gta weldability studies on high

Upload: gerbson-queiroz

Post on 06-Jul-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 GTA Weldability Studies on High

    1/6

    GTA Weldabi l i ty Studies  on High

    Manganese Stainless Steel

    Progress is reported in isolating some of the factors

    related to variabilities in we lding beha vior

    BY  W.  S . B E N N E T T A N D G . S . M I L L S

    A B S T R A C T . G T A w e l d a b i l i t y s t u d i e s

    have been conducted on a re la t i ve ly

    new aus ten i t i c s ta in less s tee l o f nom

    i n al co m p o s i t i o n 2 1 C r - 6 N i - 9 M n - 0 . 3 N .

    The a l loy i s cu r re n t l y m ad e by th ree

    p r o ce sse s ; co n ve n t i o n a l a i r m e l t i n g ,

    vacuum a rc reme l t ing (VAR) , and

    electroslag  r e f i n i n g ( E S R ) . E a ch

    p r o ce ss p r o d u ce s m a t e r i a l o f so m e

    wha t d i f fe ren t we ldab i l i t y .

    Po ros i t y in a i rme l ted ma te r ia l i s

    re la ted to ox ide inc lus ion leve l , and

    n i t rogen con ten t wh i le VAR and ESR

    poros i ty leve ls a re re la ted to n i t rogen

    on ly.

    S u r f a ce r o u gh n e ss a n d a r c s t a b i l

    i ty a re s t rong ly in f luen ced by n i t ro

    gen in a l l th ree types o f stee l . ESR

    mate r ia l has p roduced much lowe r

    dep th to w id th ra t ios (D /W ) than the

    o the r two . The caus e of the poo r D /W

    is appa ren t l y re la ted to the am oun t o f

    a l u m i n u m p i cke d u p d u r i n g t h e r e -

    m e l t i n g p r o c e s s . T h e a l u m i n u m

    a p p e a r s t o i n te r a c t w i t h m a n g a n e se

    t o p r o d u ce i n c r e a se d m a n ga n e se i n

    the arc.

    I n t r o d u c t i o n

    High manganese s ta in less s tee l i s a

    r e l a t i ve l y n ew a u s t e n i t i c s t a i n l e ss

    stee l w i th a nomina l y ie ld st rength a t

    room tem pera tu re in the annea led

    cond i t ion o f 65 ,000 ps i (44 .8 MPa) .

    The a l loy has exce l len t co r ros ion

    res is tance , equa l to o r exceed ing tha t

    The authors are associated with Dow

    Chemical U.S.A., Rocky Flats Division,

    Golden, Colorado.

    Paper was selected as alternate for the

    55th AWS Annual M eeting held at

    Houston, T exas, during May

     6-10

    1974.

    o f t ype 304 in most env i ronmen ts .

    Fu r the r , the aus ten i te i s ex t reme ly

    stab le making the a l loy very usefu l a t

    c r yo ge n i c t e m p e r a t u r e s . T h i s d e s i r

    a b l e co m b i n a t i o n o f p r o p e r t i e s h a s

    resu l ted in increasing use o f the a l loy,

    especia l ly in the a i rcra f t and nuclear

    indus t r ies .

    The chemistry l imi ts fo r the a l loy

    a re shown in Tab le 1 . Cons ide rab le

    so l id so lu t ion s t rengthen ing resu l ts

    f rom the h igh n i t rogen con ten t . The

    h i gh ch r o m i u m co n t e n t p r o d u ce s t h e

    exce l len t co r ros ion res is tance and the

    m a n ga n e se a n d n i t r o ge n p r o d u ce t h e

    very stab le austen i te o f th is a l loy.

    The a l loy i s p roduced by th ree  dif

    f e r e n t m e l t i n g p r a c t i c e s , c o n v e n

    t iona l a i rme l t , vacuum a rc  remelt

    (VAR) , e lec t ros lag re f ined (ESR) .

    E a ch m e l t i n g p r o ce ss p r o d u ce s m a t e

    r ia l w i th som ewh a t d i f fe ren t im pu r i t y

    chemis t r ies and d i f fe ren t inc lus ion

    leve ls . These chem is t ry va r ia t ions

    p l u s t h e h igh va p o r p r e ssu r e co m p o

    nen ts o f the a l loy cou ld p roduce un

    usua l and poss ib ly va r iab le we ld ing

    behav io r .

    Ea r l y expe r imen ts d id indeed show

    qu i te a va r ia t ion in we ld in g behav io r

    f rom one lo t o f mater ia l to another.

    S o m e o f t h e co m p o n e n t s f a b r i ca t e d

    f rom th is a l loy requ i re ex t reme ly p re

    c i se a n d r e p r o d u c i b l e w e l d ge o m

    e t r ies and low po ros i t y leve ls . The

    var ia t ions seen f rom lo t to lo t fa r ex

    ceeded the to le rances on some o f

    these i tems. Because o f these p rob

    lems a com pre hen s iv e s tudy o f the

    GTA we ldab i l i t y o f th i s a l loy was un

    d e r t a ke n . S e ve r a l a sp e c t s o f t h e

    we ldab i l i t y have been found to be

    somewha t un ique and a re repo r ted

    here .

    P o ro s i ty , S u r f a c e R o u g h n e s s

    a n d A r c S t a b i l i t y

    Ear ly a t temp ts to GTA we ld h igh

    m a n ga n e se s t a i n l e ss s t e e l  (HMSS)

    p roduced we lds w i th la rge va r ia t ions

    in po ros i t y , su r face roughness , and

    a rc s tab i l i t y . Work has con t inued in an

    ef fo r t to ident i fy bo th the cause and

    the ex ten t o f these va r ia t ions .

    Experimental P rocedures

    GTA we lds have been made on a

    num ber o f d i f fe ren t geom e t r ie s us ing

    many d i f fe ren t cond i t i ons . Howeve r ,

    f o r co m p a r i so n p u r p o se s , a u t o

    ge n o u s w e l d s o n  Vh  in . (38 .1 mm ) or

    2 in . (50 .8 mm ) d iam ba r s tock have

    b e e n m a d e u s i n g t h e c o n d i t i o n s

    shown in Tab le 2 .

    A f te r we ld ing , the cen te rs o f the

    ba rs we re bo r ed ou t leav ing a  V*  in.

    (6.35  m m ) t h i ck  wa l l .  T h e cyc l i n d e r s

    we re then cu t pe rpend icu la r to the

    we lds and rad iographed to revea l the

    ex ten t o f po ros i t y . The rad iographs

    were judg ed fo r seve r i t y of po ros i t y

    on a sca le o f 1 to 5 . Weld s f ree o f

    de tec tab le po ros i t y (de tec tab i l i t y   l i m

    i ts 0 .010 in . (0 .254 mm ) d iam ) we re

    ra ted as   1.   We ld s w i th 5 o r mo re vo id s

    per inch o f  w e l d ,  grea ter than 0 .025 in .

    (0 .635 mm) d iam we re ra ted as 5 . The

    o the r ra t ings we re even ly spaced in

    b e t w e e n .

      The same we lds we re ra ted

    fo r su r fac e roug hne ss on a sca le o f 1

    to 5 w i th 1 be ing the smoo thes t s u r

    face. We lds w i th ra t ings o f 1 , 3 , an d 5

    are sho wn in F ig. 1 .

    Du r ing GTA we ld ing on ce r ta in lo ts

    o f HMSS, much e r ra t i c f l a sh ing and

    some expu ls ion o f mo l ten ma te r ia l

    5 4 8 -s I D E C E M B E R 1 9 7 4

  • 8/17/2019 GTA Weldability Studies on High

    2/6

    Table 1 — Chemis try L imi ts High

    Mn

      Sta in less S tee l

    Element

    Chromium

    Nickel

    Manganese

    Silicon

    Nitrogen

    Phosphorous

    Carbon

    Sulfur

    wt%

    18.00-21.00

    5.50- 7.50

    8.0 -10.0

    1.00 Max.

    0.15- 0.40

    0.060

     Max.

    0.040

     Max.

    0.030

     Max.

    '..

    T a b l e 2 — S t a n d a r d W e l d i n g

    Conditions

    Fig. 1 — Extent of surface roughness variations with respective ratings

    Weld current

    Electrode type

    Electrode gap

    Torch gas

    Welding speed

    200A(dcsp)

    EWTh-2 - 3/32 in.

    diam

    0.060

     in.

    20

     cfh Ar

    5 ipm

    f rom the weld pool occurred. When

    other lots of ma terial were

     welded,

     the

    arc was very stable with no flashing or

    expulsion. This f lashing and expul

    sion is referred to here as arc insta

    bility. The arc stability was rated as

    good (G), fair (F), or poor (P) based

    solely on the judgment of the oper

    ator. In welds showing high instabil

    i ty, a deposit slowly for me d on the tip

    of the electrode. In some cases this

    deposit grew to rather large propor

    tions. Figure 2 shows some of the

    more extreme deposits encountered.

    These deposits occurred after ap

    proximately 28 linear in. (711 mm) of

    weld at arc currents of 150 A. The

    tendency for deposit formation was

    also rated as good, fair, or poor.

    Supplementary in format ion has

    also been obtained on both auto

    genous and fi l ler metal addition w elds

    over a wide variety of conditions. Th is

    information wil l be discussed where

    appropriate in the fol lowing sections.

    Results and Discussion

    The results of porosity, surface

    roughness and arc stabi l i ty measure

    ments are shown in Table 3. Several

    items stand out in reviewing Table 3.

    First, any one measure of weldability

    is a good indicator of the other three.

    Second,  airmelt

      material produces

    consistently poor results. Third, in the

    remelted

      heats, poor weldability is

    associated with high nitrogen  con

    tent. Fourth, the electrode bui ldup oc

    curs when the other instabi l i t ies are

    significant.

    The arc instabi l i t ies appear much

    like momentary short-circuit ing of the

    electrode to the weld   pool;  violent

    f lashing,

      expulsion of metal and often

    a loud popping sound. However ,

    there is no pickup of tungsten   inclu

    sions in the weld metal and apparent-

    Fig. 3 — Backscattered electron

      micro-

    graph of electrode buildup.

      X100

    reduced

    38%

    Fig. 2 — Buildup on 3/32 diam electrodes

    T a b l e 3  —

    Hea t

    no.

    81143

    81698

    81942

    1X0555

    8 2 2 8 7

    ( a )

    82289

    85598

    6711

    6818

    7012 -1

    692394

    6 8 0 6 9 3

    < a )

    Welds mac

    034037 <

    a

    >

    039038

      (a)

    C h e m i s t r y

    Mel t

    type

    VAR

    ESR

    Air

    a n d W e l d a b i l i ty T e s t R e s u l t s o f G e n e r a l H e a t s of H M S S

    N

    c o n t e n t ,

    w t %

    0.30

    0.22

    0.28

    0.40

    0.25

    0.22

    0.28

    0.34

    0.39

    0.20

    0.38

    0.29

    le  w i th adde d f i l l e r me ta l

    Ai r 0 .36

    0.38

    O

    c o n t e n t ,

    ppm

    75

    55

    3 0 - 1 3 5

    30

    30

    175

    260

    320

    Por

    os i ty

    ra t ing

    1

    1

    1

    5

    1

    1

    1

    2-3

    2-3

    1

    5

    4

    4

    5

    R o u g h

    ness

    ra t ing

    2

    2

    2

    5

    1

    1

    1

    2

    3-4

    1

    5

    4

    Arc

    s t a

    bi l i ty

    G

    G

    G

    P

    G

    G

    G

    F

    P

    G

    P

    P

    Elec

    t r o d e

    bu i l dup

    G

    G

    G

    F

    G

    G

    G

    F

    P

    G

    F

    F

    6818W

    (a)

    ESR

    0.38

    30

    (a) Measu rements are from specific hardware   weldments  not standard test bars.

    Tab le 4 — Ni trogen Loss Dur ing W e ld ing, wt %

    Hea t

    no.

    1X0555

    81143

    6711

    6818

    82289

    Me l t

    type

    VAR

    V A R

    ESR

    ESR

    ESR

    N c o n t e n t

    base me ta l

    0.40

    0.30

    0.34

    0.39

    0.22

    N c o n t e n t

    we ld me ta l

    0.35

    0.26

    0.25

    0.26

    0.20

    Net loss

    of n i t rogen

    0.05

    0.04

    0.09

    0.13

    0.02

    W E L D I N G R E S E A R C H

      S U P P L E M E N T

    5 4 9 - s

  • 8/17/2019 GTA Weldability Studies on High

    3/6

    ' ; . - .  ; •• , ' . : ' . ; . •   ' • > • ' • •

    Fig. 4 —   Typical inclusion level in an

     airmelt

      steel. X100, reduced

    27%

    Fig. 5  —   Typ ical inclusion level in an ESR steel. X100, reduce d

    27%

    Fig. 6 —  Fine dispersion of inclusions viewed under differential in-

    terference contrast lighting. X440, reduced 27%

    Fig.  Typical fusion zone shapes

     for a

     low D/W and a high D/W

    steel. X2, reduced 27%

    ly  no actua l contact o f the we ld meta l

    a n d t h e e l e c t r o d e . T h e e l e c t r o d e

    bu i ldup has been ana lyzed by m ic ro -

    p r o b e .

      F igu re 3 i s a b ack sca t te red

    e l e c t r o n m i c r o g r a p h of a t yp i c a l

    r e g i o n o f t h i s d e p o s i t . T h e l i gh t

    co lo re d phas e i s tungs ten and the

    dar k m atr ix is a mi xtu re o f Fe , Cr, an d

    N i w i th a t race o f S i . The me d iu m

    co l o r e d r e g i o n su r r o u n d i n g t h e t u n g

    s ten pa r t i c les i s a m ix tu re o f these two

    phases.

    An add i t i ona l aspect o f we ldab i l i t y

    is tha t a second pass made over a

    w e l d w h i ch p r e v i o u s l y sh o w e d h i gh

    instab i l i ty is stab le and the surface is

    s m o o t h .

      Tab le 4 g ives n i t rogen loss

    du r ing we ld ing fo r seve ra l hea ts .

    A l though there is n i t rogen loss in a l l

    cases, the losses are h igher in the

    h igh n i t rogen hea ts .

    These obse rva t ions suggest tha t a

    la rge quant i ty o f n i t rogen is leaving

    the we ld

      p o o l .

      Th is vapo r ca r r ies f i ne

    d rop le ts o f mo l ten s tee l to the e lec

    t rode c rea t ing the e lec t rode depos i t .

    Th is d rop le t l aden gas s t ream may ac t

    as a low res is tance cu r ren t pa th g iv

    i n g t h e a p p e a r a n ce o f a m o m e n t a r y

    short c i rcu i t . The arc instab i l i ty and

    depos i t occu r on ly in the h igh n i t ro

    gen hea ts , n i t rogen >0 .3 w t%, and a re

    mu ch wo rse in those w i th n i t rog en

    > 0 . 3 5 w t % .

    Brooks (Ref . 1 ) has stud ied surface

    cond i t ion and expu ls ion o f e lec t ron

    beam we lds ve rsus n i t rogen con ten t

    in HMSS and f inds poo r su r face   c o n

    d i t ion and expu ls ion a re assoc ia ted

    w i th h igh n i t rogen leve ls . He a t t r ib

    u tes th is behav io r to dec om pos i t i on o f

    ch romium n i t r i de inc lus ions . A l l o f h i s

    samp les we re a t the ex t remes, bo th

    h igh and low , o f the n i t rogen con ten t

    fo r th is a l loy.

    W e h av e e x a m i n e d t h e m i c r o -

    s t ruc tu re o f a number o f hea ts o f

    HMSS to de te rm ine the re la t ionsh ip

    be tween inc lus ion leve ls and GTA

    we ldab i l i t y . A typ ica l i nc lus ion leve l

    fo r an a i rm el t h eat is sho wn in F ig. 4 ,

    wh i le F ig . 5 show s a typ ica l i nc lus ion

    leve l in an ESR heat . The a i rmel t heat

    con ta ins 175  ppm  oxygen wh i le the

    ESR hea t con ta ins 30 ppm oxygen .

    M i c r o p r o b e a n a l ys i s ha s sh o w n t h e se

    inclusions to be o f th ree types; (a ) en

    r iched in Mn and S, (b ) enr iched in

    M n ,

      A l ,

      and S i , and (c) enr iched in  Al

    on ly . The las t two types a re assumed

    to be ox ides and the re i s gene ra l

    agreemen t be tween inc lus ion con ten t

    and oxygen leve l .

    In heats w i th h igh n i t rogen   c o n

    ten t , a d i f fe ren t t ype o f i nc lus ion , a

    f ine d ispe rs ion o f sma l l pa r t i c les , oc

    c u r s ,  as is shown in F ig. 6 . We have

    been unab le to iden t i f y these pa r t i c les

    due to the i r smal l s ize , bu t Brooks

    (Ref. 1 ) has ident i f ied s imi la r part ic les

    as ch rom ium n i t r i des . Fu r the r , we

    have seen them on ly in hea ts w i th

    n i t rogen contents o f 0 .39 wt% or

    h igher.

    At these h igh n i t rogen leve ls, the

    5 5 0 -s I D E C E M B E R 1 9 7 4

  • 8/17/2019 GTA Weldability Studies on High

    4/6

    n i t r i de pa r t i c l es apparen t l y de

    compose, relasing free nitrogen. The

    porosity could be caused by nitrogen

    entrapped in the l iquid or by nitrogen

    be ing expe l l ed a t so l i d i f i ca t i on .

    However, porosity is quite high in the

    airmelt material even when nitrogen is

    as low as 0.29 wt%. Further, airmelt

    f i l ler metal also produces high por

    osity welds (see Table 3). In airmelt

    material the oxide inclusions may

    break down, releasing oxygen and

    adding to the porosity content. In the

    remelted  material porosity level cor

    relates very well with nitrogen level

    and porosity is virtual ly n onexistent

    when nitrogen is below 0.30 wt%. The

    extreme surface roughness of the

    high nitrogen material is apparently

    caused by agitation of the weld pool

    as the nitrogen leaves the surface.

    When a second pass is made over a

    weld,  the nitrogen level is lower, the

    nitrogen evolved is much less, and the

    weld surface is smooth and quiet.

    D e p t h t o W i d t h

    R a t i o V a r i a t i o n s

    Another interesting aspect of GTA

    welding of this alloy has been a large

    variation in depth of penetration and

    depth to width ratio (D/W) in auto

    genous welds. Figure 7 shows the

    cross section of welds made at the

    cond itions de scribed in Table 2 in two

    different heats. Several investigators

    (Refs.

      2-4) have reported similar   var i

    ations in fusion zone geometry.  Gen

    era l l y these inves t igat ions have

    related change in geometry with a

    change in impurity chemistry, but

    have not resulted in a clear-cut ex

    planation for the variations. We have

    run a numbe r of experiments to t ry to

    find a cause for such behavior.

    E x p e r i m e n t a l P r o c e d u r e s

    Autogenous GTA welds have been

    made on sol id bars as described

    before, under the conditions of Table

    2.  In addition, arc lengths have been

    varied from 0.040 to 0.100 in. (1.01 to

    2.54 mm), welding speeds from 5 to

    20 ipm (127 to 508 mm/min) and

    torch gas mixtures of 25, 50, and 75%

    He (balance Ar) have been used.

    These welds were then sectioned and

    the depth and width measured.

    Several types of chemical

      anal

    yses have been used to determ ine the

    chemical composition of each heat.

    The major metal l ic al loying elements

    have been analyzed using x-ray   f lu

    orescence. Oxygen and nitrogen have

    been analyzed by inert gas fusion.

    Metal l ic impurit ies have been ana

    lyzed by emission spectroscopy and

    spark source mass spectroscopy.

    Aluminum content has also been

    measured by atomic absorpt ion spe c

    troscopy.

    Spectral analysis of welding arcs

    was performed in two ways. A GTA

    welding torch was mou nted ins ide the

    arc chamber of a standard 3 meter

    analytical spectrograph and arc spec

    t ra were reco rded us i ng pho to

    graphic plates. This technique ana

    lyzed l ight from the entire arc. To

    analyze light from a specific region of

    the arc a monochrometer  was set up

    with imaging optics at the inlet slit to

    focus l ight from a specif ic region into

    the sl i t. The resulting spectra were

    then recorded photographical ly at the

    exit.

    R e s u l t s a n d D i s c u s s i o n

    Table 5 gives D/W for welds made

    per conditions of Table 2. The extent

    of the variations is clearly shown in

    this table. Several surface prepara

    tions (as received, freshly machined,

    degreased with acetone, etched with

    inhibited HN0

    3

    ) have been used on an

    ESR heat and a VAR heat with no

    change in response. Weld samples

    have been taken f rom d i f fe rent

    regions within a bar or plate and again

    the results are the same. At low

    welding currents (

  • 8/17/2019 GTA Weldability Studies on High

    5/6

    m i n u m .

      No o the r im pu r i t y o r a l loy ing

    e lemen ts show any cons is ten t re la

    t i o n sh i p t o D / W . T h e a l u m i n u m   c o n

    ten ts and D/W's are given in Tab le 7 .

    T h e se a l u m i n u m va l u e s a r e m e a

    su r e d b y a t o m i c a b so r p t i o n sp e c

    t roscopy and a re the to ta l o f so lub le

    p l u s i n so l u b l e a l u m i n u m . T h e va r i o u s

    hea ts fa l l i n to two groups; those w i th

    D /W's c lus te red a round 0 .5 and those

    c lus te red a round 0 .25 . Fu r the r , a l l the

    low D /W hea ts a re ESR p roces sed .

    Hea t  6711  has a h ighe r D /W bu t was

    remelted  by a s l igh t ly d i f fe ren t ESR

    m e t h o d w h i ch m i n i m i ze s a l u m i n u m

    p ick up and it does ind eed have a

    lowe r a lum inum con ten t . The f lux

    used in most ESR ope ra t ions i s a

    co m b i n a t i o n o f C a O ,

      C aF

    2

      a n d

      A l

    2

    0

    3

    .

    I t has been shown tha t i t is possib le to

    increase the  Al  con ten t to seve ra l

    t imes the in i t i a l me l t amoun t by reac

    t ion w i th the   A l

    2

    0

    3

      (Ref. 5).

    A fu r the r check on the e f fec t o f  a l u

    m i n u m w a s m a d e b y a d d i n g   a l u

    m inu m to a we ld po o l o f a heat o f stee l

    p rod uc in g a h igh D /W. A n a rc and

    mo l ten poo l we re es tab l i shed on a

    ro ta t ing bar and a 0 .020 in . (0 .508

    m m ) d i a m a l u m i n u m r o d w a s t o u ch e d

    to the edge o f the

      p o o l .

      The we ld poo l

    ins tan t l y w idened and the pene t ra

    t i o n d e c r e a se d . T h i s b e h a v i o r p e r

    s iste d fo r abou t V i in . (12 .7 mm ) o f

    we ld a t we ld ing s peed s o f 5 ipm (127

    m m / m i n ) . T h e w e l d t h e n r e t u r n e d t o

    i t s o r ig ina l d ime ns io ns . Th is p ro

    ce d u r e w a s r e p e a t e d m a n y t i m e s w i t h

    a l u m i n u m a d d i t i o n s o f a b o u t  Vz w t %

    up to 4 w t%. Inc reas ing the am oun t o f

    a lum inum d id no t change the we ld

    d i m e n s i o n s i n t h e d o p e d a r e a .

    Fu r the r , a lu m i num a dd i t io ns to 304

    s ta in less s tee l p roduced no such

    cha nge in a rc behav io r o r D /W .

    S t i l l pho t ogr aph s have been m ade

    of 100 A arcs wi th 0 .060 in .  arc

    l eng ths . Rep resen ta t i ve pho tos a re

    sho wn in F ig. 9 . Photo 9A is an arc on

    hea t 81698 , a VAR hea t wh ich p ro

    duces a h igh D/W and Photo 9B is an

    arc on heat 82289, an ESR heat w i th a

    low D /W. No te tha t 81698 p ro duc es a

    typ ica l a rc w i th no unusua l fea tu res

    whi le the arc o f 82289 f la res out a t the

    wo rkp iece . Fu r the r , a do m e of l i gh t

    su r rounds the a rc . A lso , 81698 , when

    doped w i th a lum inum as in F ig . 9C ,

    takes on an appea rance nea r l y   i d e n

    t ica l to 82289. Th is dome o f l igh t

    shows up on a l l the low D/W heats.

    Co lo r pho tos show th is dome to be a

    deep b lue .

    In an a t temp t to be t te r unde rs tand

    the behav io r o f va r ious e lemen ts in

    the a rc , the l i gh t f ro m the a rc was a na

    l yzed w i th the ana ly t i ca l spec t ro -

    g r a p h m e n t i o n e d e a r l i e r . T h e h y

    po thes is was tha t an e lemen t pecu

    l ia r to these heats o f stee l might be

    en te r ing the a rc in s ign i f i can t quan t i

    t i e s and a l te r ing the cu r ren t dens i ty o f

    o the r c r i t i ca l pa rame te r o f the a rc .

    A rc spec t ra f rom d i f fe ren t hea ts o f

    s t e el w e r e r e co r d e d o n p h o t o g r a p h i c

    p la tes and the va r ious e lemen ts p res

    ent were ident i f ied by use o f ava i l

    ab le s tanda rd p la tes p lus the MIT

    wave length tab les . A l l ma jo r l i nes

    we re ident i f ied as e i ther a rg on or

    manganese . The in tens i t i es o f the im

    pur i ty e lement l ines were in a l l cases

    much less than a l l bu t the ve ry weak

    l ines o f these two e lemen ts . Th is in

    d ica tes tha t the impu r i t i e s do no t

    a f fect the energy ba lance or o ther

    p h y s i c a l p r o p e r t i e s o f t h e a r c

    s ign i f i can t l y . A rough de te rm ina t ion o f

    the abundance o f the a l loy e lemen ts

    in the arc ind ica ted tha t they appear

    in the o rde r o f the i r vapo r p ressu res :

    M n ,  Cr, Fe, Ni.

    S ince we ld behav io r seemed to be

    co r re la ted w i th a lum inum con ten t , a

    se t o f representa t ive l ines fo r the

    p r o m i n e n t e l e m e n t s p l u s a l u m i n u m

    were compared on th ree hea ts o f

    me ta l a t two d i f fe ren t a rc c u r ren ts .

    T h e a ve r a ge l i n e i n t e n s i t i e s f r o m

    t h r e e e xp o su r e s m a d e a s t h e sa m p l e s

    were ro ta ted a t a su r face s peed o f

    5 ipm (127 mm/min ) a re show in

    Tab le 8 .

    These da ta ind ica te tha t the

      v a r i

    at ion o f a lu m inu m in the arc does not

    d i f fe r s ign i f i can t l y f rom the va r ia t ion

    of the major a l loy const i tuents in the

    a rc . The re fo re , the a lum inum is no t

    expected to have any more d i rec t

    e f fect on the physics o f the arc than

    m a n ga n e se o r ch r o m i u m .

    Examina t ion o f a rcs w i th the mono -

    chrometer  sys tem showed tha t the

    deep b lue l i gh t (descr ibed above ) i s

    ch a r a c t e r i s t i c m a n ga n e se e m i ss i o n

    and tha t a sma l l am oun t o f em iss ion

    f r o m a d d e d a l u m i n u m i s o b se r ve d a t

    the su r face o f the pudd le .

    F i gu r e 1 0 sh o w s t h e sp e c t r u m

    (be tween 3800 and 4400 angst roms)

    o f l i gh t em i t ted f rom the a rea im

    med ia te ly above the mo l ten poo l on a

    low D /W hea t . F igu re  11  sh o w s t h e

    sam e in fo rma t ion fo r a h igh D /W hea t .

    The arcs in F igs. 10 , 11 , an d 12 we re

    all run at 100 A, 0.060 in. (1.5 m m )

    a rc leng th and 5 ipm (127 m m /m in )

    we ld ing speed . The leng th o f the

    va r ious l i nes is a mea su re o f the w id th

    o f the arc over wh ich exi ta t ion is tak

    ing p lace.

    Nearly al l of the l ines visib le in

    these spec t ra a re due to manganese .

    A com par ison o f F igs . 10 and  11  w i th

    9A and 9B shows tha t the extent o f

    m a n ga n e se e m i ss i o n co r r e sp o n d s t o

    the f la re o f b r igh t l igh t a t the work-

    p iece su r face . Fo r compar ison , F ig .

    12  shows the same spect ra l reg ion fo r

    an arc on 304 sta in less stee l wh ich is

    qu i te s im i la r to F ig. 11 . Th is is in go od

    a g r e e m e n t w i t h t h e ir c o m p a r a t i ve

    we ld ing behav io r .

    The spec t ra l i n fo rma t ion p lus o the r

    e xp e r i m e n t s d i scu sse d i n d i ca t e s t h a t

    a l u m i n u m a n d m a n ga n e se so m e h o w

    work in comb ina t ion to decrease the

    D/W ra t io o f we lds in heats w i th

    h ighe r a lum inum con ten t . The de ta i l s

    o f such an in te rac t ion a re no t unde r

    s t o o d ,  bu t a re curren t ly the sub ject o f

    fu r the r inves t iga t ion .

    C o n c l u s i o n s

    1.   The GTA we ld in g beh av io r o f

    HMSS is qu i te va r iab le and can be

    s ign i f i can t l y d i f fe ren t f rom tha t o f the

    more conven t iona l aus ten i t i c s ta in

    less stee ls.

    2.  P o r o s i t y , s u r f a c e r o u g h n e s s ,

    and arc stab i l i ty o f VAR and ESR

    HMSS we lds a re s t rong ly re la ted to

    n i t rogen leve l . These we ld p rope r t ies

    wi l l be opt imized i f n i t rogen content is

    Fig. 9 — Typical arc appearance for a high D/W steel (left), a low D/W steel (center), and a high D/W steel doped with aluminum (right)

    5 5 2 - s   I D E C E M B E R 1 9 7 4

  • 8/17/2019 GTA Weldability Studies on High

    6/6

    Fig.

     10

     —  Region of spectrum from

     a

     weld

    on  a low D/W steel

    kept at  0.30 wt%  or  less.

    3. Porosity and surface roughness

    of welds  in  airmelt HMSS  are worse

    than

      in

     remelted  material and appar

    ently are related to  both nitrogen level

    and oxide inclusion level.

    4.

      We lds in ESR ma terial may have

    much lower penetration  and  lower

    D/W than VAR and airmelt material.

    5. The lower  D/W of  ESR welds is

    related  to a  higher  Al  content  in the

    ESR m aterial and seems to be caused

    by some as yet undefined interaction

    between aluminum and manganese.

    Acknowledgments

    The authors wish  to  acknowledge the

    assistance of Mr. R. F. Hillyer and Mr. D. H.

    Riefenberg  for the analysis  of  inclusions

    and electrode deposits reported. Further,

    thanks  are extended  to Mr. R.  Acton of

    Sandia Laboratories

     for

     the thermal

      di f fu

    sivity measurements.

    The work  was performe d under  Con

    tract  AT(29-1)-1106 for the Albuquerque

    T a b l e  8 -

    -  R e l a t i v e In t e n s i t i e s

     o

    R e p r e s e n t a t i v e

    Di f f e r e n t S t e e l Sa

    S a m p l e

    no.

    81143

    82289

    6 8 1 8

    81143

    82289

    6818

    mples

    A r c

    c u r r e n t ,

    75

    75

    75

    40

    40

    4 0

    A Mn

    2.7

    10.6

    6.4

    2.0

    4.0

    3.2

    L i n e s

      or

    Fe

    1.0

    5.5

    3.1

    0.9

    0.7

    1.0

    Cr

    1.6

    7.5

    4.5

    1.2

    2.3

    1.6

    Al

    0.16

    1.5

    0 .20

    0.23

    2.0

    0.46

    Fig.

     11

     —  Region of spectrum from a weld

    on  a high  D/W  steel

    Operations Office  of the

    Energy Commission.

    U.S. Atomic

    References

    1.  Brook s, J. A., "Electron Beam Weld

    ability  of  High Nitrogen Stainless Steel,"

    SLL-73-0060, October 1973, Sandia Lab

    oratories.

    2.  Ludwig,  H. C,  "Current Density and

    Anode S pot Size in the Gas Tungsten A rc,"

    Welding Journal,  47 5), May 1968,  Res.

    ••

      . • • • • .

     

    • '• '

      -

      •

     

    •• • - • • • • • • • ( ' • ' •

    IBfe

    •• ••••

    ,:'• •• '•  • •'••  .^?'^VmM§SMWS>-k

    •  - - ' .

      • •   :

    • • '-•

    : . ; : i : -

    :

      :. : ••

      • • ' ^ • • • - .  ; • •

    :

    . . ; • ; .

      •

    :»:

    > v s v • • ' • • • •  ; • • • • ; , : . - .

    .

    :

    . : - • • : 7 : \

    :

    -' ' •

    \k

    ••

      p ^

    P ; • ' • -

    :

      . • :

    Fig.  72 —  Region of spectrum from a weld

    on 304 stainless steel

    Suppl. ,

     234-3 to 240-s.

    3. Chase,  T. F., and  Savage,  W. F.,

    "Effect  of  Anode Composit ion  on Tung

    sten  Arc Characterist ics,"  Welding  Jour

    nal, 50 (11), Nov. 1971, Res. Suppl., 467-s

    to 473-s.

    4.  Oyler,  G. W., Matuszesk,  R. A., and

    Garr, C. R., "Why Some Heats  of Stainless

    Steel May Not Weld," Welding Journal,

     46

    (12),

      Dec. 1967, 1006 to  1011.

    5. Rundell,  G. R., Simonds  Steel  Divi

    sion,

      Private Communication.

    WRC

    Bul le t in

    No.

     190

    December  1973

    F l u x e s a n d S l a g s

      in

     W e l d i n g '

    byC.

      E.Jackson

    Prior to the  publ icat ion  of this inte rpre t ive repor t , users  of covered electrode s,

    submerged-arc  and other f lux-control led welding processes hav e  had  ava i l ab l e

    lit t le information

      or

     explana t ion

      of

     flux-slag tec hnolo gy.

      In

      spite

      of

      this lack

     of

    informat ion  for the user , appl icat ion  of  welding processes ut i l izing f luxes has

    been extens ive .  The lack  of  ava i l ab l e in format ion  has b e e n  due in  p a r t  to the

    propr i e t a ry n a tur e

     of

     f lux form ulat ions .

      Prof.

      J ack s o n ,

     in his

     interpre t ive repor t ,

    has unvei led the secrecy to provide the reader wi th a comprehens ive r ev iew of the

    formulat ion and funct ions  of welding f luxes an d s lag s . It is hoped tha t a  presen

    tat ion of some of the pr inciples of we lding flux techno logy will provide an  appre

    ciation of improved quality

     of weld

      me ta l ob ta ined th rough s l ag /me ta l r eac t ions .

    Publ icat ion of this pape r was spo nsored by the Interpre t ive Repo r ts Com mit tee

    of the W elding Research Counci l . Th e pr ice

     of

     WRC B ulletin 190

     is

      $4.00 per copy.

    Orders should be sent to the Welding Re search C ounci l, 345 Ea s t 47th Stree t , New

    York, N.Y. 10017.

    W E L D I N G R E S E A R C H S U PP L E M E NT

      |

      553 -s