handbook of photonics for biomedical science · 2011-12-26 · contents preface xix theeditor xxv...

14
Series in Medical Physics and Biomedical Engineering Handbook of Photonics for Biomedical Science Edited by Valery V. Tuchin Saratov State University and Institute of Precise Mechanics and Control ofRAS Russia LftC) CRC Press \C/*^ J Taylor & Francis Group ' Boca Raton London NewYork CRC Press is an imprint of the Taylor Si Francis Group, an Informa business A TAYLOR & FRANCIS BOOK

Upload: others

Post on 11-Jul-2020

3 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

Series in Medical Physics and Biomedical Engineering

Handbook of

Photonics for Biomedical Science

Edited by

Valery V. TuchinSaratov State University and

Institute ofPrecise Mechanics and Control ofRASRussia

LftC) CRC Press\C/*^ J Taylor &Francis Group

'Boca Raton London NewYork

CRC Press is an imprint of the

Taylor Si Francis Group, an Informa business

A TAYLOR & FRANCIS BOOK

Page 2: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

Contents

Preface xix

The Editor xxv

List of Contributors xxvii

1 FDTD Simulation of Light Interaction with Cells for Diagnostics and Imaging in

Nanobiophotonics 1

Stoyan Tanev, Wenbo Sun, James Pond, and Valery V. Tuchin

1.1 Introduction 2

1.2 Formulation of the FDTD Method 3

1.2.1 The basic FDTD numerical scheme 3

1.2.2 Numerical excitation of the input wave 4

1.2.3 Uni-axial perfectly matched layer absorbing boundary conditions 7

1.2.4 FDTD formulation of the light scattering properties from single cells. ...

10

1.2.5 FDTD formulation of optical phase contrast microscopic (OPCM) imaging 15

1.3 FDTD Simulation Results of Light Scattering Patterns from Single Cells 19

1.3.1 Validation of the simulation results 19

1.3.2 Effect of extracellular medium absorption on the light scattering patterns . .22

1.4 FDTD Simulation Results of OPCM Nanobioimaging 24

1.4.1 Cell structure 24

1.4.2 Optical clearing effect 24

1.4.3 The cell imaging effect of gold nanoparticles 25

1.5 Conclusion 29

2 Plasmonic Nanoparticles: Fabrication, Optical Properties, and Biomedical Applica¬

tions 37

Nikolai G. Khlebtsov and Lev A. Dykman2.1 Introduction 37

2.2 Chemical Wet Synthesis and Functionalization of Plasmon-Resonant NPs 38

2.2.1 Nanosphere colloids 38

2.2.2 Metal nanorods 38

2.2.3 Metal nanoshells 39

2.2.4 Other particles and nanoparticles assemblies 39

2.3 Optical Properties 40

2.3.1 Basic physical principles 40

2.3.2 Plasmon resonances 43

2.3.3 Metal spheres 45

2.3.4 Metal nanorods 46

2.3.5 Coupled plasmons 53

2.4 Biomedical Applications 58

2.4.1 Functionalization of metal nanoparticles 58

2.4.2 Homogenous and biobarcode assays 60

2.4.3 Solid-phase assays with nanoparticle markers 61

2.4.4 Functionalized NPs in biomedical sensing and imaging 63

v

Page 3: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

vi Handbook of Photonics for Biomedical Science

2.4.5 Interaction of NPs with living cells and organisms: Cell-uptake, biodistri-

bution, and toxicity aspects 65

2.4.6 Application of NPs to drug delivery and photothermal therapy 67

2.5 Conclusion 69

Transfection by Optical Injection 87

David J. Stevenson, Frank J. Gunn-Moore, Paul Campbell, and Kishan Dholakia

3.1 Introduction: Why Cell Transfection? 87

3.2 Nonoptical Methods of Transfection 89

3.2.1 Lipoplex transfection 89

3.2.2 Polyplex transfection 89

3.2.3 Gene gun transfection 90

3.2.4 Ultrasound transfection 90

3.2.5 Electroporation 90

3.3 Review of Optical Injection and Transfection 91

3.4 Physics of Species Transport through a Photopore 97

3.5 Physics of the Laser-Cell Interaction Ill

3.6 Conclusion 113

Advances in Fluorescence Spectroscopy and Imaging 119

Herbert Schneckenburger, Petra Weber, Thomas Bruns, and Michael Wagner

4.1 Introduction 119

4.2 Techniques and Requirements 120

4.2.1 Video microscopy and tomography 120

4.2.2 Spectral imaging 121

4.2.3 Fluorescence anisotropy 122

4.2.4 Fluorescence lifetime imaging microscopy (FLIM) 122

4.2.5 Fluorescence screening 123

4.3 Applications 123

4.3.1 Autofluorescence imaging 123

4.3.2 Membrane dynamics 125

4.3.3 FRET-based applications 128

4.4 Final Remarks 132

Applications of Optical Tomography in Biomedical Research 137

Ana Sarasa-Renedo, Alex Darrell, and Jorge Ripoll5.1 Introduction 137

5.1.1 Fluorescent molecular probes 138

5.2 Light Propagation in Highly Scattering Media 139

5.2.1 The diffusion equation 139

5.2.2 Fluorescence molecular tomography 139

5.3 Light Propagation in Nonscattering Media 144

5.3.1 Optical projection tomography 144

5.3.2 Reconstruction methods in OPT 147

Fluorescence Lifetime Imaging and Metrology for Biomedicine 159

Clifford Talbot, James McGinty, Ewan McGhee, Dylan Owen, David Grant, Sunil Kumar,Pieter De Beule, Egidijus Auksorius, Hugh Manning, Neil Galletly, Bebhinn Treanor, Gordon

Kennedy, Peter M.P. Lanigan, Ian Munro, Daniel S. Elson, Anthony Magee, Dan Davis, Mark

Neil, Gordon Stamp, Christopher Dunsby, and Paul French

Page 4: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

Table of Contents vii

6.1 Introduction 159

6.2 Techniques for Fluorescence Lifetime Imaging and Metrology 162

6.2.1 Overview 162

6.2.2 Single-point and laser-scanning measurements of fluorescence lifetime. . . 164

6.2.3 Wide-field FLIM 167

6.3 FLIM and MDF1 of Biological Tissue Autofluorescence 170

6.3.1 Introduction 170

6.3.2 Application to cancer 171

6.3.3 Application to atherosclerosis 172

6.4 Application to Cell Biology 175

6.4.1 Fluorescence lifetime sensing .175

6.4.2 FLIM applied to FRET 176

6.5 Multidimensional Fluorescence Measurement and Imaging Technology 178

6.5.1 Overview 178

6.5.2 Excitation-resolved FLIM 179

6.5.3 Emission-resolved FLIM 180

6.6 Outlook 182

7 Raman and CARS Microscopy of Cells and Tissues 197

Christoph Krafft and Jiirgen Popp7.1 Introduction 197

7.2 Experimental Methods 199

7.2.1 Raman spectroscopy 199

7.2.2 Raman microscopy 200

7.2.3 Surface enhanced resonance Raman scattering (SERS) 201

7.2.4 Resonance Raman scattering (RRS) 201

7.2.5 Coherent anti-Stokes Raman scattering (CARS) microscopy 201

7.2.6 Raman imaging 202

7.3 Sample Preparation and Reference Spectra 203

7.3.1 Preparation of tissues 203

7.3.2 Preparation of cells 204

7.3.3 Raman spectra of biological molecules 204

7.4 Applications to Cells 205

7.4.1 Raman microscopy of microbial cells 205

7.4.2 Raman spectroscopy of eukaryotic cells 206

7.4.3 Resonance Raman spectroscopy of cells 208

7.4.4 SERS/TERS of" cells 208

7.4.5 CARS microscopic imaging of cells 210

7.5 Applications to Tissue 211

7.5.1 Raman imaging of hard tissues 211

7.5.2 Raman imaging of soft tissues 212

7.5.3 SERS detection of tissue-specific antigens 214

7.5.4 CARS for medical tissue imaging 215

7.6 Conclusions 216

8 Resonance Raman Spectroscopy ofHuman Skin for the In Vivo Detection of Carotenoid

Antioxidant Substances 229

Maxim E. Darvin and Juergen Lademann

8.1 Introduction 230

8.2 Production of Free Radicals in the Skin 231

Page 5: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

viii Handbook of Photonics for Biomedical Science

8.3 Antioxidative Potential of Human Skin 231

8.3.1 Different types of antioxidants measured in the human skin 231

8.3.2 Role of cutaneous carotenoids 232

8.4 Physicochemieal Properties of Cutaneous Carotenoids 232

8.4.1 Antioxidative activity 232

8.4.2 Optical absorption 232

8.4.3 Solubility 232

8.5 Methods for the Detection of Cutaneous Carotenoids 233

8.5.1 High pressure liquid chromatography (HPLC) 233

8.5.2 Reflection spectroscopy 233

8.5.3 Raman spectroscopy 234

8.5.4 Comparison of the methods 235

8.6 Resonance Raman Spectroscopy (RRS) 235

8.6.1 Setup for in vivo resonance Raman spectroscopy of cutaneous carotenoids. 235

8.6.2 Optimization of the setup parameters 236

8.6.3 Typical RRS spectra of carotenoids obtained from the skin 237

8.6.4 Measurements of the total amount of carotenoids in the skin 238

8.6.5 Selective detection of cutaneous beta-carotene and lycopene 238

8.6.6 Measurements of cutaneous lycopene 239

8.7 Results Obtained by RRS In Vivo 240

8.7.1 Distribution of carotenoids in the human skin 240

8.7.2 Stress factors, which decrease the carotenoid level in the skin 241

8.7.3 Potential methods to increase the carotenoid level in the skin 242

8.7.4 "Seasonal increase" of cutaneous carotenoids 243

8.7.5 Antioxidants and premature aging 243

8.7.6 Topical application of antioxidants 245

8.7.7 Medication with antioxidants 245

8.8 Strategies on the Application of Antioxidant Substances 247

8.9 Conclusions 247

9 Polarized Light Assessment of Complex Turbid Media Such as Biological Tissues Us¬

ing Mueller Matrix Decomposition 253

Nirmalya Ghosh, Michael Wood, and Alex Vitkin

9.1 Introduction 254

9.2 Mueller Matrix Preliminaries and the Basic Polarization Parameters 255

9.3 Polar Decomposition of Mueller Matrices for Extraction of the Individual Intrinsic

Polarization Parameters 258

9.4 Sensitive Experimental System for Mueller Matrix Measurements in Turbid Media 261

9.5 Forward Modeling of Simultaneous Occurrence of Several Polarization Effects in

Turbid Media Using the Monte Carlo Approach 264

9.6 Validation of the Mueller Matrix Decomposition Method in Complex Tissue-Like

Turbid Media 267

9.7 Selected Trends: Path length and Detection Geometry Effects on the Decomposition-Derived Polarization Parameters 270

9.8 Initial Biomedical Applications 274

9.8.1 Noninvasive glucose measurement in tissue-like turbid media 274

9.8.2 Monitoring regenerative treatments of the heart 275

9.8.3 Proof-of-principle in vivo biomedical deployment of the method 277

9.9 Concluding Remarks on the Prospect of the Mueller Matrix Decomposition Method

in Polarimelric Assessment of Biological Tissues 279

Page 6: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

Table of Contents ix

10 Statistical, Correlation, and Topological Approaches in Diagnostics of the Structure

and Physiological State of Birefringent Biological Tissues 283

O, V. Angelsky, A.G. Ushenko, Yu.A. Ushenko, VP. Pishak, and A.P. Peresunko

10.1 Introduction 284

10.1.1 Polarimetric approach 284

10.1.2 Correlation approach 285

10.1.3 Topological or singular optical approach 286

10.2 Biological Tissue as the Converter of Parameters of Laser Radiation 288

10.2.1 Crystal optical model of anisotropic component of the main types of biolog¬

ical tissues 288

10.2.2 Techniques for analysis of the structure of inhomogeneously polarized ob¬

ject fields 290

10.3 Laser Polarimetry of Biological Tissues 291

10.3.1 Polarization mapping of biological tissues: Apparatus and techniques ... 291

10.3.2 Statistical and fractal analysis of polarization images of histological slices

of biological tissues 292

10.3.3 Diagnostic feasibilities of polarization mapping of histological slices of bi¬

ological tissues of various physiological states 294

10.3.4 Polarization 2D tomography of biological tissues 298

10.4 Polarization Correlometry of Biological Tissues 303

10.4.1 The degree of mutual polarization at laser images of biological tissues. . .

303

10.4.2 Technique for measurement of polarization-con-elation maps ofhistological

slices of biological tissues 304

10.4.3 Statistical approach to the analysis of polarization-correlation maps of bio¬

logical tissues 304

10.5 The Structure of Polarized Fields of Biological Tissues 308

10.5.1 Main mechanisms and scenarios of forming singular nets at laser fields of

birefringent structures of biological tissues 308

10.5.2 Statistical and fractal approaches to analysis of singular nets at laser fields

of birefringent structures of biological tissues 309

10.5.3 Scenarios of formation of singular structure of polarization parameters at

images of biological tissues 313

10.5.4 Structure of S-contours of polarization images of the architectonic nets of

birefringent collagen fibrils 313

10.5.5 On the interconnection of the singular and statistical parameters of inhomo¬

geneously polarized nets of biological crystals 315

10.6 Conclusion 317

11 Biophotonic Functional Imaging of Skin Microcirculation 323

Martin J. Leahy and Gert E. Nilsson

11.1 Skin Microvasculature 323

11.2 Nailfold Capillaroscopy 324

11.3 Laser Doppler Perfusion Imaging 325

11.4 Laser Speckle Perfusion Imaging 329

11.5 Polarization Spectroscopy 331

11.6 Comparison of LDPI.LSPI, and TiVi 333

11.7 Optical Microangiography 336

11.8 Photoacoustic Tomography 337

11.9 Conclusions 339

Page 7: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

X Handbook ofPhotonicsfor Biomedical Science

12 Advances in Optoacoustic Imaging 343

Tatiana Khokhlova, Ivan Pelivanov, and Alexander Karabutov

12.1 Introduction 344

12.2 Image Reconstruction in OA Tomography 345

12.2.1 Solution of the inverse problem of OA tomography in spatial-frequency do¬

main 346

12.2.2 Solution of the inverse problem of OA tomography in time domain 347

12.2.3 Possible image artifacts 348

12.3 3D OA Tomography 349

12.4 2D OA Tomography 351

12.4.1 Transducer arrays for 2D OA tomography 351

12.4.2 Image reconstruction in 2D OA tomography 355

12.5 Conclusions 357

13 Optical-Resolution Photoacoustic Microscopy for 7/7 Vivo Volumetric Microvascular

Imaging in Intact Tissues 361

Song Hu, Konstantin Maslov, and Lihong V. Wang

13.1 Introduction 361

13.2 Dark-Field PAM and Its Limitation in Spatial Resolution 362

13.3 Resolution Improvement in PAM by Using Diffraction-Limited Optical Focusing .363

13.4 Bright-Field OR-PAM 364

13.4.1 System design 364

13.4.2 Spatial resolution quantification 365

13.4.3 Imaging depth estimation 367

13.4.4 Sensitivity estimation 367

13.5 In Vivo Microvascular Imaging Using OR-PAM 368

13.5.1 Structural imaging 368

13.5.2 Microvascular bifurcation 370

13.5.3 Functional imaging of hemoglobin oxygen saturation 371

13.5.4 In vivo brain microvascular imaging 373

13.6 Conclusion and Perspectives 373

14 Optical Coherence Tomography Theory and Spectral Time-Frequency Analysis 377

Castas Pitris, Andreas Kartakoullis, and Evgenia Bousi

14.1 Introduction 377

14.2 Low Coherence Interferometry 379

14.2.1 Axial resolution 381

14.2.2 Transverse resolution 382

14.3 Implementations of OCT 383

14.3.1 Time-domain scanning 383

14.3.2 Fourier-domain OCT 384

14.4 Delivery Devices 385

14.5 Clinical Applications of OCT 385

14.5.1 Ophthalmology 386

14.5.2 Cardiology 386

14.5.3 Oncology 386

14.5.4 Other applications 387

14.5.5 OCT in biology 388

14.6 OCT Image Interpretation 389

14.7 Spectroscopic OCT 390

Page 8: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

Table of Contents x i

14.7.1 Mie theory in SOCT 390

14.7.2 Spectral analysis of OCT signals 391

14.7.3 Spectral analysis based on Burg's method 392

14.7.4 Experimental demonstration of SOCT for scatterer size estimation 395

14.8 Conclusions 396

15 Label-Free Optical Micro-Angiography for Functional Imaging of Microcirculations

within Tissue Beds In Vivo 401

Lin An, Yali Jia, and Ruikang K. Wang15.1 Introduction 401

15.2 Brief Principle of Doppler Optical Coherence Tomography 403

15.3 Optical Micro-Angiography 404

15.3.1 In vivo full-range complex Fourier-domain OCT 405

15.3.2 OMAG flow imaging 407

15.3.3 Directional OMAG flow imaging 409

15.4 OMAG System Setup 411

15.5 OMAG Imaging Applications 412

15.5.1 In vivo volumetric imaging of vascular perfusion within the human retina

and choroids 413

15.5.2 Imaging cerebral blood perfusion in small animal models 413

15.6 Conclusions 415

16 Fiber-Based OCT: From Optical Design to Clinical Applications 423

V. Gelikonov, G- Gelikonov, M. Kirillin, N. Shakhova, A. Sergeev, N. Gladkova, and E. Za-

gaynova

16.1 Introduction (History, Motivation, Objectives) 423

16.2 Fiber-Based OCT as a Tool for Clinical Application 425

16.2.1 Design of the fiber-based cross-polarization OCT device 425

16.2.2 OCT probes: Customizing the device 428

16.3 Clinical Applications of the Fiber-Based OCT Device 430

16.3.1 Diagnosis of cancer and target biopsy optimization 430

16.3.2 Differential diagnosis of diseases with similar manifestations 431

16.3.3 OCT monitoring of treatment 431

16.3.4 OCT for guided surgery 432

16.3.5 Cross-polarization OCT modality for neoplasia OCTdiagnosis 434

16.3.6 OCT miniprobe application 435

16.4 Conclusion 439

17 Noninvasive Assessment of Molecular Permeability with OCT 445

Kirill V. Larin, Mohamad G. Ghosn, and Valery V. Tuchin

17.1 Introduction 446

17.2 Principles of OCT Functional Imaging 447

17.3 Materials and Methods 450

17.3.1 Experimental setup 450

17.3.2 Ocular tissues 450

17.3.3 Vascular tissues 451

17.3.4 Data processing 451

17.4 Results 452

17.4.1 Diffusion in the cornea 452

17.4.2 Diffusion in the sclera 454

Page 9: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

x i j Handbook ofPhotonicsfor Biomedical Science

17.4.3 In-depth diffusion monitoring 456

17.4.4 Diffusion in the carotid 457

17.5 Conclusions 459

18 Confocal Light Absorption and Scattering Spectroscopic Microscopy 465

Le Qiu and Lev T. Perelman

18.1 Introduction 465

18.2 Light Scattering Spectroscopy 467

18.3 Confocal Microscopy 468

18.4 CLASS Microscopy 469

18.5 Imaging of Live Cells with CLASS Microscopy 473

18.6 Characterization of Single Gold Nanorods with CLASS Microscopy 474

18.7 Conclusion 477

19 Dual Axes Confocal Microscopy 481

Michael J. Mandella and Thomas D. Wang

19.1 Introduction 481

19.1.1 Principles of Confocal Microscopy 482

19.1.2 Role for dual axes confocal microscopy 482

19.2 Limitations of Single Axis Confocal Microscopy 483

19.2.1 Single axis confocal design 484

19.2.2 Single axis confocal systems 484

19.3 Dual Axes Confocal Architecture 485

19.3.1 Dual axes design 486

19.3.2 Dual axes point spread function 487

19.3.3 Postobjective scanning 489

19.3.4 Improved rejection of scattering 490

19.4 Dual Axes Confocal Imaging 494

19.4.1 Solid immersion lens 494

19.4.2 Horizontal cross-sectional images 494

19.4.3 Vertical cross-sectional images 495

19.4.4 Dual axes confocal fluorescence imaging 496

19.5 MEMS Scanning Mechanisms 498

19.5.1 Scanner structure and function 498

19.5.2 Scanner characterization 499

19.5.3 Scanner fabrication process 500

19.6 Miniature Dual Axes Confocal Microscope 501

19.6.1 Imaging scanhead 501

19.6.2 Assembly and alignment 501

19.6.3 Instrument control and image acquisition 502

19.6.4 In vivo confocal fluorescence imaging 503

19.6.5 Endoscope compatible prototype 503

19.7 Conclusions and Future Directions 505

20 Nonlinear Imaging of Tissues 509

Riccardo Cicchi, Leonardo Sacconi, and Francesco Pavone

20.1 Introduction 509

20.2 Theoretical Background 510

20.2.1 Two-photon excitation fluorescence microscopy 510

20.2.2 Second-harmonic generation microscopy 512

Page 10: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

Table of Contents xiii

20.2.3 Fluorescence lifetime imaging microscopy 513

20.3 Morphological Imaging 516

20.3.1 Combined two-photon fluorescence-second-harmonic generation microscopyon skin tissue 516

20.3.2 Combined two-photon fluorescence-second-harmonic generation microscopyon diseased dermis tissue 516

20.3.3 Combined two-photon fluorescence-second-harmonic generation microscopyon bladder tissue 518

20.3.4 Second-harmonic generation imaging on cornea 520

20.3.5 Improving the penetration depth with two-photon imaging: Application of

optical clearing agents 520

20.4 Chemical Imaging 523

20.4.1 Lifetime imaging of basal cell carcinoma 523

20.4.2 Enhancing tumor margins with two-photon fluorescence by using aminole¬

vulinic acid 525

20.5 Morpho-Functional Imaging 526

20.5.1 Single spine imaging and ablation inside brain of small living animals. . .

526

20.5.2 Optical recording ofelectrical activity in intact neuronal network by random

access second-harmonic (RASH) microscopy 531

20.6 Conclusion 535

21 Endomicroscopy Technologies for High-Resolution Nonlinear Optical Imaging and

Optical Coherence Tomography 547

Yicong Wu and Xingde Li

21.1 Introduction 548

21.2 Beam Scanning and Focusing Mechanisms in Endomicroscopes 549

21.2.1 Mechanical scanning in side-viewing endomicroscopes 549

21.2.2 Scanning mechanisms in forward-viewing endomicroscopes 550

21.2.3 Compact objective lens and focusing mechanism 555

21.3 Nonlinear Optical Endomicroscopy 556

21.3.1 Special considerations in nonlinear optical endomicroscopy 556

21.3.2 Nonlinear optical endomicroscopy embodiments and applications 557

21.4 Optical Coherence Tomography Endomicroscopy 561

21.4.1 Special considerations in OCT fiber-optic endomicroscopy 561

21.4.2 Endomicroscopic OCT embodiments and the applications 561

21.5 Summary 565

22 Advanced Optical Imaging of Early Mammalian Embryonic Development 575

Irina V. Larina, Mary E. Dickinson, and Kirill V. Larin

22.1 Introduction 575

22.2 Imaging Vascular Development Using Confocal Microscopy of Vital Fluorescent

Markers 576

22.3 Live Imaging of Mammalian Embryos With OCT 580

22.3.1 Structural 3-D imaging of live embryos with SS-OCT 580

22.3.2 Doppler SS-OCT imaging of blood flow 583

22.4 Conclusion 586

23 Terahertz Tissue Spectroscopy and Imaging 591

Maxim Nazarov, Alexander Shkurinov, Valery V. Tuchin, andX.-C. Zhang

Page 11: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

xiv Handbook ofPhotonics for Biomedical Science

23.1 Introduction: The Specific Properties of the THz Frequency Range for Monitoring

of Tissue Properties 592

23.2 Optics of THz Frequency Range: Brief Review on THz Generation and Detection

Techniques 593

23.2.1 CW lamp and laser sources, CW detectors 593

23.2.2 FTIR 593

23.2.3 THz-TDS, ATR 594

23.3 Biological Molecular Fingerprints 599

23.3.1 Introduction 599

23.3.2 Sugars 600

23.3.3 Polypeptides 600

23.3.4 Proteins 601

23.3.5 Amino-acids and nucleobases 602

23.3.6 DNA 602

23.4 Properties of Biological Tissues in the THz Frequency Range 603

23.5 Water Content in Tissues and Its Interaction with Terahertz Radiation 604

23.5.1 Data on water content in various tissues 605

23.5.2 THz spectra of water solution 605

23.5.3 Skin 608

23.5.4 Muscles 608

23.5.5 Liver 609

23.5.6 Fat 609

23.5.7 Blood, hemoglobin, myoglobin 609

23.5.8 Hard tissue 610

23.5.9 Tissue dehydration 610

23.6 THz Imaging: Techniques and Applications 612

23.6.1 Introduction 612

23.6.2 Human breast 612

23.6.3 Skin 612

23.6.4 Tooth 612

23.6.5 Nanoparticle-enabled terahertz imaging 612

23.7 Summary 613

24 Nanoparticles as Sunscreen Compound: Risks and Benefits 619

Alexey P. Popov, Alexander V. Priezzhev, Juergen Lademann, and Risto Myllyla

24.1 Introduction 620

24.2 Nanoparticles in Sunscreens 620

24.3 Penetration of Nanoparticles into Skin 621

24.3.1 Skin structure 621

24.3.2 Stratum corneum 622

24.3.3 Permeability of stratum corneum 623

24.3.4 Penetration of nanoparticles into human skin 624

24.4 UV-Light-Blocking Efficacy of Nanoparticles 626

24.4.1 Solar radiation 626

24.4.2 Effect of UV radiation on skin 626

24.4.3 Action spectrum and effective spectrum 627

24.4.4 Mie calculations of cross-sections and anisotropy scattering factor of

nanoparticles 627

24.4.5 Model of stratum corneum with particles 629

24.4.6 Results of simulations 631

Page 12: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

Table ofContents xv

24.5 Toxicity of Nanoparticles 635

24.5.1 Free radicals 635

24.5.2 EPR technique 635

24.5.3 Experiments with TiCh nanoparticles: Materials 636

24.5.4 Raman spectroscopy 636

24.5.5 Mie calculations 636

24.5.6 Experiments 1: Emulsion on glass slides 638

24.5.7 Experiments II: Emulsion on porcine skin 638

24.6 Conclusion 640

25 Photodynamic Therapy/Diagnostics: Principles, Practice, and Advances 649

Brian C. Wilson

25.1 Historical Introduction 650

25.2 PhotophysiesofPDTYPDD 652

25.3 Photochemistry of PDT/PDD 656

25.4 Photobiology ofPDT 658

25.5 PDT Instrumentation 661

25.5.1 Light sources 661

25.5.2 Light delivery and distribution 663

25.5.3 Dose monitoring 665

25.5.4 PDT response modeling 669

25.5.5 PDT biological response monitoring 670

25.5.6 PDT treatment planning 672

25.6 PDD Technologies 672

25.7 Novel Directions in PDT 675

25.7.1 Photophysics-based developments 676

25.7.2 Photosensitizer-based 678

25.7.3 Photobiology-based 678

25.7.4 Applications-based 679

25.8 Conclusions 680

26 Advances in Low-Intensity Laser and Phototherapy 687

Ying-Ying Huang, Aaron C.-H. Chen, and Michael R. Hamblin

26.1 Historical Introductions 688

26.2 Cellular Chromophores 688

26.2.1 Mitochondria 689

26.2.2 Mitochondrial Respiratory Chain 689

26.2.3 Tissue photobiology 689

26.2.4 Cytochrome c oxidase is a photoacceptor 690

26.2.5 Photoactive porphyrins 690

26.2.6 Flavoproteins 691

26.2.7 Laser speckle effects in mitochondria 691

26.2.8 LLLT enhances ATP synthesis in mitochondria 692

26.3 LLLT and Signaling Pathways 692

26.3.1 Redox sensitive pathway 692

26.3.2 Cyclic AMP-dependent signaling pathway 693

26.3.3 Nitric oxide signaling 693

26.3.4 G-protein pathway 694

26.4 Gene Transcription after LLLT 695

26.4.1 NF-kB 696

Page 13: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

XVI Handbook ofPhotonics for Biomedical Science

26.4.2 AP-1 696

26.4.3 HIF-1 696

26.4.4 Ref-1 697

26.5 Cellular Effects 697

26.5.1 Prevention of apoptosis 699

26.5.2 Proliferation 699

26.5.3 Migration 699

26.5.4 Adhesion 700

26.6 Tissue Effects 700

26.6.1 Epithelium 700

26.6.2 Connective tissue 700

26.6.3 Muscle tissue 701

26.7 Animal and Clinical Studies of LLLT 701

26.7.1 LLLT in inflammatory disorders 701

26.7.2 LLLT in healing 703

26.7.3 LLLT in pain relief 704

26.7.4 LLLT in aesthetic applications 705

26.8 Conclusion 706

27 Low-Level Laser Therapy in Stroke and Central Nervous System 717

Ying-Ying Huang, Michael R Hamblin, and Luis De Taboada

27.1 Introduction 718

27.2 Photobiology of Low-Level Laser Therapy 718

27.3 LLLT Effects on Nerves 719

27.3.1 LLLT on neuronal cells 719

27.3.2 LLLT on nerves in vivo 720

27.4 Human Skull Transmission Measurements 720

27.5 The Problem of Stroke 721

27.5.1 Epidemic of stroke 721

27.5.2 Mechanisms of brain injury after stroke 723

27.5.3 Thrombolysis therapy of stroke 724

27.5.4 Investigational neuroprotectants and pharmacological intervention 724

27.6 TLT for Stroke 724

27.6.1 TLT in animal models for stroke 725

27.6.2 TLT in clinical trials for stroke 726

27.7 LLLT for CNS Damage 727

27.7.1 Traumatic brain injury (TBI) 729

27.7.2 Spinal cord injury (SCI) 729

27.7.3 Reversal of neurotoxicity 729

27.8 LLLT for Neurodegenerative Diseases 730

27.8.1 Neurodegenerative disease 730

27.8.2 Parkinson's disease 730

27.8.3 Alzheimer's disease 730

27.8.4 Amyotrophic lateral sclerosis (ALS) 731

27.9 LLLT for Psychiatric Disorders 731

27.lOConclusions and Future Outlook 731

28 Advances in Cancer Photothermal Therapy 739

Wei R. Chen, Xiaosong Li, Mark F. Naylor, Hong Liu, and Robert E. Nordquist28.1 Introduction 740

Page 14: Handbook of photonics for biomedical science · 2011-12-26 · Contents Preface xix TheEditor xxv List ofContributors xxvii 1 FDTD Simulation of Light Interaction with Cells for Diagnostics

Table of Contents xvii

28.2 Thermal Effects on Biological Tissues 741

28.2.1 Tissue responses to temperature increase 741

28.2.2 Tumor tissue responses to thermal therapy 741

28.2.3 Immune responses induced by photothermal therapy 741

28.3 Selective Photothermal Interaction in Cancer Treatment 742

28.3.1 Near-infrared laser for tissue irradiation 742

28.3.2 Selective photothermal interaction using light absorbers 742

28.3.3 lndocyanine green 743

28.3.4 /» vivo selective laser-photothermal tissue interaction 743

28.3.5 Laser-ICG photothermal effect on survival of tumor-bearing rats 744

28.4 Selective Photothermal Therapy Using Nanotechnology 746

28.4.1 Nanotechnology in biomedical fields 746

28.4.2 Nanotechnology for immunological enhancement 746

28.4.3 Nanotechnology for enhancement of photothermal interactions 746

28.4.4 Antibody-conjugated nanomaterials for enhancement of photothermal de¬

struction of tumors 746

28.5 Photothermal Immunotherapy 747

28.5.1 Procedures of photothermal immunotherapy 748

28.5.2 Effects of photothermal immunotherapy in preclinical studies 748

28.5.3 Possible immunological mechanism of photothermal immunotherapy . ..

750

28.5.4 Photothermal immunotherapy in clinical studies 751

28.6 Conclusion 752

29 Cancer Laser Thermotherapy Mediated by Plasmonic Nanoparticles 763

Georgy S. Terentyuk, Garif G. Akchurin, Irina L. Maksimova, Galina N. Maslyakova, Nikolai

G. Khlebtsov, and Valery V. Tuchin

29.1 Introduction 764

29.2 Characteristics of Gold Nanoparticles 766

29.3 Calculation of the Temperature Fields and Model Experiments 767

29.4 Circulation and Distribution of Gold Nanoparticles and Induced Alterations of Tis¬

sue Morphology at Intravenous Particle Delivery 774

29.5 Local Laser Hyperthermia and Thermolysis of Normal Tissues, Transplanted and

Spontaneous Tumors 781

29.6 Conclusions 790

30 "All Laser" Corneal Surgery by Combination of Femtosecond Laser Ablation and

Laser Tissue Welding 799

Francesco Rossi, Paolo Matteini, Fulvio Ratio, Luca Menabuoni, Ivo Lenzetti, and Roberto

Pini

30.1 Basic Principles of Femtosecond Laser Ablation 800

30.2 Femtosecond Laser Preparation of Ocular Flaps 800

30.3 Low-Power Diode Laser Welding of Ocular Tissues 802

30.4 Combining Femtosecond Laser Cutting and Diode Laser Suturing 804

30.4.1 Penetrating keratoplasty 804

30.4.2 Anterior lamellar keratoplasty 805

30.4.3 Endothelial transplantation (deep lamellar keratoplasty) 806

30.5 Conclusions 807

Index 811