, 65, 67, 71-73, 86, 92, 212,

218, 225-226, 249-250, 252, 257, 259, 267, 269-270, 273, 275-276, 280-284, 291, 293, 296-297, 299, 302-303, 305, 310, 319-320, 381-384, 391-392, 395-396, 399, 405-409, 411-415, 418-419, 421, 428

Humidity, 36, 40, 43, 117, 147-148, 259, 325, 397

Hunter-gatherer, 189, 360, 370-372, 377

Hybrid, 25, 257

Page 56: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

9.2 Subject index 471

Hybridization, 15, 24-25, 291-292, 381Hypothesis, 200ICBN, 13, 15, 20ICPN, 130Ideotype, 386Imprint, 43, 192-193, 213, 216, 248, 267,

310, 318-320, 425, 427Indicator, 34-35, 62-63, 104, 106, 138,

140, 157-158, 205, 353, 366Infertile, 279, 388Inflorescence, 205, 209, 242, 248-249,

251-252, 287, 297, 334-335Infructescence, 27-28, 39, 64, 69, 117,

237, 239, 242, 246, 251-253, 255, 265, 270, 274, 276, 333, 386, 390, 392

Intectate, 163Interglacial, 351Internode, 208, 248, 251, 273-275, 277,

285, 289-290, 297-298, 304-307, 310, 313-314, 317, 319-321, 381, 410-411, 413, 416

Interstadial, 351Intine, 159Invader, 95-96Inventory, 101, 107, 113, 410, 415Irrigation, 47, 50, 53, 57-63, 90, 117, 127,

130, 177, 198-199, 204, 207, 210, 212, 215-219, 258, 327, 352, 392, 410

Isotherm, 353Isotope, 128-130, 130, 351Judgemental sampling, 200, 202-204,

219, 391Kiln, 193, 402, 433Kilocalorie, 370-371, 404Kilogram, 415-416Kilojoule, 370-371, 404Labour, 73, 392, 395, 409, 421Lactic fermentation, 188-189Landnam, 365-366Landscape, 26, 93-95, 97, 100, 104, 107,

127, 137, 140, 143-145, 148, 150, 174, 222, 352, 354, 356, 365-366, 369, 407, 424-428

Lax-eared, 208, 276, 416Legume, 48, 135, 244, 380Legumen, 244Lemma, 71, 180, 249-253, 255-257,

259-264, 267, 270-271, 274-277, 280-281, 283-284, 288-289, 297,

302-304, 307-308, 319-320, 381, 389-390, 431

Limestone, 325-326Lithology, 154Longevity, 33, 44, 116, 138, 159Macronutrient, 47-48Manuring, 47-48, 50, 130, 323, 369,

392, 431Megaspore, 186-187Meiosis, 23, 160Mericarpium, 244Mesocarp, 241, 245Micronutrient, 47Microorganism, 35, 80, 145, 188-189,

191-192, 224Micropyle, 247Micro-remain, 204, 227Midden, 176, 178, 220, 387Mimicry, 122Mineral, 34-35, 47-48, 50-51, 54, 63, 86,

91, 107, 113, 115, 123, 146-148, 175, 193, 213, 296, 352, 363, 365-366, 371-372, 392, 403

Mixing, 54, 135, 137, 178, 180, 182-183, 231-232, 234

Moisture, 36, 39, 43, 64, 80, 106-108, 115, 145-146, 149, 159, 193, 212, 244, 257, 287, 356, 382, 410, 426

Monocolpate, 161, 163Monocotyledon, 247Monolete, 160-161, 163-164Monoploid, 23Monoporate, 160, 163-164Mud brick, 52, 56, 60, 144, 180, 184-185,

207-208, 213-218, 220-222, 228-229, 232, 234, 414

Mutation, 24, 26, 381, 386Naked, 18, 21, 68, 71, 86, 130, 135, 180,

238, 249-250, 257-259, 267, 273, 275-276, 282-284, 291, 293, 299, 302, 304, 310, 316, 319-320, 381-383, 386, 391, 395, 408, 418-419, 421, 428

NAP, 154, 352, 364Nectar, 133, 143Neolithisation, 95, 393Neophyte, 95Nitrogen, 47, 48, 111, 129, 386Nomenclature, 13, 16, 20, 97, 130Non-arboreal, 154, 364

Page 57: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

472 Handbook of plant palaeoecology | Cappers & Neef

Non-brittle, 67, 249-250, 305, 376, 381, 385-386

Non-disarticulating, 263-264Non-shattering, 258, 269, 381, 384-385Nurag, 75Nutrient, 35, 47-48, 54, 98, 106-107,

113-114, 139-141, 246-247, 249, 337, 363, 371, 377, 390, 392

Nutrient-poor, 98, 139, 363Nutrient-rich, 98, 114Nux, 244Octaploid, 25Off-site, 29, 73, 204, 211Older Dryas, 351-353, 355-356, 358Oligotrophe, 147On-site, 73, 204Ovary, 132-133, 135, 239, 242, 251, 267Oven, 125, 229, 396, 402, 409, 413-414,

425, 430-432Overexploitation, 124, 369Overgrazing, 94, 124-126, 229, 369, 379,

393, 429, 431Ovule, 23-24, 26, 132-133, 135, 239-240,

247, 251, 332Palaeobiocoenose, 105-106Palea, 71, 180, 249-253, 255-257, 262, 271,

274-276, 280-281, 283-284, 288-289, 307-308, 319-320, 381, 431

Panicle, 117, 249, 251-252, 255, 259-260, 265, 267

Pantoporate, 163-164Pappus, 29, 34, 210, 230, 349Parasite, 96, 143, 363Parching, 377, 383PCR, 128-129Peat, 144, 146-148, 150, 155, 164, 186,

230, 363, 368-369, 379, 423Pedicel, 119, 208-209, 217-218, 251, 261,

266, 275Pentaploid, 24Perennial, 46, 62, 87, 96, 103-104, 138,

205, 269, 274, 333, 376, 428Perianth, 117, 209, 217, 249, 335, 339,

340-348Pericarp, 225, 244, 247, 249, 251, 319Pericolpate, 161, 163Pericolporate, 163Periporate, 160, 163-164pH, 188-189Phosphorus, 47, 111Photoperiodism, 385

Photosynthesis, 24, 26, 35, 37-39, 129, 146, 269, 363, 385-386, 423

Phytolith, 128, 130Pickling, 188Pingo, 145, 148, 352, 358Pioneer, 48, 99, 101, 110, 139, 175, 287Pistil, 26, 132-133, 143, 239, 242, 249Plant community, 39, 97, 100-101,

104-108, 110, 112, 114-115, 122-125, 140, 178, 186, 215, 220, 286, 372

Pleistocene, 351, 376, 378Pleniglacial, 351, 376Ploidy, 291, 305Plough, 54-57, 87, 123Ploughing, 47-48, 52, 54-56, 63, 87,

90-91, 116, 183, 194, 204, 207, 365Pollen diagram, 130, 153-159, 351, 356,

360, 364-367, 378-379Pollination, 27, 34, 133, 143, 159, 243,

377, 387-388, 404Polyploidy, 23-24Pore, 160-161, 163, 245Postglacial, 357-358Potassium, 47Pounding, 72, 310, 383Preboreal, 351, 358-359, 364Precipitation, 34, 36-37, 39-40, 43, 58,

93, 144-145, 147-148, 153-154, 159, 326, 352, 363, 376, 379, 392

Predation, 26-27, 52, 70-71, 135, 137-138, 195, 271, 371, 377

Preservation, 26, 56, 105, 128, 135, 137-140, 145-146, 152-154, 159, 173-174, 187-189, 191-195, 201, 205, 216, 221, 244, 248, 267, 282, 284, 304, 310, 319, 353, 392, 397, 402

Pressing, 73, 188-189Procumbent, 108-109Progenitor, 15-16, 116, 254, 257, 269,

291, 299, 310, 324, 328, 333, 336-337, 375-376, 380

Propagating, 28, 34-35, 67, 95-96, 129, 136-137, 254, 258, 354, 380

Propagule, 89Prostrate, 46, 63, 92, 108, 117-118, 122,

353, 417Protein, 25, 35, 47, 128, 130, 133, 189,

371, 396, 409Psilate, 163Rachilla, 249, 251, 261, 282, 290, 307, 390

Page 58: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

9.2 Subject index 473

Rachis, 19, 67, 71, 91, 180, 184-185, 193, 195, 208, 210, 237, 246, 248-252, 270, 272-279, 281-282, 284-285, 287, 289-290, 295, 297, 302-308, 310-314, 317, 319-321, 377, 381-386, 388-391, 396, 410-413, 415-416, 431

Rain-fed, 58, 352Random sampling, 78, 200-202, 219,

221, 391Raphe, 247Reallocation, 64, 68, 382Reaping, 63-65, 67-68, 72, 115, 204,

211-212, 214, 220, 376, 382Reduction, 188Refugium, 126-127, 356Regma, 244Reine Proben, 106, 178Relevé, 39, 100-104, 415Reproduction, 24, 28, 34, 36, 68, 73, 87,

95, 108, 125, 133, 246Reticulate, 162-164, 336Riparian, 97, 186, 215, 217-218, 220RNA, 47, 128, 189Ruderal, 99, 111-112, 139, 202, 286Saccate, 163Salinity, 34, 45, 63, 106-107, 258, 323Salsamentha, 191Salting, 188, 191Sampling, 135, 138, 151, 199-200,

202-205, 215, 219, 222, 227, 230-231, 353, 370, 387, 391-392, 413

Sarcocolla, 20Scabrate, 163Scar, 145, 148, 161, 163, 190, 247,

249-251, 258, 260-261, 264, 267, 280-281, 289-290, 303-304, 312, 319-321, 352, 358, 377, 381, 384, 386

Schizocarp, 243, 384Schizocarpium, 244Scutellum, 249-251, 253-254, 257, 298,

319-320Season, 252Seasonality, 112-115Sedentism, 370, 376-377Seed bank, 28-29, 33, 44, 62-63, 86-87,

90, 92, 104, 115-117, 122, 135-138, 140, 207, 246, 295

Seed dispersal, 26, 28-29, 32-34, 67-68, 87, 95, 97, 104-105, 108, 116, 121,

135-136, 212, 222, 246, 249, 377, 380-381, 384, 396

Seed flora, 135, 137, 206Seedcoat, 27, 29-30, 244, 246-247, 251,

322-323, 325-328, 330-331, 336, 401

Seedling, 46, 52-54, 113, 212, 386Self-pollination, 27, 143-144, 158, 252,

365, 388Self-fertilizing, 327Self-pollination, 133Semi-brittle, 250, 303, 305-306, 381,

386Semi-shattering, 269, 383Sepal, 132Septum, 119-120, 245, 333-334, 345Sexuality, 27Shade-tolerant, 36Shaduf, 61Shattering, 68, 254, 258, 269-270, 336,

381Short-lived, 123Sibakh baladi, 51Sibakh kufri, 51Sickle, 64-68, 117, 127, 205, 212, 214,

308, 376, 382, 387, 410Sieve, 76, 78-80, 129, 138, 180-181, 193,

195, 201-202, 208, 210, 214, 216, 218, 225, 231-232, 235-238, 309, 323, 331, 397, 399

Sieving, 71-72, 78-79, 92, 117, 193, 214, 231-232, 235-236, 238, 246, 323, 392, 397

Siliqua, 245Silique, 245Silo, 224, 405Sledge, 73-76, 425Smoking, 188Sociability, 100, 415Soil, 27-29, 33-36, 41-48, 50-54, 56-60,

62-65, 68, 80, 87, 93, 95-96, 100, 106-108, 110-117, 119, 123-124, 128, 135-140, 145, 148, 150-151, 157-158, 176, 182-183, 205, 207, 211-212, 215-216, 221, 231-232, 234, 238, 252, 254, 257-259, 269, 273-274, 287, 294-296, 309, 322-323, 325, 327-328, 331, 333, 336-337, 356, 361, 363, 366-369, 372, 376-377, 383, 386, 390, 392-393, 399, 407, 413, 414, 416, 419

Page 59: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

474 Handbook of plant palaeoecology | Cappers & Neef

Sowing, 20, 29, 33, 52-54, 57, 87-90, 95, 113, 115-117, 119-210, 246, 249, 254, 366, 376-377, 386-387, 390, 392-393, 405, 415, 418, 421

Spectrum, 18, 23, 30, 124, 153-154, 387, 392, 399, 418

Spike, 67, 72-73, 92, 131, 158, 162, 218, 249-251, 253, 255, 270-271, 274-276, 278-282, 286-290, 297-298, 300, 303-304, 306, 309, 313, 386, 389-391, 393-394, 415-416

Spikelet, 32, 53, 67-68, 71-74, 85-86, 92, 104, 117, 208-211, 217, 225-226, 246, 249-265, 267, 270-271, 273-279, 281-282, 285-290, 293, 295, 297-300, 302-307, 309-317, 320-321, 376, 381-383, 386, 388-391, 396, 405-406, 410-411, 413, 415

Spiny, 54, 92, 126, 393Split fruit, 243-244Sporangiophore, 131Sporangium, 131, 146Spore, 108, 128, 131, 133, 143, 145-146,

148, 152-154, 159-161, 163-166Spring-sown, 259Stamen, 27, 132-133, 249, 267Stefanocolpate, 161Stefanoporate, 160Stephanocolpate, 163Stephanocolporate, 163Stephanoporate, 163, 164Steppe, 101, 123, 229, 273, 294, 296, 325,

379-380, 427, 429Steppe-forest, 379-380Sterile, 72, 129, 191, 246, 252-253, 255,

275, 279, 282, 288-289, 297, 411Sterility, 274Stigma, 132-134Stomata, 35, 37-38Stone fruit, 241, 245, 402Storage, 27, 29, 45, 73-74, 80, 82-86, 130,

174, 191, 211, 214, 222-224, 232, 238, 285, 310, 314, 370-371, 376-377, 382-383, 385-386, 388, 391-392, 395-397, 399, 409-412, 414-415, 417-421, 425-426, 428, 431

Strategy, 33, 48, 108, 116, 124, 138, 175, 200, 204-205, 387, 391

Stratigraphy, 200

Stress, 35, 37, 40, 125, 258, 352Striate, 163-164Subassociation, 106Subatlanticum, 351, 358, 366, 369Subboreal, 351, 358, 364-365Subfossil, 26, 28-29, 91, 96, 105, 128,

130, 135-141, 143, 162, 182, 184, 190, 204-205, 220-221, 232, 235, 247-249, 254, 257, 267, 272, 282, 286, 290, 293, 304, 306, 316, 319, 323, 326-327, 330, 332, 334-335, 337-338, 375, 385-386, 388, 391, 401, 410, 415, 417-418, 423

Subsampling, 83, 154, 223, 230-231, 310, 392, 418

Subsistence, 375, 380, 409Succession, 107, 137, 365-366Succulent, 45, 62Sweetening, 188, 191Symbiosis, 34, 48, 387Syndrome, 23, 387, 396Synecology, 97Syntaxon, 97-98, 107, 123, 210Syntaxonomy, 26, 93, 97, 113, 138Tafla, 50-51Taphonomy, 26, 130, 137, 173, 205,

414-415, 417Taxon, 13-16, 18, 20, 22, 24, 94, 97, 154,

273, 291-293, 306, 399, 418Taxonomy, 13, 16, 93, 96, 269, 293, 334Tectate, 163Tectum, 162-163Temperature, 34-38, 40, 43, 93, 111, 138,

154, 188-189, 191-193, 269, 325-326, 337, 352-353, 356-357, 364-365, 385, 392, 402, 410, 423, 431

Territory, 371-372, 380Testa, 246, 251Tetrad, 160, 164Tetrahedral, 160Tetraploid, 15, 19, 24-25, 257, 291, 293,

299, 303, 305-306, 310, 316, 381, 390, 394

Thanatocoenose, 105-106Therophyte, 113Threshing, 64, 71-76, 79-80, 82, 84, 86,

92, 117-118, 174, 178, 180, 184, 189, 193-194, 201, 204-205, 207-208, 210-212, 214-216, 218, 220-221, 225, 228-229, 232, 247-250,

Page 60: Handbook of PLANT PALAEOECOLOGY · the Late Glacial and Holocene. Subfossil plant remains offer us great opportunities for the reconstruction of former landscapes and the ways in

9.2 Subject index 475

257-258, 260-261, 264, 267, 275-276, 280-282, 284-286, 288, 290, 304-309, 316, 318, 320, 323-324, 337, 377, 381-384, 386-388, 391-393, 395-397, 402-406, 409, 413-414, 425-426, 428, 432

Tillage, 115, 125, 158Tillering, 208, 254, 270, 297, 377,

385-386, 390, 392, 415Tough-rachised, 305, 376Toxic, 16, 246, 396Transient, 33, 138Trash, 8, 78, 85, 111, 173-174, 176-180,

182, 184, 186-187, 194-195, 197-198, 203, 217, 230-231, 308, 331

Tricolpate, 161, 163-164Tricolporate, 163-164Trilete, 160-161, 163-164Triploid, 24Triporate, 163-164Unisexual, 27, 132, 143Unleavened, 396Uprooting, 63-65, 68, 74, 88, 90, 104,

207, 212, 214, 220, 308, 376, 382, 390

Utricle, 244, 339-340Valve, 119-120, 122, 209, 245Varve, 379Vascular, 34, 38, 108, 147, 363, 365Vegetable, 189, 191, 197, 403Vegetation, 26, 33, 35-36, 41, 44, 47-48,

52, 56, 62-63, 87, 91-101, 104-108, 110-112, 115-117, 123-128, 130, 135-139, 143-147, 153-154, 157, 159, 174, 178, 183, 202, 204-205, 207, 211, 215, 221-222, 229, 231, 247, 273, 319, 351-352, 354-357, 359-360, 364-369, 372, 376, 379, 393, 415, 423, 428-429, 433

Vernalization, 297, 385-386Verrucate, 163Verruculose, 325Vesiculate, 163-164Vitamin, 35, 371Waste, 29, 35, 48, 50-51, 76, 78-80, 86,

104, 107, 112, 175, 177-178, 180, 186-187, 194, 199, 203-204, 212, 225, 248, 254, 258, 331, 387, 397-398, 401, 428

Waterlogging, 100, 138-140, 186, 192-193, 200, 205, 235, 244, 254, 267, 319, 326, 331, 335, 397

Weed, 29, 33, 35, 39, 47, 52, 54, 62-63, 69, 71-72, 78-80, 83, 86-92, 95, 97, 105, 108, 112-117, 120-123, 136, 139, 157-158, 186, 200-203, 205-208, 210-212, 214-216, 218-223, 246, 254, 258, 274, 294-295, 325, 333, 337, 383, 392, 405, 414-415, 417-418, 421, 432

Weeding, 52, 89, 204, 337Wet-sieved, 399-400Wind-dispersed, 29, 91, 96, 180, 211Winnowing, 71-72, 76-77, 79, 92, 117,

202, 208, 214, 246, 392Winter-grown, 328Winter-sown, 259Xeromorphic, 45Xerophyte, 45, 378Yield, 25, 27, 47-48, 53, 62, 67-68, 71, 73,

78, 80, 82-83, 85-86, 123, 143, 174, 189, 221, 252, 254, 259, 269-270, 273, 296-297, 327-328, 336-337, 366, 376-379, 382, 385-386, 390-392, 395-396, 410, 414-418, 421

Younger Dryas, 351-353, 356, 358, 380