guias de practicas decem 2012 – transferencia de calor

41
CARRERA DE INGENIERÍA MECÁNICA LABORATORIO DE TRANSFERENCIA DE CALOR GUÍAS DE PRÁCTICAS SANGOLQUÍ- ECUADOR

Upload: dinhdiep

Post on 06-Jan-2017

237 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

CARRERA DE INGENIERÍA MECÁNICA

LABORATORIO DE

TRANSFERENCIA DE CALOR

GUÍAS DE PRÁCTICAS

SANGOLQUÍ- ECUADOR

2012

Page 2: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

ESCUELA POLITÉCNICA DEL EJÉRCITODEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICA

CARRERA DE INGENIERÍA MECÁNICALaboratorio de Transferencia de Calor

INTRODUCCIÓN

PROPÓSITO DE LAS PRÁCTICAS.

- Reforzar la parte teórica consolidando los conocimientos a través del desarrollo de prácticas en el laboratorio.

- Incentivar la investigación, conocimiento y propiedades del los elementos/materiales y sus aplicaciones.

- Propiciar vínculos con el sector industrial/empresa con la finalidad de conocer y concienciar la realidad tecnológica regional.

DESARROLLO DE LAS PRÁCTICAS.

- Las prácticas desarrollarán los estudiantes después de haber revisado la guía y realizado el trabajo preparatorio.

- El trabajo preparatorio es individual/grupo. - El mismo que se entregado antes de realizar la práctica.- Se debe realizar un coloquio del trabajo preparatorio por parte de los

alumnos (individual/grupo) y el docente realizará los comentarios aclaratorios del caso previas preguntas.

- Los integrantes del grupo tienen que saber exactamente cuáles son los objetivos a alcanzarse antes de la ejecución de la práctica.

- Se realizará en grupo, no mayor a cuatro estudiantes.

EJECUCION DE LA PRÁCTICA.

- Se realizarán las prácticas en forma grupal en el que cada uno tendrán valores distintos.

- Las prácticas se llevarán a cabo por todos los integrantes del grupo sin excepción, anticipándose en disponer de todos los elementos/requerimientos necesarios para ejecutar la práctica.

- Los informes de cada práctica tendrán un plazo de entrega de 8 días.

PRESENTACIÓN.

- En la fecha prevista se expondrán los trabajos ejecutados en el que en forma aleatoria se solicitarán a los integrantes de cada grupo exponer una o más partes del trabajo preparatorio.

Page 3: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

- Durante y después de la exposición se formularán preguntas por parte del profesor y el resto de estudiantes, los mismos que tendrán que ser respondidos por los integrantes del grupo.

CALIFICACIÓN.

- Dependiendo del esfuerzo ejercido por cada grupo (innovación, metodología para alcanzar objetivos, exposición, respuestas a las preguntas planteadas, conclusiones, recomendaciones y presentación del informe), todos los integrantes obtendrán la misma nota.

RECOMENDACIONES.

- Las mismas que en todo laboratorio (referente al cuidado y manipulación con equipos, aparatos, reactivos, etc.)

- La utilización de accesorios de vidriería deben manejarse con cuidado.

- Para la utilización de los equipos y/o materiales de laboratorio primero deberán recibir la explicación del funcionamiento y cuidado por parte del docente/laboratorista.

- El comportamiento disciplinario debe ser el correcto durante el desarrollo de la práctica.

- No utilizar equipos o materiales que no correspondan a la práctica que se encuentran realizando.

- Para la utilización de equipos y materiales de laboratorio siempre deben utilizar las normas de uso y conexión.

- El estudiante que no cumpla con las indicaciones expuestas por el instructor no se le permitirá ejecutar las prácticas.

- Revisar los equipos y accesorios entregados por parte del docente/laboratorista antes de ejecutar la práctica, porque si existiesen defectos o novedades serán responsables los integrantes del grupo.

- No consumir alimentos en el laboratorio.

PRESENTACIÓN DEL INFORME.

Los informes constarán de las siguientes partes:

- Hoja de Presentación- Resumen de la práctica (120 palabras- Objetivo-Procedimiento-Resultados)1. Tema2. Objetivo(s) (Los objetivos a ser logrados por la práctica)3. Marco teórico4. Equipos y Materiales.5. Procedimiento de la práctica6. Análisis de resultados7. Preguntas

Page 4: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

- Conclusiones y recomendaciones - Bibliografía.- Anexos (Hoja de toma de datos, Diagramas, fotos, simulaciones,

etc.)

El informe es una evidencia del aprendizaje, el cual deberá ser evaluado de acuerdo a una rúbrica del mismo.

Se deberá guardar 3 ejemplares de los mismos: la nota más alta, la más baja y el promedio.

HOJA DE PRESENTACIÓN

DEPARTAMENTO DE …………………………………………

CARRERA DE …………………………………………..

ASIGNATURA:………………………. NRC:……..

INFORME/TRABAJO PREPARATORIO DE LABORATORIO No.

Profesor: __________________

INTEGRANTES1. ------------2. ------------3. ------------4. -----------

FECHA - CIUDAD

Page 5: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

GUÍA DE PRACTICA No. 1.1

Tema:

BARRA DE SECCIÓN CÓNICA

1. Objetivo(s).

Graficar el perfil de temperatura en función de la distancia para cada uno de los casos lado aislado y lado no aislado.

Determinar el valor experimental de conducción térmica (K) para el bronce amarillo y compararlo con el valor teórico.

2. Materiales y Equipos.

Unidad Nº 1

PARTES DEL EQUIPO1 Centro de equilibrio de masa 8 Voltímetro 22 Barra cónica aislada 9 Termocuplas

3 Amperímetro 10 Salida de datos zona no aislada

4 Marcador de temperatura 11 Soporte base de equipo5 Voltímetro 1 12 Salida datos zona aislada

6 Intercambiador de fase zona aislada y no aislada 13 Barra cónica descubierta

7 Marcador para cada termocupla

Page 6: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

3. Procedimiento (Circuitos, Diagramas, Flujogramas, Pseudocódigos, tablas, mecanismos, programas, etc.)

A lo largo de la barra se ha situado 8 termocuplas de hierro constantano, en cada lado, separadas por una distancia de 38.1mm entre ellas. Teniendo otra termocupla en el centro de la barra, además dos en el extremo de los cuales van a registrar a la temperatura que ingresa el agua respectivamente. La parte derecha de la barra ha sido aislada.

3.1 Regulación del caudal de entrada de agua al mecanismo (constante).

3.2 Registrar la temperatura del medio ambiente.

3.3 Registrar la temperatura de cada termocupla en intervalos de 10 minutos hasta alcanzar el estado estable.

3.4 Realizar los cálculos para obtener el valor de la conductividad para el bronce amarillo (K) tanto en el lado aislado como en el no aislado.

3.5 Cálculo de errores, comparando la conductividad promedio experimental tanto en el lado aislado como en el no aislado de la barra de sección cónica truncada con la conductividad teórica de el bronce amarillo, a temperatura promedio.

CONDICIONES DE LA PRÁCTICA:

Se supone que la cantidad de calor transmitido por la placa es igual a la cantidad de calor ganado por el agua.

Obtener el estado estable de temperaturas en la barra. Caudal del agua: Lado aislado (110-140 cm3/min); lado no aislado (100-

125 cm3/min) Registrar antes de encender la unidad las temperaturas: del ambiente,

agua de suministro, y de la barra. Voltage de ensayo: 110Voltios. La temperatura en la termocupla número 9 no debe exceder de 175°C.

Page 7: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

DATOS:

Registre los datos en la Tabla No.1

Tabla No.1Conducción en barra de sección cónica

Tiempo (min) Termocupla

Temp. aislada (°C)

Temp. no aislada (°C)

Tiempo (min) Termocupla

Temp. aislada (°C)

Temp. no aislada (°C)

0

1

10

12 23 34 45 56 67 78 89 910 10

20

1

12 23 34 45 56 67 78 89 910 10

DATOS PARA REALIZAR LOS CÁLCULOS:

Temperatura ambiente (°C) Caudal del lado aisladoV la(cm3/min) Caudal del lado no aisladoV lna (cm3/min) Densidad del agua ρ (Kg/m3) Caudal másico del aguamw (Kg/h) Caudal volumétrico del aguaV (m3/h) Calor cedido del aguaQw(W) Distancia L (m) Área de conducción Ac

Conductividad térmica del bronce amarillo Kexp(W/m°K) Diferencia de temperatura entre las termocuplas de la barra de

bronce ΔT=Tcentro-Tx Pendiente del cono m

Page 8: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

CÁLCULOS, RESULTADOS Y GRÁFICOS:

Graficar el perfil de temperatura en función de la distancia para cada uno

de los casos lado aislado y lado no aislado.

Determinar el valor experimental de conducción térmica (K)para el

bronce amarillo y compararlo con el valor teórico

Determinar la distribución de temperaturas en la barra de sección cónica

y comparar con las temperaturas tomadas.

Modelo matemático para la distribución de temperatura:Tomando en consideración los siguientes puntos para el cálculo de la conicidad (referencia el esquema), tenemos:

4. Bibliografía.

Autor, nombre del texto, año de edición, edición.

Page 9: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

GUÍA DE PRÁCTICA No. 1.2

Tema:

TRANSFERENCIA DE CALOR POR RADIACIÓN

1. Objetivo(s).

Todo cuerpo caliente emite energía en forma de ondas electromagnéticas. Esta energía es irradiada en todas las direcciones y al incidir sobre un segundo cuerpo es parcialmente absorbida, parcialmente reflejada y parcialmente transmitida, como se indica en la Figura 1.

La fracción absorbida de la radiación incidente se conoce como "absorsibidad", “a” y la fracción reflejada como "reflectividad" del cuerpo. La cantidad transmitida es dependiente a estos dos valores; si tal cantidad es despreciable, se dice que el material es “opaco”.

Figura No. 1

2. Materiales y Equipos.

Para la presente practica se utiliza el Equipo para Convección Natural y Radiación, PLINT TE8S.

El aparato consiste, esencialmente, de un el elemento cilíndrico suspendido horizontalmente dentro de un cilindro de presión de acero. El elemento es de cobre, con acabado rugoso negro mate 16 cm. x 0.635 cm; es calentado eléctricamente y la temperatura en su superficie es medida por medio de una termocupla.

El calor de entrada al elemento puede variar en un rango de hasta 10W y la máxima temperatura de trabajo es de 200°C.

Una bomba de vacío eléctrica esta acoplada al tanque; se provee, además, de un voltímetro, un amperímetro, un termómetro electrónico, y un manómetro de tubo de vidrio en U con mercurio. Las termocuplas son de Cromel/Alumel.

Page 10: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

Para presiones muy bajas se puede utilizar el manómetro de Mc Leod, también incluido.

3. Procedimiento (Circuitos, Diagramas, Flujogramas, Pseudocódigos, tablas, mecanismos, programas, etc.)

La pérdida de calor hacia los alrededores, desde el elemento, es tanto par radiación camo por convección y, a fin de aislar el fenómeno de radiación, es necesario eliminar la convección. Sin embargo, conforme a la teoría molecular, las pérdidas por convección permanecen apreciables aun para las más bajas presiones obtenibles con el aparato; consecuentemente, el método empleado para obtener el valor real de la pérdida por radiación, consiste en observar la variación de la temperatura superficial del elemento, e con la presión para un suministro de calor constante (la temperatura del cilindro, c, permanece prácticamente constante).

Resulta conveniente graficar la diferencia de temperaturas ( =e-c), versus p1/4 (p es la presión absoluta). Por extrapolación, se puede encontrar el valor de e que corresponde a una presión cero y a una pérdida por convección igual a cero. De esta manera se puede determinar (e4-c4) y, consecuentemente, realizar el cálculo de “e”.

TABULACION DE DATOS: Registre los datos en la Tabla No. 1

Tabla No. 1

PRESIONES (torr = mmHg)MEDIDAS

Voltaje (V)Corriente (A)= 301,2 VA

(W/m2)e (K)c (K)

= e - c (K)p1/4

CALCULOS GRÁFICOS Y RESULTADOS:

1. Con las fórmulas proporcionadas calcular los valores de los parámetros que se mencionan en la Tabla No.1

2. Registre los resultados en la Tabla No.1

3. Calcular el valor de la emisividad “e”.

Page 11: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

PREGUNTAS:

1. Es confiable el valor hallado para “e”, si se ha realizado el experimento

para un solo valor de ?

CONCLUSIONES, RECOMENDACIONES:

4. Bibliografía.

Autor, nombre del texto, año de edición, edición.

GUÍA DE PRACTICA No. 2.1

Tema:

Unidad 2

Page 12: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

CONVECCION TRANSVERSAL FORZADAFLUJO CRUZADO

1. Objetivo(s).

Determinar la curva y gradiente de enfriamiento del elemento de cobre Determinar el valor de h y Qc.

2. Materiales y Equipos.

Equipo de Convección Forzada horizontal (TECQUIPMENT LIMITED). Termómetro electrónico digital. Agua destilada. Barómetro. Termómetro de mercurio o alcohol. Aire.

3. Procedimiento (Circuitos, Diagramas, Flujogramas, Pseudocódigos, tablas, mecanismos, programas, etc.)

3.1Verificar que se respeten las distancias de seguridad de trabajo y operación alrededor del equipo.

3.2Llenar los manómetros con líquido manométrico (agua destilada) de ser necesario y tomar las lecturas de referencia antes de empezar a trabajar.

3.3Abrir completamente la válvula de acceso de aire y encender seguidamente el ventilador (regular posteriormente un flujo con el que se vaya a trabajar).

3.4Encender el calentador (de resistencia) con el potenciómetro al 0%.

3.5Establecer con el potenciómetro los parámetros de potencia del calentador (amperaje y voltaje). No exceder de 5 A. dejar que el aparato se estabilice durante 30 min.

3.6Tomar los datos y llenar la tabla que se muestra.

3.7Repetir los pasos anteriores para diferentes flujos de aire y de calor.

3.8Realizar los cálculos y graficas necesarias.

DATOS OBTENIDOS:

Page 13: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

CONSTANTESD (m) = 0,01242L(m) = 0,0951L1(m) = 0,1035A1(m2) = 0,004038433m(kg) = 0,1093cp(J/Kg°C) = 380u(m2/seg) = 1,20E-04k(W/m°C) = 2,59E-02PRESION ATMOSFERICAPa(mmH2O) = 63Pa(Pa) = 617,5984252

FÓRMULAS:

EXPERIMENTALM=(suma(Log(T-Ta)-Log(Ti-Ta))/(sumatoria tiempo)

hexp = -2.3026 (m*cp/A1)*MV1=237.3*√(H1*Ta)/Pa

V = 2V1Nuexp = hexp*D/Ka

Re=V*D/uqexp=hexp*A1*(T-Ta)prom

TEORICON u=0.22*Re´0.6hteo=N u*Ka/D

qteo=hteo*A1*(T-Ta)prom

GRAFICAR:

log (T-To) vs t para diferentes posiciones.

CALCULO DE ERRORES

CONCLUSIONES Y RECOMENDACIONES

ANEXOSPOSICION 1

Page 14: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

Tentrada(ºc) 19 APERTURA ENTRADA AIRE(%)

Posicion 1 T(ºc) 10 40 70 1006560555045403530

TIEMPO (SEGUNDOS)

POSICION 2

T entrada(ºc) 19 APERTURA ENTRADA AIRE(%)Posición 2 T(ºc) 10 40 70 100

6560555045403530

TIEMPO (SEGUNDOS)

4. Bibliografía.

Autor, nombre del texto, año de edición, edición.

GUÍA DE PRÁCTICA No. 2.2

Tema:CONVECCION FORZADA INTERNA EN UN DUCTO

1. Objetivo(s).

Page 15: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

Determinar el coeficiente de transferencia de calor por convección interna, así como el calor que se da a causa de la convección, tanto de forma teórica como experimental para de esta forma poder compararlos.

2. Materiales y Equipos.

3. Procedimiento (Circuitos, Diagramas, Flujogramas, Pseudocódigos, tablas, mecanismos, programas, etc.)

3.1 Ponemos el switch principal en el modo “on”

3.2 Procedemos a encender el ventilador

Page 16: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

3.3 Procedemos a encender las resistencias

3.4 Ajustamos con el reóstato en 3 amperios

3.5 Esperamos a que las temperaturas en el ducto de aire se estabilicen, para

esto es necesario esperar 45 minutos.

3.6 Empezamos la toma de datos voltaje, presiones, temperaturas de la

termocupla de T1 hasta T3.

3.7 Procedemos a ajustar con el reóstato a 4 amperios

3.8 Esperamos a que se estabilice las temperaturas, para esto es necesario

esperar 45 minutos.

3.9 Tomamos datos a este punto

3.10 Apagamos las resistencias

3.11 Esperamos 10 minutos para apagar el ventilado

3.12 Procedemos a apagar el switch principal en el modo de “off”.

GRÁFICAS DE LAS TEMPERATURAS

Temperatura vs Distancia

EJEMPLO DE CÁLCULOSCUADROS DE RESULTADOS

PRIMER CASO3 AMPERIOS

hteorico hexp error

SEGUNDO CASO4 AMPERIOS

hteorico hexp error

CONCLUSIONES Y RECOMENDACIONES:

4. Bibliografía.

Autor, nombre del texto, año de edición, edición.

DATOS:

Page 17: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

PRESION [mmH2O] TEMPERATURAS [ºC]Corriente [A]

Voltaje [V]

Ventilador

Placa orifici

o

Longitud de

ensayo

Tent. A

1 2 3 4 5 6 7 8 9 10

11

12

13

GUÍA DE PRÁCTICA No. 2.3

Tema:BARRA DE SECCION CILINDRICA

1. Objetivo(s).

Determinar el perfil de temperatura en barras tanto de acero como de aluminio.T vs X : t1 t2 t3 ti

Determinar el coeficiente de transferencia de calor por convección (h) para cada termocupla.

T−TaTs−Ta

=e−√ βα x

Page 18: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

Donde:T= Temperatura de la termocuplaTa= Temperatura del ambienteTs= Temperatura de la fuente

Determinar el calor total disipado por cada barra de estado estable, usando h promedio.

Q= K * A (Ts - Ta) * √ βα∝= K

ρ∗Cp

β= h∗PA∗ρ∗Cp

Donde:

ρ = densidad de la barra, [ Kgm3 ]K = conductividad térmica del aluminio y del acero, [ W

m� K ]Cp = calor especifico para el aluminio y acero, [ J

kg � K ]α = difusividad térmica, [m2s ]β = coeficiente de expansión térmica, [ 1

� K ]h = coeficiente de transferencia de calor convectivo, [ W

m� K ]P = perímetro de la barra, [m]A = área transversal de la barra, [m2]x = distancia desde la base hasta la termocupla correspondienteQ = calor transferido, [W]

2. Materiales y Equipos.

Materiales y Equipos x = 0 mm; termocupla #1

x = 1200 mm; termocupla # 10

Page 19: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

La fuente de energía utilizada para calentar las barras es vapor sobrecalentado, el cual proviene del caldero y es suministrado al equipo con una presión controlada (10 a 20 Psi), y maniéndose la temperatura de ingreso 160ºC (Ts=160ª C).

Un termómetro digital con apreciación de una decima (A = 0.1 C).

3. Procedimiento (Circuitos, Diagramas, Flujogramas, Pseudocódigos, tablas, mecanismos, programas, etc.)

DATOS P sección= T ambiente= T vapor= Material 1: acero inoxidable, ∅=1 ´ ´ El parámetro t esta expresado en segundos, así mismo T se refiere a la

temperatura y NO significa el número de termocupla. Los siguientes resultados se toman a estado estable.

TNo t= t= t= t= t= t= t= t= t= t= t= t=12345678910

Page 20: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

Material 2: aluminio de ½ pulgadaTNo t= t= t= t= t= t= t= t= t= t= t= t=12345678910

Material 3: aluminio de 1 pulgadaTNo t= t= t= t= t= t= t= t= t= t= t= t=12345678910

CÁLCULOSEn estado estable se da lo siguiente

Material 1: acero inoxidable, ∅=1 ´ ´THhpromedio

αβ

Material 2: aluminio de ½ pulgadaTHhpromedio

αβ

Material 3: aluminio de 1 pulgadaT

Page 21: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

Hhpromedio

αβ

Material Acero inoxidable Aluminio ½ pulgada Aluminio de 1 pulgadahpromedio total

Q

CONCLUSIONES Y RECOMENDACIONES:

4. Bibliografía.

Autor, nombre del texto, año de edición, edición.

Page 22: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

GUÍA DE PRACTICA No. 3.1

Tema:

TRANSFERENCIA DE CALOR POR CONDENSACION DE GOTAS Y PELÍCULA

1. Objetivo(s).

Estudiar los efectos producidos en la transferencia de calor por condensación de gotas y películas.

Realizar una guía de práctica adecuada para este experimento.

Realizar una comparación entre loscoeficientes de transferencia de calor de gotas y películas.

Determinar si el equipo se encuentra en estado adecuado para ser utilizado.

2. Materiales y Equipos.

3. Procedimiento (Circuitos, Diagramas, Flujogramas, Pseudocódigos, tablas, mecanismos, programas, etc.)

Unidad 3

Page 23: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

3.1 Realizar las conexiones correctas del equipo de condensación a la fuente de alimentación de energía, la cual deberá trabajar a un amperaje no mayor a 7 A. el cual da un voltaje de 50 V.

3.2 Conectar el termómetro digital a la fuente de poder para poder realizar las lecturas de las termocuplas respectivas.

3.3 Abrir la llave de agua que alimentará a los tubos de enfriamiento. Con la válvula B regular la entrada de agua a 3 gp/hr.

3.4 Llenar el depósito de agua de abastecimiento para la caldera hasta su punto máximo. Colocar un termómetro de mercurio para medir la temperatura del agua de ingreso a la caldera.

3.5 Con la válvula A regular la entrada de agua a la caldera tratando de mantenerla a un nivel mayor al de la línea referencial para evitar que la resistencia eléctrica se queme.

3.6 Colocar un matraz a la salida del agua condensada para realizar las mediciones respectivas.

3.7 Cumplidos los pasos 1-5 esperar 10 minutos para tomar las primeras mediciones.

3.8 Medir el volumen de condensado recogido.

3.9 Medir las temperaturas en cada una de las termocuplas.

3.10 Realizar estas mediciones cada 10 minutos, unas 9 0 10 veces.

3.11 Cada uno de estos datos anotarlos en la tabla que se presenta a continuación.

Page 24: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

TABLA DE DATOS

CÁLCULOS:

Condensación en gota Calor total disipado por el vapor que se condensa Volumen del condensado Densidad Masa del vapor condensado Calor latente de vaporización del agua Calor del condensado Cálculos de errores

CONCLUSIONES Y RECOMENDACIONES:

4. Bibliografía.

Autor, nombre del texto, año de edición, edición.

Page 25: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

GUÍA DE PRACTICA No. 3.2

Tema:TRANSFERENCIA DE CALOR POR CONVECCIÓN LIBRE

1. Objetivo(s).

Determinación de los perfiles de velocidad y temperatura del flujo de aire en tubos en una sección que ha sido calentada.

2. Materiales y Equipos.

El equipo es el TE.85, aparato para convección natural y radiación, de PLINT.

Este consiste, esencialmente, en un elemento cilíndrico suspendido horizontalmente en un tanque de presión de acero.

El elemento es de cobre, con acabado negro mate, rugoso, 16cm x 0.635cm: es calentado eléctricamente y la temperatura en su superficie es medida por medio de una termocupla.

El calor de entrada al elemento puede variar en un rango de hasta 10 watts y la máxima temperatura de trabajo es de 200°C.

Una bomba de vacío eléctrica esta acoplada al tanque; se provee además, de un voltímetro y un amperímetro y de un termómetro electrónico.

Las termocuplas son de Cromel/Alumel.

Para presiones muy bajas se puede utilizar el manómetro de vacío McLeod, también incluido.

3. Procedimiento (Circuitos, Diagramas, Flujogramas, Pseudocódigos, tablas, mecanismos, programas, etc.)

3.1. El experimento consiste en mantener, por medio de la bomba de vacío, -una presión constante dentro del tanque, de 15 mmHg (0.02 bar), y rea-lizar el calentamiento del elemento de cobre de acuerdo a los valares de corriente estipulados en la hoja de datos.

3.2. Los valores que se requiere registrar son los de voltaje, amperaje, presión, temperatura del elemento y temperatura del tanque o cilindro. Estas dos últimas mediciones se llevaran a cabo cuando las condiciones se hayan estabilizado.

NOTA: Debe tenerse mucho cuidado al usar el manómetro McLeod, pues es un aparato muy delicado.

Page 26: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

NOM EN C L A T U R A: = Flujo de calor totalp = presión absolutae = temperatura del elementoc = temperatura del cilindro = diferencia de temperaturasm = temperatura media (a esta temperatura se determinan k, , Cp) r = flujo de calor por radiaciónc = flujo de calor par convección = emisividad del elemento (tómese igual a 0.987) = constante de Stefan-Boltzman = 56.7 x 10-12 kW/m2°K4

TABULACIÓN DE DATOS:

Registre los datos en la Tabla No.1

Tabla No. 1

PARAMETRO UNIDADES VALORES DE CORRIENTE (A)0,3 0,4 0,5 0,6 0,7 0,8

Voltaje V= 0,3072 V.A kW/m2

Presión P bare ºKc ºK

CÁLCULOS, RESULTADOS Y GRÁFICOS:

Se pide llenar la Tabla No.2, poniendo especial cuidado en el cálculo de los parámetros adimensionales, los cuales se pide graficar en la siguiente forma:

Gráfico No.1: Log Nu vs. log (Pr.Gr.) Gráfico No.2: i vs.

Tabla No.2PARAMETRO UNIDADES VALORES DE CORRIENTE (A)

0,3 0,4 0,5 0,6 0,7 0,8 = e - c ºK

m =1/2 (e + c) ºKc = - r kW/m2

k kW/m2Cp kg/ms

PrCpk kJ/kg ºKr = 55,96 x 10-

12(e - c) kW/m2

Pr.Gr

Page 27: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

Gr = 3,0443 x 10-1 p2/cm22

Nu = 6,35 x 10-3 c/k

Log NuLog Pr.Gr

PREGUNTAS:

Realice un análisis completo de los resultados obtenidos.

CONCLUSIONES, RECOMENDACIONES:

4. Bibliografía.

Autor, nombre del texto, año de edición, edición.

Page 28: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

GUÍA DE PRACTICA No. 3.3

Tema:CONDUCTIVIDAD TÉRMICA EN SÓLIDOS

1. Objetivo(s).

Determinar la conductividad térmica (k) del cobre y del aluminio.

2. Materiales y Equipos:

El aparato consiste de un baño relativamente grande a temperatura constante y autocontrolada.

Una cámara de circulación para controlar el contacto entre el espécimen de prueba y el líquido del baño.

Una bomba que transmite el líquido desde el baño a la cámara.

termómetro digital y electrónico, termocuplas de cobre-constantano.

Especímenes de prueba de cobre y aluminio para cada figura geométrica.

3. Procedimiento (Circuitos, Diagramas, Flujogramas, Pseudocódigos, tablas, mecanismos, programas, etc.)

El siguiente es el procedimiento general:

3.1Calentar el líquido del baño a una temperatura dada (70°C), con la bomba encendida.

3.2Medir la temperatura del espécimen antes de colocarlo en la cámara.

3.3Colocar el espécimen en la cámara y registrar la historia de la temperatura en el centro de la pieza de la siguiente manera:a) Decidir de antemano las temperaturas a las cuales se cronometrará

el tiempo (se hará uso del termómetro electrónico).

b) Al momento introducir el espécimen, se hace funcionar un cro-nómetro.c) Cuando la aguja del termómetro alcanza la temperatura deseada, se registra el tiempo transcurrido, sin detener el cronómetro, en forma sucesiva hasta cubrir el rango de temperatura predeterminada.

3.4Luego de realizado el registro con cada espécimen, registrar la temperatura final del baño.

Page 29: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

TABULACIÓN DE DATOS

Registre los datos en la Tabla No.1

Tabla No.1BARRA RECTANGULAR CILINDRO ESFERA

Temperatura del

elemento T, ºC

COBRE ALUMINIO COBRE ALUMINIO COBRE ALUMINIO

T α = ºC To= ºC

T α = ºC To= ºC

T α = ºC To= ºC

T α = ºC To= ºC

T α = ºC To= ºC

T α = ºC To= ºC

25303540455055606570

Tα final

CALCULOS, RESULTADOS Y GRAFICOS:

Se pide realizar el siguiente trabajo: Determinar k para el Cu y el Al; para cada uno de las especímenes

Graficar en forma adimensional, el gráfico de:

PREGUNTAS:

Conteste las siguientes preguntas:

Page 30: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

1. ¿Se cumplen en este experimento las condiciones de frontera indicadas? Discuta ampliamente.

2. ¿Cuál es el significado físico de cada uno de los parámetros adimensionales? Pruebe que son adimensionales.

3. ¿Por qué es importante utilizar especímenes de idéntica geometría y tamaño para este particular método de determinación de K?

4. ¿Por qué el valor de K determinado con cada uno de los especímenes es diferente?

5. ¿Por qué aparece el coeficiente de transferencia de calor, h, en las condiciones de frontera?

6. Discuta los errores experimentales que pudieron haberse cometido.

CONCLUSIONES, RECOMENDACIONES

4. Bibliografía.

Autor, nombre del texto, año de edición, edición.

Page 31: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

GUÍA DE PRÁCTICA No.

Tema:

PERFIL DE VELOCIDAD Y DE TEMPERATURA

1. Objetivo(s).

Determinación de los perfiles de velocidad y temperatura del flujo de aire en tubos en una sección que ha sido calentada.

2. Materiales y Equipos.

Para esta práctica se utiliza el equipo de transferencia de calor por convección forzada TDl de Tecquipment,

Consta de un ventilador centrífugo eléctrico que insufla aire dentro del ducto en forma de U a través de una válvula de control.

El flujo de aire se mide con el sistema de placa orificio estándar. Este ducto está conectado a una tubería de cobre de 3048 mm, de longitud, 32,6mm.

De diámetro interno y 1,2 mm. De espesor de pared.

La tubería descarga al ambiente y se calienta eléctricamente en sus últimos 1753 mm por medio de una cinta de calentamiento adherida helicoidalmente alrededor de la pared exterior de la tubería.

La potencia de entrada puede variar y ser controlada por un voltímetro y amperímetro la tubería de prueba está aislada con un recubrimiento de fibra de vidrio de 25 mm de espesor.

Se prevé de manómetros para medir las presiones pertinentes.

Se dispone de un tubo Pitot y acoplado a este una termocupla para medir la caída de presión y temperatura en diferentes puntos de la sección del ducto.

3. Procedimiento (Circuitos, Diagramas, Flujogramas, Pseudocódigos, tablas, mecanismos, programas, etc.)

3.1Encender el ventilador con la válvula de admisión completamente a-bierta.

3.2Encender el calentador con el transformador variable posicionando en cero. Incrementar el voltaje hasta una corriente de 3.0A, inicialmente.

3.3Dejar transcurrir 45 minutos hasta que las condiciones en el aparato se estabilicen y tomar las mediciones que se indican en la hoja de datos.

Page 32: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

3.4Repetir el proceso para 4.0A

3.5Cuando se ha completado el experimento, apagar el calentador y dejar funcionando el ventilador alrededor de 10 minutos.

TABULACION DE DATOS:

Registrar los datos en la Tabla No. 1Corriente = AP atmos = mmHgTamb = °CPventilador = mmH20Caída de presiónen el orificio = mmH20P en el tubo = mmH20Tentrada = °CVoltaje = V

Tabla No.1

Distancia transversal en nonio de Pitot

Distancia recorrida a

través del tuboPresión en el

PitotTemperatura

del aire ºC

60 0

61,5 1,5

63,5 3,5

65,5 5,5

67,5 7,5

69,5 9,5

71,5 11,5

73,5 13,5

75,5 15,5

77,5 17,5

79,5 19,5

81,5 21,5

83,5 23,5

85,5 25,5

Cara posterior

CÁLCULOS, GRÁFICOS Y RESULTADOS:

Page 33: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

Con los datos obtenidos se pide realizar los siguientes cálculos y gráficosFlujo de masa de aire, ma (Kg/s)

cd = 0.613 (coeficiente de descarga)

p = caída de presión a través del orificio (N/m2)

ρ = (Presión de aire en orificio) / (0.2871 x Temp aire en orificio)

Presión del aire en orificio = P atm+P.ventilador (kN/m2) T aire en orificio = 273 + T entrada (ºK)Densidad del aire en cualquier punto que se ubique el Pitot.

Velocidad del aire en cualquier puntoVelocidad media del aire.Velocidad media utilizando el flujo de masa

Velocidad media utilizando el perfil de velocidades

GRAFICAR: Velocidad vs. distancia recorrida en el ducto transversalmente

Temperatura vs. distancia recorrida en el ducto transversalmente.

PREGUNTAS:

1. ¿Cuál es el comportamiento del perfil de velocidad cuando el número de Reynolds es grande?

2. ¿De qué factores depende la longitud de la sección de estabilización térmica?

3. ¿A que modelos de flujo responden aquellos fluidos en los que existe cambio de temperatura?

4. ¿Es igual la distribución de velocidad en fluidos que son calentados y/o enfriados?

CONCLUSIONES, RECOMENDACIONES:

4. Bibliografía.

Autor, nombre del texto, año de edición, edición.

Page 34: GUIAS DE PRACTICAS DECEM 2012 – Transferencia de Calor

DEPARTAMENTO DE CIENCIAS DE LA ENERGÍA Y MECÁNICACARRERA DE INGENIERÍA MECÁNICA

ASIGNATURA: TRANSFERENCIA DE CALOR

TRABAJO PREPARATORIO LABORATORIO No…..

Tema de la práctica:……………………………………………

Realizado por:

1. ……………………………………………………………………………………2. …………………………………………………………………………………….3. …………………………………………………………………………………….4. …………………………………………………………………………………….

1) Consultar sobre: 1. ……………………..2. ……………………..3. ……………………..4. ……………………..

2) En el circuito calcule:…. /Realice un programa que: ……../En el mecanismo siguiente: …………../En la estructura:……………/En el mapa satelital:………

3) Realice la simulación de:………/Programe en ………../Realice las mediciones de:…………………..

4) Preguntas:1. ………………………..2. ………………………..3. ……………………….4. ……………………….5. ……………………….

Fecha: ………………………..