growth of hydroxyapatite crystals from solutions with ph controlled by novel vapor diffusion...

Upload: minh-kha-nguyen

Post on 03-Apr-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    1/26

    Per. Mineral. (2009), 78, 1, 19-43 doi:10.2451/2009PM0002 http://go.to/permin

    PERIODICO di MINERALOGIA

    established in 1930

    An International Journal of

    MINERALOGY, CRYSTALLOGRAPHY, GEOCHEMISTRY,ORE DEPOSITS, PETROLOGY, VOLCANOLOGY

    andappliedtopicsonEnvironment,ArchaeometryandCultural Heritage

    l

    AbstrAct. Crystalsofhydroxyapatitewerereproducibly grown utilizing 24-wells culture

    plates from aqueous metastable supersaturated

    calciumphosphatereactingsolutions,underhighlycontrolled conditions of pH and concentrationof calcium and phosphate. Two novel growthtechniques,basedondiffusionofammoniavapor

    producedby hydrolysis of ammoniumphosphate,useful to buffer pH in the reacting solutions,weredeveloped.Hydroxyapatitewasgrownfromsolutions, either at pH 7.4 without any acidic

    precursorinthetemperaturerange4-38C,orbythehydrolysisofbrushiteat21,38,50and70C.ThelattertechniquedependsonraisingthepHfrom4.55to7.65,whichcausestheformationof

    octacalciumphosphate(pH~5.5)asintermediatephase.

    Subsequentlytheeffectsoftheacidicphosphoproteinosteopontinoncrystalsgrowthwerestudiedcarryingoutadditionalsetsofexperiments,underidenticalconditionsat21C.Wheninitiallydispersedintothecalciumphosphatemothersolutions,osteopontinassumedapivotalroletocontrolnucleationandgrowth of brushite, octacalcium phosphate andhydroxyapatite.Moreoverosteopontinsloweddownkinetics of the phase transformations: brushite

    octacalciumphosphateandoctacalciumphosphate hydroxyapatite.

    riAssunto.CristallidiIdrossiapatitesonostaticresciuti riproducibilmente utilizzando piastre dacolturacellularea24pozzettiinsoluzioniacquosesoprassature metastabili di fosfato di calcio.TalisoluzionisonostatesottoposteacondizionialtamentecontrollatesiaperivaloridipHcheperleconcentrazioniincalcioefosfato.Sonostatesviluppateduetecnicheinnovativediaccrescimentobasatesulladiffusionedivaporidiammonio,prodottidallidrolisidelfosfatodiammonio,chepermettonoditamponareilpHnellesoluzionireagenti.Lidrossiapatitestataprodottainsoluzioniapressioneatmosfericasiaperprecipitazione

    direttaapH7,4senzalacomparsadiprecursoriacidinellintervalloditemperatura4-38Ccheperidrolisidibrushitea21,38,50e70C.Questultimatecnicasibasasulgradualeecontrollatoaumentodelvaloredel pHda4,55a7,65checausa laformazionediottocalciofosfato(pH~5,5)comefaseintermedia.

    Successivamentesonostatistudiatiglieffettidellaproteinaacidaosteopontinasullacrescitadeicristallieffettuandoincondizioniidenticheserieaddizionalidi esperimenti a 21 C. Quando inizialmentedispersa nelle soluzioni originarie di fosfato dicalcio,losteopontinaassumeunruolodicardinale

    importanzanelcontrollodellanucleazionee dellacrescitadibrushite,ottocalciofosfatoeidrossiapatite.

    Growth of Hydroxyapatite crystals from solutions with pH controlled bynovel vapor diffusion techniques. Effects of temperature and of the acidic

    phosphoprotein osteopontin on crystals growth

    roberto MAzz

    SecondaryschoolwithanemphasisonhumanitiesGiovanniMeli,ViaSalvatoreAldisio,2,90146Palermo,ItalyFormerFacultyofScience-UniversityofPalermo,ViaArchirafi,90123Palermo,Italy

    Submitted, December 2008 - Accepted, March 2009

    AuthorE-mail:[email protected]

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    2/26

    20 r. MAzz

    Perdipilosteopontinarallentalecinetichedelletrasformazioni di fase: brushite ottocalciofosfatoe ottocalciofosfato idrossiapatite.

    Keywords: Crystal growth, Brushite, Octacalciumphosphate, Hydroxyapatite, Hydrolysis, Phasetransformations, acidic phosphoprotein,Osteopontin effects

    introduction

    Hydroxyapatite(HAP)istheinorganicphasemostsimilartothebiologicalapatite(Betts etal.,1981;Montelet al.,1981;Newesely,1989)

    whichistheprincipalconstituentofbonesandteethofvertebrates.HAPisfrequentlyfoundwithinthepathologicalcalcifications,likerenalcalculi(SantosandGonzlez-Daz,1980;Graseset al.,1996),oftenassociatedwithothercalcium

    phosphates.TheproductionofHAParousestodayagreatinterestbecauseofitsuseasbiocompatibleosseous-integratingmaterial(Tanahashi et al.,1996;Hing et al.,1997),eventuallyassociatedwithmetallicbio-inertsubstrate(DeGrootet al.,1987;Lemons,1988;Wang et al.,1997;Nonami

    et al.,1998)(mainlytitanium).Overthelastdecennia,manyauthorsproposedpreparation methods to produce synthetic HAP(BoskeyandPosner,1976;Jarcho et al.,1976;

    Nelson and Featherstone, 1982; Young andHolcomb,1982;AbbonaandFranchini-Angela,1995;Kandori et al., 1995; Lazi, 1995; Liu,1995;LuoandNieh,1996).ItiswellknownthatHAPcrystallizesaccordingtothederivativeP6

    3/m

    hexagonalspacesymmetry(Kayet al.,1964)outofanarraywhich,initsmostorderedstate,assumesaP2

    1/bmonoclinicpseudo-hexagonalorganization

    (Elliotet al.,1973;Sudaet al.,1995).The transformation of one acidic calcium

    phosphate like brushite (Monma and Kamiya,1987;FulmerandBrown,1998)oroctacalcium

    phosphate (OCP) (Cheng, 1987; Graham andBrown,1996)wasalsoutilizedtoproduceHAP.Particularly,OCPisregardedasatransitionproducttowardsHAPformation,providingatemplateat

    physiologicaltemperatureandpH.TheinteractionsbetweenOCPandHAPwereinvestigatedbymanyresearchers,thatproposedepitactical(Nelsonand

    McLean,1984;Iijimaet al.,1996)ortopotactical(Iijima et al., 1997) mechanisms, due to the

    structuralsimilarityofthetwocrystalstructuresalongthedirection[100].

    Theaimofthispaperwasthedevelopmentoftwo

    techniquestoproducewithhighreproducibility,fromcontrolledsolutions,syntheticHAPcrystals,eitheratpH7.4withoutanyacidicprecursor(MazzandDeganello,2000),orbythehydrolysisofbrushite(Mazz,2002c).Thelattertechnique

    providesfortheintermediategrowthofOCP,whichisthedirectHAPacidicprecursor.Consequently,

    because of the slow and controlled increase ofpHfrom4.55 to7.65, thephase transformationsbrushite OCP and OCP HAP occurred. I

    believethatitisusefultohavecomparativeterms

    compositionallysimilartothebiologicalapatiticmaterial,tostudyeitherthenormalandpathologicalmineralizationsorthediageneticprocesses,whichconcernthephosphaticremainsduringtheirburial(Mazz,2000;2002a;2003a).

    O nc e t es te d t he e xt re me e xp er im en ta lreproducibilityinbothgrowthtechniques,othersetsofexperimentswerecarriedouttodetermineifosteopontin(OPN)(Yoonet al.,1987;Nodaet al.,1990;ChangandPrince,1991;CraigandDenhardt,1991),initiallydispersedintothereactingsolutions,couldinhibitorpromotetheproductionof the involved crystals and consequently thekineticsofthetwophasetransformations(Mazz,2002b).Thesestudieswerecarriedoutbecausethesubstancesabletopromoteortoinhibitthe

    productionofHAPin vitrocouldexecutethesamefunctionsin vivo.InthemammaliansbodiesOPNisoneoftheprincipalacidicphosphoproteinsfoundincartilages,bonesanddentine(Reinholtet al.,1990;DenhardtandGuo,1993),whereitinteractsbothwiththeinorganicfractionandwiththe others proteins (Mckee and Nanci, 1996).Moreoverittreatsanintricateroleinthecontrolofbio-mineralizations(Hoyer,1994;Mckee etal.,1995;Minet al.,1998)anditinhibitsthenucleationandgrowthofHAPin vitro (Boskeyetal.,1993;Hunteret al.,1996).

    MAteriAls And Methods

    Crystal growth techniques

    Worksolutionswerepreparedfromanalyticalgradereagents(Sigma-Aldrich;Merck),using

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    3/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 21doubledistilledwaterfurtherfiltered(Millipore0.22m).

    Crystalsweregrownintheinnerwellsof24-

    wellscultureplates(Fig.1)(Falcon#3047;6X4wellsconfiguration).Atthebeginningofeachexperimentmetastable

    supersaturatedcalciumphosphatesolutionswereintroducedintotheinnerfouroreightwellsofthecultureplatesaccordingtodiversifiedgeometries;inaddition,solutionsofammoniumphosphateat

    pre-arrangedconcentrationand pHwere pipettedintoeachoftheremainingwellssurroundingthe

    periphery of the plates. Finally the plates wereisolatedbytheoutsidetightlysealingtheircoverswiththreelayersofelectricaltape,sothatammonia

    vapor, produced by hydrolysis of ammoniumphosphate,diffusedfromtheperimetricalintothecentralwells.SuchavapordiffusionregulatedpHintothecalciumphosphatesolutions.

    Sincetheplateswereclosed,thepHofthesolutionswasmeasuredonlyat21Cforupto340hoursconnectingarecording-potentiometer(diameter 3 mm) to an electrode, which wasintroducedintooneofthecrystallizationwellsthrough a vapor tight valve, adapted to a

    predrilled orifice in the sealing cover. pH was

    alsomonitoredduringeachexperimentdirectlyby visual comparison with standard indicators(Merck#9531,#9533),whichwereplacedintosomecrystallizationwells.Theseplasticstrips,whichweresuitablyshortenedto2cm,didnotchemicallycontaminatethesolutioninthewell,andpermittedthepHtobemonitoredthroughthetransparentcover,alsowhenthecrystallizationsystemswerenotdisturbedforalmosttwoyears.

    Each kind of experiment was tested forreproducibility at least in quadruplicate afterobtaining the optimal conditions of growth;

    furthermore,itwascarriedoutmanyothertimesinordertohavealargequantityofspecimenstoanalyze.

    Crystal growth technique 1. Growth ofhydroxyapatite crystals at pH 7.4

    Thecalciumphosphatereactingsolutionwaspreparedmixing25mlofcalciumnitrate(0.28M;pH7.4withNH

    4OH1:100)with25mlofamixture

    ofmonobasicanddibasicammoniumphosphate(0.24M;pH7.4).Aftertheinitialprecipitationofamorphousmaterialthesolutionwasfiltered(Whatmann2025m)anditspHadjustedfrom4.55to7.4with2.2mlofTris-TAMbuffer1M.Thenewamorphousmaterial,precipitatedbecauseofsuchpHincrease,wastotallyremovedfilteringthesolutionagain(sequentiallyWhatmannfilters20

    25mand2.5m).2mlofsuchsolution([Ca]=4.3mM,[P]=3.2mM)wereintroducedintoeachoftheeightcentralwellsB2,B3,B4,B5,C2,C3,C4andC5ofthecultureplate.Inaddition,2mlofamixtureofmonobasicanddibasicammonium

    phosphate(0.5M,pH7.3)werepipettedintoeachofthesurroundingsixteenwells(A1,A2,A3,A4,A5,A6,B1,B6,C1,C6,D1,D2,D3,D4,D5andD6).Finallytheplatewasclosedsealingitscoverwithelectricaltype.Suchisolationallowedvaporofammonia,producedbyhydrolysiswithinthesixteenperimetricalwells,todiffuseintothecalciumphosphatereactingsolutions,stabilizingtheirpHat7.4.Theexperimentwascarriedoutinthetemperaturerange4(1)-38(0.5)C.

    Crystal growth technique 2. Growth ofhydroxyapatite crystals by the hydrolysis ofbrushite

    InitiallythetwolateralcolumnsofwellsA1,B1,C1,D1andA6,B6,C6,D6,respectivelyatthefarleftandatthefarrightedgesoftheplates,wereeachcoveredwiththreelayersofelectricaltypeandwerenotused.Thecalciumphosphatereactingsolutionwaspreparedmixing15mlofcalciumnitrate(0.28M;pH7.4withNH

    4OH1:100)with

    15mlofamixtureofmonobasicanddibasicammoniumphosphate(0.24M;pH7.4).F ig . 1 t he 2 4- we ll s c ul tu re p la te ( 6 X 4 w el lconfiguration)

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    4/26

    22 r. MAzz

    Theinitialprecipitationofamorphousmaterialwas removed again f il tering the solut ion(sequentiallyWhatmannfilters:twice2025m

    andonce8mand2.5m).1.5 ml ofsuch solution(pH4.55;[Ca] =55mM,[P]=40mM)wereintroducedintoeachoftheinnerfourcentralwells(B3,B4,C3eC4)ofthecultureplate.Inaddition,2mlofamixtureofmonobasicanddibasicammoniumphosphate(1M,

    pH7.4)werepipettedintoeachofthesurroundingtwelvewells(A2,A3,A4,A5,B2,B5,C2,C5,D2,D3,D4andD5)liningtheperipheryoftheremainingpartoftheplate.Asusualtheplatewasclosedwithelectricaltype.At21C,in74hoursenough ammonia diffused from the solutions

    withinA2,A3,A4,A5,B2,B5,C2,C5,D2,D3,D4andD5intothosewithinB3,B4,C3andC4inordertoslowlyraisetheirpHto7.4.Intheselattersolutionswithin54hourspHreachedthevalueof5.5andwithin210hoursthevalueof7.65,whichwasmaintainedforthedurationoftheexperiment(Fig.2).Ontheotherhandthecalciumconcentrationwithin54hoursdecreasedfrom55mMto16mM;within113hoursitreachedthevalueof1.5mMandwithin167hoursthevalueof0.4mM(Fig.3).

    Thisexperimentwascarriedoutat21(0.5),38(0.5),50(0.5)and70(0.5)C.

    Growth of hydroxyapatite crystals from solutionswith osteopontin initially dispersed into

    OthersetsofexperimentswerecarriedouttostudytheeffectsinducedbyOPNonthe

    growthofthephosphaticcrystalsandonthetransformationkinetics.Theseexperimentswerecarriedoutunderidenticalexperimentalconditionsonlyat21(0.5)C.

    PurifiedandlyophilizedOPNwassolubilizedindoubledistilledwaterusingstearin,toavoid

    itspossibledenaturation.Thenitwasdispersedintothecalciumphosphatereactingsolutionsbeforeclosingtheplateswithelectricaltype.

    Inthecrystalgrowthtechnique1,2mlofthereactingsolutionwereintroducedintoeachofthewellsB2,B3,B4,B5,C2,C3,C4andC5.VariousaliquotsofOPNwerealsointroducedintoB4,B5,C2,C3,C4andC5.NineOPNconcentrations were tested. Consequentlytwo culture plates needed for each set ofexperiments.OPNfinalconcentrationswere4 x 10-5, 4 x 10-4,0.002,0.004,0.04,0.08,

    0.2,2and10g/ml.ThetwowellsB2andB3alwaysweretheOPNfreecontrols.Itwas

    possibletocarryouttheseexperimentsonlyinduplicatebecauseIhadnotenoughOPN,duetothedifficultyofitspurification.

    Inthecrystalgrowthtechnique2,1.5mlofthereactingsolutionwereintroducedintoeachofthewellsB3,B4,C3andC4.B3wastheOPN freecontrol.Variousaliquots ofOPNwerealsointroducedintoB4,C3andC4toobtainrespectivelythefinalconcentrations

    4. 4 x 10-3

    , 0 .022 and 0.066 g/ml. Suchexperimentwascarriedoutintriplicate.

    Fig.2-pHraiseofthecalciumphosphatereactingsolutionusedforcrystalgrowthtechnique2carriedoutat21C.The

    curvewasplottedmonitoringthepHpotentiometricallyintriplicate.

    Fig.3Reductionofthecalciumconcentrationofthecalciumphosphatereactingsolutionusedforcrystalgrowthtechnique2at21C.Toplotthiscurvewereutilizedthe

    solutionsof24crystallizationbathssincetheexperimentswerebrokenoffafterfixedtimes.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    5/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 23AnAlyticAl techniques

    Solutions and crystals were analyzed by

    atomic absorption spectroscopy, colorimetricarrays and HPLC (High Performance LiquidChromatography).

    Calcium concentration was determined byatomicabsorptionspectroscopywithaPerkin-Elmer1100Busingawavelengthlineof422.7nmofanair-acetyleneflame.Theunknownsolutionscontained5000ppmoflanthanumtosuppress

    phosphorus interference on calcium absorption.Thesameamountoflanthanumwasputintoeachoffourstandardsolutionscoveringtheinstrumentalsensibilityrange.Eachanalysiswasperformedinquadruplicate.

    Phosphate concentration was determinedas the blue phosphomolybdenum complexwith a Perkin Elmer 55B equipped with aredfilterusingawavelengthlineof880nm.Ascorbic acid was selectively used to reducethemolybdenumphosphoricacid.Sixphosphatesolutions, containing weighed aliquots ofstandard(KH

    2PO

    4),werepreparedtoconstruct

    thecalibrationcurve.Absorbanceforstandardand unknown solutions was taken against a

    blankreagent,exactly30minutesafterthecolordeveloped.

    Calciumandphosphoruswerealsomeasuredbyionicchromatographywithaselfregeneratingsuppressor (HPLC, Dionex 2000SP. Anions:columnIonPacAS4A-SC,1.3ml/min.Cations:columnIonPacS12A,1.2ml/min).

    TheCa/Pratioofthecrystalswasdetermineddissolvingaliquotsin100lcoldultra-purenitricacidusingaPyrexdepressionslide.ThesesolutionswereaspiredwithanHamiltonsyringeandeachof

    themdilutedinto25millilitersofdoubledistilledwater.Onceinsolution,calciumandphosphoruswererespectivelymeasuredbyatomicabsorptionspectroscopyandcolorimetricallyasdescribedabove.

    opticAlAnd electron Microscopy

    The processes of nucleation, growth andhydrolysiswerecontinuouslymonitoredwitha

    stereomicroscopeoperatingwithtransmittedandreflectedlight.Themorphologyofthecrystals

    wasexaminedbyanAxiomatmicroscope(planeand polarized light) as well as by scanningelectronmicroscopy(SEM)usingtwoCambridge

    instruments(Stereoscan360;LEO430)operatingat15kVandat80300pA.Tocarryoutsuchobservations the plates were opened at fixedtimesquenchingtheexperiment.Crystalswereaccuratelyaspiratedoutfromthesolutionsusingmicro- pipettes, then they were washed threetimeswithdoubledistilledwater,airdriedunderanitrogenjetandgentlyharvested.

    In order to do SEM observations the driedcrystalsweremountedonaluminumstubs,usingasilver-basedconductivecementoradoubleadhesive carbon type, and finally they werecoatedwithgoldorcarbonbyundervacuumglowdischarge.

    X-rAy diffrAction

    X-raydiffractionpatternsweretakenfromcrystalsexclusivelyusingaGandolficamera(114.6mm)andNi-filteredradiation(3540kV;1520mA)operatingundervacuum(3x10-2torr).Suchanalyseswereextensivelytestedfor

    eachcrystallizationbath.X-raydiffractionpatternswerealsotakenfrom

    theinitialamorphousmaterial(NifilteredCuK; 40 kV, 20 mA, 2 = 1/min; Cps 200, 400,1000).

    TheunambiguousidentificationsofthephasesweredoneusingA.S.T.M.FicheNumbers11-293and9-432asreferencesrespectivelyforbrushiteandHAP.TheX-raydiffractionpatternswerealsocalculatedwithPowderCellanalysisprogram(W.KrausandG.Nolze,BAM,Berlin)sothat

    OCP was also identified. These calculationscontributedtoindexthediffractionpeaks.

    Thelatticeconstantswereobtainedbytheleast square method using 2 values of at leastfourteendiffractionpeaksfrom30to70degrees,andsiliconasinternalstandardonlyforcrystalsgrowthat21C.

    Modellingofthe atomicstructures wasdonewiththeprogramATOMS(ESMSoftware,Inc.,Cincinnati,OH,USA)using,likeforthediffraction

    patternscalculations,theatomiccoordinatesand

    the lattice cell parameters of Curry and Jones(1971)andAbbonaet al.(1994)forbrushite,of

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    6/26

    24 r. MAzz

    Mathewet al.(1988)forOCP,ofKayet al.(1964)andSudarsananandYoung(1969)forHAP.

    MicroAnAlyses

    SimultaneouslywithSEMobservationsmicro-chemicalEDSanalyses(Oxford-Link5431;ZAFcorrectionprogram;countingtime100200s)wereroutinelycarriedoutoperatingat15kV.CaandPweretheonlyanalyzedelements.When

    possibleotherpartsofthesamesamplesexposedtoX-raywereused.

    Thin - polished sections, approximately 40 m

    thick,werepreparedforfivegroupsofcogeneticHAPcrystalsgrownatpH7.4,thatwereallowedtoremaininsolutionrespectivelyfor8,21,48,390and600days.Thenninetothirty-twomicro-chemicalquantitativespotanalysespersamplewere carried out using a Cameca - Camebaxelectronmicroprobe,operatingat15kVand15nAintheWDSmodeforatotalof96WDSanalyses.Countingtimeswere10satthepeakand10satthebackground.Theseexaminationphysicalconditionswereacompromisetoobtainsuitableanalyticalprecisionandtominimizedestructive

    effects due to the electronic bombardment.Analyses were performed against a syntheticstandardapatite.X-raycountswereconvertedinto

    oxideweightaswellasatomicpercentagesusingthePAPcorrectionprogram(Pouchou,1984).Theseanalysesaretypicallyprecisetowithin1%formajorelements.

    results

    Thetwocrystalgrowthtechniquesherepresentedwereoptimizedafterlotsofattemptsalteringtheconcentrationsoftheinitialcalciumandphosphateworksolutionsaswellastheanalyticalreagents.

    Both techniques were highly reproducibleat all tested temperature. The kinetics ofnucleation,growthandhydrolysisprocesseswere

    proportionallyslowedoracceleratedrespectivelyatlowerandhighertemperatures.

    Crystal growth technique 1

    HAPgrewascrystals(sizeapparentvalues5x4x0.2m) aggregated to form hemisphericm) aggregated to form hemisphericm)aggregatedtoformhemisphericconcretions(diameterapparentvalues~150m)m)m)(Fig.4).Anymorphologicalvariationwasobserved

    Fig.4ScanningelectronmicrographofhemisphericconcretionsofHAPgrownbymeansoftechnique1.Thebar:20m.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    7/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 25intheHAPcrystalsasafunctionoftemperaturewhichwasmaintainedstableforthedurationofeachexperiment.

    X-ray(Fig.5)andmicroprobeWDSanalysesdemonstratedthattheconcretionswereexclusivelyformedbyHAP.IneachX-rayanalysiseffectsofdiffractionduetootherphasesortomodificationsofthespatialgroupwerenotdetected.Crystalswerestablewithinthemothersolutionsalsowhentheexperimentswereextendedmorethantwoyears.AlongthistimepHwasstableat7.4.Thekineticsofnucleationandgrowthwereregulatedonlybythetemperature;theconcretionsweremicroscopicallyobservedafter8,24and157hoursrespectivelyat38,21and4C.

    Thestructuralorderofthecrystalswasgoodstartingfromthefirststagesofgrowth.Whencrystalswereallowedtoremainninemonthswithinthemothersolution,suchorderwasparticularlyemphasizedbythecorrectintensitiesandbythegoodresolutionofthediffractionpeaks100,200,002,211,112,300,202,310,222,312,213,321,410,402,004,411,151,511.

    TheCa/PratioswerecalculatedusingtheatomicpercentagesmeasuredintheWDSmodefromeverydata point (Table 1).Suchratioswerevariable

    betweenthelimitvaluesof1.45asminimumand

    1.76asmaximum.Thisvariationisattributabletoorderdisorderphenomena(BoskeyandPosner,1976;Betts et al.,1981;Montel et al.,1981;

    Nelson and Featherstone,1982; Gadaletaet al.,1996)becauseoftheexclusivelyhydroxyapatiticdiffractionpatternsofthecrystals.

    Crystal growth technique 2

    At21Ccrystalsofbrushiterapidlynucleatedandgrewinfewminutesjustnexttotheliquid-vaporinterfaceatthetopofthemetastablecalcium

    phosphate solutions.Theirgrowthwascompleteafterapproximately40hourssincetheplateswereclosed(typicalmeansizeapparentvalues200x

    120x10m)(Fig.6).Fig.7(a)showstheirhighqualityx-raydiffractionpattern.Theseclearandcolorlesscrystalswerealwaystinyandflatwiththe characteristic tabular habitus. They wereusuallyelongatedaccordingtothe[001]sortothe[101]s.The{010}swasthedominantandwelldevelopedcrystalform.Simpleandmultipletwinsaswellaspolycrystallineaggregateswerecommoncrystallizationproducts.Thelatticeconstants(SG=Ia)werea=5.825(5),b=15.199(12),c=6.249(4),=11649,4(0,54).Somecrystal

    generationswereobserved.Crystalswithsmaller

    Fig.5X-raydiffractionpatternstakenfromHAPcrystalsgrownbymeansoftechnique1.Crystalswereallowedtoremainrespectively8days(a)and9months(b)withintheirmothersolutions.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    8/26

    26 r. MAzz

    dimension,correspondingtolowersupersaturationvalues,hadalsothebesthabituswithplane,straightandwelldevelopedfaces.

    Intime,pHgraduallyraisedreachingthevalueof7.65becauseoftheammoniavapordiffusionfromtheoutertothefourcentralwells.Whenafter

    54hourspHreachedthevalueofapproximately5.5 (Fig.2) OCP, which was the stable phase

    (MonmaandKamiya,1987),begantonucleateandgrowattheexpenseofbrushitecrystals.OCPgrewasprismatichexagonalsinglecrystals(sizeapparentvalues10x5x0.6m)aggregatedtoformspherulites(Fig.8).Fig.3showsthereductioninthecalciumconcentrationwhichunderwenta

    drasticdecrementagainafter54hourswhenthefirstnucleiofOCPformedandbegantogrowth.

    tAble 1Microchemical quantitative spot analyses carried out in the WDS mode for HAP crystals grown by means of

    technique 1.

    8 days W%(O) W%(P) W%(Ca) W% tot A%(O) A%(P) A%(Ca) Tot A% Ca/P

    1 32.59 15.54 31.37 79.50 61.33 15.10 23.57 100 1.56

    2 32.07 15.25 31.00 78.31 61.29 15.06 23.65 100 1.57

    3 32.43 15.52 31.03 78.98 61.38 15.18 23.44 100 1.54

    4 32.82 15.66 31.55 80.03 61.34 15.12 23.54 100 1.56

    5 31.05 14.54 30.75 76.34 61.08 14.77 24.15 100 1.63

    6 31.45 14.86 30.71 77.03 61.20 14.94 23.86 100 1.60

    7 32.01 15.27 30.79 78.08 61.34 15.11 23.55 100 1.56

    8 32.40 15.50 31.05 78.95 61.37 15.16 23.47 100 1.559 29.62 13.88 29.31 72.81 61.09 14.78 24.13 100 1.63

    10 34.11 16.68 31.49 82.27 61.69 15.58 22.73 100 1.46

    11 33.33 16.21 31.04 80.58 61.61 15.48 22.91 100 1.48

    12 29.98 13.94 30.03 73.96 60.98 14.64 24.38 100 1.67

    13 33.63 16.35 31.37 81.35 61.60 15.47 22.93 100 1.48

    14 32.26 15.36 31.10 78.72 61.31 15.09 23.60 100 1.56

    15 33.95 16.47 31.75 82.16 61.58 15.44 22.99 100 1.49

    21 days W%(O) W%(P) W%(Ca) W% tot A%(O) A%(P) A%(Ca) Tot A% Ca/P

    1 29.13 13.95 27.86 70.93 61.39 15.18 23.43 100 1.54

    2 33.04 15.92 31.29 80.25 61.47 15.29 23.24 100 1.52

    3 35.15 17.21 32.38 84.74 61.70 15.61 22.69 100 1.45

    4 33.09 15.98 31.19 80.26 61.51 15.35 23.14 100 1.51

    5 34.89 16.81 33.00 84.70 61.48 15.30 23.22 100 1.52

    6 35.21 17.09 32.92 85.21 61.58 15.44 22.98 100 1.49

    7 35.37 17.14 33.17 85.68 61.55 15.40 23.04 100 1.50

    8 33.84 16.40 31.74 81.97 61.55 15.40 23.04 100 1.50

    9 35.62 17.36 33.07 86.05 61.64 15.52 22.84 100 1.47

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    9/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 27tAble 1

    Continued...

    48 days W%(O) W%(P) W%(Ca) W% tot A%(O) A%(P) A%(Ca) Tot A% Ca/P

    1 37.66 18.30 35.14 91.10 61.60 15.46 22.94 100 1.48

    2 37.08 17.97 34.74 89.79 61.56 15.41 23.02 100 1.49

    3 38.45 18.72 35.75 92.93 61.63 15.50 22.87 100 1.48

    4 38.48 18.67 36.02 93.18 61.57 15.43 23.01 100 1.49

    5 38.11 18.54 35.52 92.17 61.61 15.48 22.92 100 1.48

    6 37.28 18.19 34.55 90.02 61.65 15.54 22.81 100 1.47

    7 37.37 18.18 34.79 90.34 61.61 15.49 22.90 100 1.48

    8 37.20 18.18 34.38 89.76 61.68 15.57 22.75 100 1.469 38.30 18.45 36.25 93.00 61.47 15.30 23.23 100 1.52

    10 38.09 18.57 35.36 92.02 61.64 15.52 22.84 100 1.47

    11 35.09 16.82 33.49 85.41 61.40 15.20 23.39 100 1.54

    12 35.08 16.58 34.24 85.90 61.21 14.94 23.85 100 1.60

    13 35.52 16.91 34.27 86.71 61.31 15.08 23.61 100 1.57

    14 34.66 16.53 33.37 84.56 61.33 15.10 23.57 100 1.56

    15 34.63 16.32 33.96 84.91 61.17 14.89 23.95 100 1.61

    16 34.57 16.32 33.82 84.72 61.19 14.92 23.90 100 1.60

    17 35.35 16.74 34.39 86.48 61.24 14.98 23.78 100 1.59

    18 32.48 15.23 32.09 79.80 61.10 14.80 24.10 100 1.63

    19 38.59 18.72 36.13 93.44 61.57 15.42 23.01 100 1.49

    20 38.34 18.72 35.49 92.55 61.66 15.55 22.79 100 1.47

    21 36.44 17.32 35.28 89.04 61.28 15.04 23.68 100 1.57

    22 35.62 16.85 34.72 87.20 61.22 14.96 23.82 100 1.59

    23 36.68 17.57 35.05 89.30 61.39 15.19 23.42 100 1.54

    24 33.35 15.57 33.18 82.11 61.04 14.72 24.24 100 1.65

    25 35.41 16.97 33.83 86.21 61.40 15.19 23.41 100 1.5426 37.42 18.12 35.12 90.67 61.55 15.39 23.06 100 1.50

    27 31.24 14.46 31.48 77.19 60.93 14.57 24.51 100 1.68

    28 31.21 14.34 31.77 77.32 60.83 14.44 24.72 100 1.71

    29 31.89 14.51 32.95 79.35 60.70 14.26 25.04 100 1.76

    30 31.02 14.34 31.33 76.69 60.91 14.54 24.55 100 1.69

    31 35.07 16.30 35.11 86.49 60.98 14.64 24.37 100 1.66

    32 32.09 14.59 33.17 79.85 60.69 14.26 25.05 100 1.76

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    10/26

    28 r. MAzz

    Fig.9showsthecoexistenceofsomegrowingOCP spherulites over the (010) face of one

    dissolvingbrushitecrystal.Understereoscopicmicroscopy the progressive dissolution of the

    brushite crystals appeared complete after abouttwoweeks.Onthecontrary,inthisstage,theirtraceswererevealedbyX-rayanalyses(Fig.7b).AtthefinalvaluereachedbypH(7.65)HAPwasthestablephasethatslowlyformedtotheexpensesoftheOCPcrystallites.

    DuringtheprogressiveformationofHAPnogrowthofnewaggregatesofcrystalswasnoticed.ThisletmehypothesizethatHAPgenesiswasnot

    arandombutanin situphenomenon,controlledbytheatomictransformingstructureofOCP.Ontheotherside,suchtransformationwasgradualasunderlinedbythediffractionpatterns.Insuch

    patterns the gradual disappearance of the OCPdiffractionpeakswasobservedconcomitantlytotheappearanceandtheincreaseofintensityofthehydroxyapatiticones.X-raydatashowedthat,inthefinalproducts,OCP,recognizablebytheveryweakdiffractionpeaks100(d=18.632),10(d=9.385)and010(d=9.019),wasdispersedin

    awellcrystallizedhydroxyapatiticmatrix.Inthefinalstadium,underSEM,HAPcrystalsappeared

    morphologicallyirregular,unlikethepreviousOCPones(Fig.10).ThehighstructuralorderofHAP

    wasparticularlysuggestedbytherightintensitiesandbythegoodresolutionofthediffractionpeaks100,200,002,211,112,300,202,310,222,312,213,321,410,402,004,411,151,511.Thelattice

    parametersa=9.434(5)andc=6.884(3)werecalculatedfromcrystalsremainedinsolution16months.

    The OCP HAP transformation was also

    monitoredbytheCa/Pratiosthatprovidedthemeasureoftherelativepresenceofthetwophaseswithinthecrystallizationproducts.Ca/Pvalues

    were1.39,1.47and1.59respectivelyafter14,36and300daysofgrowth.SinceCa/PidealratioofstoichiometricOCPis1.33,datasuggestaveryweakpresenceofHAPafter14daysofgrowth(Table2).

    SystematicallySEMobservations,EDSandX-rayanalyseswerecarriedoutfromcrystalsthatwereallowedtogrowfor42hours,8,13,23and33daysat38,50and70C.

    At38Cveryweaktracesofbrushitewereonlyrecognizedinthediffractionpatterntakenfrom

    crystalsthatwereallowedtocontinuehydrolyzing foratotalof42hours(Fig.11a).Suchpattern

    tAble 1Continued...

    13 months W%(O) W%(P) W%(Ca) W% tot A%(O) A%(P) A%(Ca) Tot A% Ca/P

    1 38.37 18.63 35.84 92.84 61.59 15.45 22.96 100 1.49

    2 38.74 18.73 36.47 93.94 61.52 15.36 23.12 100 1.50

    3 38.74 18.76 36.34 93.84 61.55 15.40 23.05 100 1.50

    4 36.78 17.44 35.73 89.96 61.25 15.00 23.75 100 1.58

    5 37.75 18.11 35.99 91.84 61.41 15.22 23.37 100 1.54

    6 36.72 17.61 35.02 89.36 61.41 15.21 23.38 100 1.54

    7 36.81 17.57 35.40 89.78 61.34 15.12 23.54 100 1.56

    8 37.87 18.23 35.89 91.99 61.46 15.29 23.25 100 1.529 36.58 17.23 35.91 89.71 61.16 14.88 23.97 100 1.61

    10 37.26 17.77 35.86 90.89 61.33 15.11 23.56 100 1.56

    11 36.52 17.31 35.47 89.31 61.25 15.00 23.75 100 1.58

    12 36.77 17.48 35.57 89.82 61.29 15.05 23.67 100 1.57

    13 35.75 16.99 34.59 87.33 61.28 15.05 23.67 100 1.57

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    11/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 29

    showsthatthehydrolysisproductswerealmostentirelyconstitutedbyOCP,asanyhydroxyapatiticdiffractionpeakwasnotrecognized.HAPwas

    positivelyidentifiedafter8days and42 hoursofgrowthrespectivelyat38C(Fig.11)and50C

    (Fig.12).AtthislasttemperaturebrushitewasneverrevealedbyX-rayanalyses.

    AtthesetemperaturesthetransformationOCP HAP was almost total respectively after 23(38C)and8days(50C).Suchatransformationwastotalafter42hoursat70C.Fig.13showsthemorphologicaldegradeofthecrystalsthat

    occurredduringthetransformation.ParticularlyFig.13(a)showsOCPCrystals,(b)and(d)OCP

    tAble 1Continued...

    20 months W%(O) W%(P) W%(Ca) W% tot A%(O) A%(P) A%(Ca) Tot A% Ca/P

    1 36.79 17.47 35.66 89.93 61.27 15.03 23.71 100 1.58

    2 38.23 18.52 35.85 92.60 61.55 15.40 23.05 100 1.50

    3 38.60 18.74 36.09 93.43 61.58 15.44 22.98 100 1.49

    4 38.91 18.76 36.77 94.44 61.49 15.32 23.20 100 1.51

    5 38.65 18.72 36.27 93.63 61.55 15.40 23.06 100 1.50

    6 38.46 18.60 36.19 93.26 61.53 15.37 23.11 100 1.50

    7 38.70 18.70 36.47 93.86 61.51 15.35 23.14 100 1.51

    8 35.94 16.98 35.11 88.03 61.20 14.93 23.87 100 1.609 38.03 18.32 36.01 92.35 61.47 15.29 23.24 100 1.52

    10 36.56 17.35 35.47 89.38 61.26 15.01 23.73 100 1.58

    11 37.56 17.71 36.81 92.07 61.17 14.90 23.93 100 1.61

    12 38.30 18.36 36.53 93.20 61.41 15.21 23.38 100 1.54

    13 35.27 16.61 34.63 86.51 61.16 14.87 23.97 100 1.61

    14 39.23 18.92 37.09 95.24 61.48 15.31 23.20 100 1.52

    15 35.99 16.86 35.64 88.49 61.08 14.78 24.14 100 1.63

    16 36.96 17.46 36.12 90.55 61.20 14.93 23.87 100 1.60

    17 37.25 17.61 36.36 91.23 61.21 14.94 23.85 100 1.60

    18 36.86 17.22 36.65 90.73 61.05 14.73 24.23 100 1.64

    19 38.60 18.36 37.28 94.24 61.30 15.07 23.64 100 1.57

    20 36.06 16.76 36.13 88.94 60.98 14.64 24.39 100 1.67

    21 35.74 16.83 35.09 87.67 61.16 14.88 23.97 100 1.61

    22 34.98 16.31 34.86 86.15 61.02 14.70 24.28 100 1.65

    23 39.24 18.80 37.50 95.54 61.39 15.19 23.42 100 1.54

    24 35.96 16.77 35.84 88.57 61.02 14.70 24.28 100 1.65

    25 37.26 17.50 36.73 91.49 61.12 14.83 24.05 100 1.6226 36.13 16.79 36.18 89.10 60.98 14.64 24.38 100 1.67

    27 36.16 16.81 36.22 89.19 60.98 14.64 24.38 100 1.67

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    12/26

    30 r. MAzz

    transformingintoHAP,(c)HAPcrystalswithweaklyX-raytracesofOCP.Crystalsformedat50and38C,appearedundersimilarmorphological

    conditionsrespectivelyafter42hoursand13daysofgrowth.

    Osteopontin effects on crystals growth

    Thesesetsofexperimentswerecarriedoutonlyat21Cbecauseatthistemperaturethephasetransformations are opportunely slowed downandtostudyalsotheproteinbrushitecrystalsinteraction.

    Incrystalgrowthtechnique1nucleationandgrowthofHAPweretotallyinhibitedstartingby

    0.08 g/mlOPN.In thiscaseany precipitationofcrystalswasnotobservedforthedurationofthe experiment (20 months). On the contrary

    boththenucleationandthegrowthofHAPwereconsiderablydelayedstartingbyconcentrationof4x10-4g/mlOPNandgreater(0.04g/ml).Suchadelaywasnotcausedby4x10-5g/mlOPN.

    Instead0.04g/mlOPNfirstdelayedandafterpromotedthenucleationandthegrowthofHAP.Indeed,afterthedelayintheirowngrowth,theself

    aggregation ofthe crystalsformedhemispheric

    concretionshavingfinaldimensionsincreasedabout2030foldswithrespecttothosegrowingintheOPNfreecontrols(Fig.14).

    In addit ion, OPN modulated the doubletransformationprocess.ThehydrolysisofbrushitewassloweddownbyOPNbeginningfromtheconcentration of 0.022 g/ml (Fig. 15). Suchconcentrationsloweddownalsothefollowingtransformation: OCPHAP. These stabilizingeffects were respectively corroborated by thediffractionpatternstakenfrompowderedcrystalsexposedto0.022and0.066g/mlOPNthatwere

    allowedtocontinuegrowingrespectivelyfor17days(Fig.16)and1month(Fig.17).ThusOPNstabilizedfirstthebrushitecrystalsandthoseofOCPthen,favouringtheirpermanenceinsolutionsasmetastablephases.

    Moreover such prote in , even a t lowestconcentrationtested(4.4x10 -3g/ml),hadalsoa debilitating effect on crystals morphology.Particularly,brushitecrystals,growninproximityofthewellstop,losttheoriginalhabitusandshowed

    acharacteristicincreaseinthesurfaceareaoftheir{010}s(Fig.15).SucheffectswerebestobservedinthewellswithhigherOPNconcentration.

    discussion And conclusion

    BoththecrystalgrowthtechniquesherepresentedstartfrommothersolutionswithconcentrationshigherthanthoseutilizedinliteraturetoprecipitateHAP (Boskey and Posner, 1976; Young andHolcomb,1982;AbbonaandFranchini-Angela,

    Fig.6Scanningelectronmicrographofaregularcrystalof brushite grown at 21 C. Note the well developedmorphologyof{010}.Thebar:50m.

    Brushite OCP HAP

    pH 4.55 5.5 7.65

    Occurencetime

    Totaldisappearance

    Fewminutes

    After336hours

    54hours

    After14months

    336hours

    Stablephase

    tAble 2Occurence and disappearance of brushite, OCP and HAP in the crystal growth technique 2

    performed at 21 C as function of pH values

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    13/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 31

    Fig.7X-raydiffractionpatternstakenfromcrystalsgrownat21Cbymeansoftechnique2.Crystalswereallowedtocontinuegrowingrespectivelyfor24hours(a),14days(b),195days(c),14months(d).(a)containsonlythediffractionpeaksofbrushite,(b)alsotheOCPones.Intime,OCPdiffractionpeaksgraduallydisappearedconcomitantlytotheappearanceandtheincreaseofintensityoftheHAPones(c)and(d).Somediagnosticdiffractionpeaksarepointedout.Number1020(d=7,59;I/rel=100)andnumber512-1(d=4,2367;I/rel=87,29)plus-121(d=4,2367;I/rel=86,52)ofbrushite;number2100(d=18,6316;I/rel=100)andnumber31-10(d=9385;I/rel=16,70)plus200(d=9,3158;I/rel=0,58)

    plus010(d=9,0187;I/rel=18,36)ofOCP;number4100(d=8,1684;I/rel=7,87)andnumberVIrespectively211(d

    =2,8168;I/rel=100)plus121(d=2,8168;I/rel=44,76),112(d=2,7795;I/rel=71,69),300(d=2,7228;I/rel=88,80)ofHAP.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    14/26

    32 r. MAzz

    Fig.9ScanningelectronmicrographofOCPspherulitesgrowingonthe(010)faceofalargetabularcrystalofbrushiteinhydrolysis.Crystalswereallowedtocontinuegrowingfor100hours.Notetheparallelexfoliationofthebrushitecrystal.

    Fig.8Scanningelectronmicrograph:OCPprismatichexagonalsinglecrystals(sizeapparentvalues10x5x0.6m)aggregatedtoformspherulites.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    15/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 331995; Lazi, 1995; Liu, 1995; Luo and Nieh, 1996)sothatattheendofthetwoprocessesispossibletoobtainconsiderablequantitieshighlyreproducibly

    ofsyntheticHAPcrystals.

    Thepreliminarysteps,particularlyinthecaseofcrystalgrowthtechniques1,enablemetostarttheHAPcrystallizationprocessesfromactiveand

    opportunelypH-bufferedmothersolutions.This

    Fig.10ScanningelectronmicrographsofOCP(a)andHAP(b)crystalswhichwereallowedtocontinuegrowing

    respectivelyfor20daysand14months.NotetheregularmorphologyofOCPcrystalsinoppositiontotheirregularoneofHAPcrystals.Thebar:(a)10m,(b)20m.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    16/26

    34 r. MAzz

    Fig.11X-raydiffractionpatternstakenfromcrystalsgrownat38Cbymeansoftechnique2.Crystalswereallowedto continue growing for 42 hours (a) and for 8 (b), 13 (c), 23 (d) days. Note that the transformations brushite OCP andOCP HAP were almost total respectively after 42 hours and 23 days. Some diagnostic diffraction peaks are pointed out.

    Number112-1(d=4,2367;I/rel=87,29)plus-121(d=4,2367;I/rel=86,52)veryweakofbrushite;number21-10(d=9385;I/rel=16,70)plus200(d=9,3158;I/rel=0,58)plus010(d=9,0187;I/rel=18,36),number33-21(d=3,6599;I/rel=39,18),number4from321(d=2,8523;I/rel=17,48)to7-10(d=2,8094;I/rel=12,38)ofOCP;number5

    100(d=8,1684;I/rel=7,87)andnumberVIrespectively211(d=2,8168;I/rel=100)plus121(d=2,8168;I/rel=44,76),112(d=2,7795;I/rel=71,69),300(d=2,7228;I/rel=88,80)ofHAP.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    17/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 35

    Fig.12X-raydiffractionpatternstakenfromcrystalsgrownat50Cbytechnique2.Crystalswereallowedtocontinuegrowing for 42 hours (a) and 8 days (b). Note that the transformation OCP HAP was total after 8 days. Number1 point out100(d=8,1684;I/rel=7,87)diffractionpeakofHAP;number2pointout1-10(d=9385;I/rel=16,70)plus200(d=9,3158;I/rel=0,58)plus010(d=9,0187;I/rel=18,36)diffractionpeaksofOCP.

    Fig.13Scanningelectronmicrographsofcrystalsgrownafterthehydrolysisofbrushiteat38C(a),(b),(c)and50C(d).Crystalswereallowedtocontinuegrowingfor42hours(a),(d),andrespectivelyfor13(b)and23(c)days.(a)shows

    OCPCrystals,(b)and(d)OCPtransformingintoHAP,(c)HAPcrystalswithweaklyX-raytracesofOCP.Notethefastermorphologicaldegradeofthecrystalswhichoccurredat50C.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    18/26

    36 r. MAzz

    isnotpossiblewhenone4.3mMcalciumsolutionandone3.2mMphosphatesolutionaredirectlymixedbecausetheprecipitationofamorphousmaterialanywayoccursowingtothehighinitialconcentrations.

    TheCa/PmothersolutionsratiolowerthantheHAPstoichiometriconeenablealsotostabilizethe

    acidiccalciumphosphateprecursorsforalongertimeincrystalgrowthtechnique2andshows

    theHAPcrystalscandirectlygrowthfromoneactivemediumliketheinitialsolutionsofcrystalgrowthtechnique1eventothedetrimentofionsconcentrationsifthepHvalueiscorrect.

    TheresultsindicatedthatwhenpHpreventedHAPprecipitation,bothbrushiteandOCPcouldgrowfromsolutions.IfpHwastoincrease,such

    phases,duringtheirowntransformation,modulatedtheformationofHAP.

    Fig.14SpherulitesofHAPgrownbymeansoftechnique2respectivelyinpresenceof4x10 -4g/ml(a)and0.04g/ml(b)OPN.Noticetheincreaseinsizeofthehemisphericaggregatesgrowninpresenceof0.04g/mlOPN.Bar300m.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    19/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 37Thehydrolysisprocesswasreversible.Such

    a property was verified in the crystal growthtechnique2decreasingwithultrapurecloridric

    acid(30%,9.46N)thepHofthecrystallizationbathsfrom7.65to4.55at theendofthebrushite OCP and OCP HAP phase transformations.So the anomalous recoveries of brushite in

    somebio-remainswerepotentiallyexplained(Piepenbrink,1989).Thissetofexperimentswill

    bepresentedinanotherworkofmineactuallyin

    preparationconcerningthediageneticprocessesofthephosphaticremainsduringtheirburial.Ammonium phosphate was employed as a

    sourceofammoniavapor,whichdiffusedoverthe

    Fig.15Crystalsgrownbymeansoftechnique2inabsence(a)andinpresenceof0.022g/ml(b)OPNwhichslowedthe kinetic of the brushite OCP phase change. (a) and (b) 20X. Note that OPN prevented the growth of OCP spherulites

    clearlyvisiblein(a)anditcausedthelostoftheoriginalhabitusofthebrushitecrystalsandtheincreaseinthesurfaceareaoftheir{010}s(b).

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    20/26

    38 r. MAzz

    metastablecalciumphosphatereactingsolutions.Soitwaspossibletominimizethevariablesinsidethesealedplates.Moreover,asammoniaisfarmorevolatilethanphosphatetowhichitisinitiallycomplexed,itbecameanexcellentstabilizerofthesolutionspHinwhichcrystalsgrew.Onceagaininsolutions,ammonia,actinglikebase,tookprotonsawayfromthereactingsolutions,stabilizingtheir

    pHandcontrastingwiththeantagonistdissociationsofthephosphaticspeciesandofthewater,inthe

    caseofHAPgrowth.Suchdissociationsproducedtheanionicclustersthatwereimmobilizedinthecrystallatticeofthegrowingphase,asthesolutionsweresupersaturated.Furthermore,ammoniumdidnothinderphosphateuptakebycalciumatoms.

    TheCa/PatomicratioofHAPcrystalsfurnishesindications about the quantitative occupationofCasites(Bettset al.,1981)andthepotentialsubstitutionof(PO

    4)3-with(CO

    3)2-(Montelet al.,

    1981;NelsonandFeatherstone,1982;Gadaleta

    Fig.16X-raydiffractionpatterntakenfromcrystalsgrowninpresenceof0.022g/mlOPN.Suchcrystalswereallowedtocontinuegrowingfor17days.NotetheintensitiesofthebrushiticdiffractionpeaksalsoincomparisonwiththoseofthediffractionpatternsofFig.7.SomediagnosticdiffractionpeaksarepointedoutidenticallytoFig.7.Indeednumber1020(d=7,59;I/rel=100)andnumber512-1(d=4,2367;I/rel=87,29)plus-121(d=4,2367;I/rel=86,52)ofbrushite.

    Fig.17X-raydiffractionpatterntakenfromcrystalsgrowninabsence(a)andinpresenceof0.066g/ml(b)OPN.Suchcrystalswereallowedtocontinuegrowingfor1month.Number1pointsout1-10(d=9,3850;I/rel=16,70),200(d=

    9,3158;I/rel=0,58)and010(d=9.0187;I/rel=18,36)OCPdiffractionpeaks;number2pointsout100(d=8,1684;I/rel=7,87)HAPdiffractionpeak.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    21/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 39et al.,1996).BoskeyandPosner(1976)proposedvalues varying from 1.60 to1.73as the directconsequenceofCaandPmeasuresinthereacting

    solutions. Data from this work suggested thatCa/Pratiosover1.76orunder1.45donotappearstructurallyrepresentative.Ca/Pidealratioofastoichiometricapatite,inabsenceoforder-disorder

    phenomena, is 1.67. Crystal growth technique2provedthatvaluesunder1.45wereconsistentwiththepresenceofOCP(Ca/P=1.33)withinthecrystals.Valuesover1.76wouldbepresumablyduetoanextra-structuralcontributionofcalcium.CalciteisapossiblecarrierwhichIproducedinsynthesisfromsolutionswithexcessofCa2+and(CO

    3)2-ions(2003b).

    The hydrolysis of brushite crystals wasparticularly observed through their {010} form(Fig. 9). Structurally the (010) face is onlycomposedofsetsofhydrogenatomsandsetsofoxygenatomsW(1)andW(2)(Fig.18)fromtwocrystallographicallyindependentwatermolecules,havingasy/bfractionalcoordinaterespectively0.0527(1)and0.0739(1)(Abbonaet al.,1994).Besides,theseatomsboundthed

    020slicesone

    toanotherbyweakhydrogenbonds,notoriouslyconstructingalayeredandcorrugatedstructure.

    Thesebondswereeasilybrokenwhencrystalsoccurredasmetastableinalessacidicmedium,withtheconsequencethattheyparallelyexfoliatedtotheir{010}s.InallprobabilitycrystalsofbrushitehydrolyzedthemselvesstartingbyW(1)andW(2)aswellasbyhydrogenatomsandsequentiallyinvolvingthestructurallycontiguousatoms.Thuscalciumandphosphate,oncestructurallybounded,wereabletogointosolutionsagainandthenincorporatedintothenewformingOCPcrystallinestructure.

    With regard to the OCP HAP transformationdataseemtosuggestthatthestructuralsimilarityofthetwophaseswascritical.Particularly,acorrespondencealongthecaxisexistsbetweentheCaatoms,thatintheHAPstructureoccupytheCa(2)sites,andtheCaatoms,thatintheOCPstructure occupy the Ca(5), Ca(7) and Ca(6),Ca(8)sites.Insuchtransformationthemaineventisthelossofthewatermoleculesthat,intheOCPstructure,areplacedalonglayersparalleltothebandcaxes.Suchlossisresponsibleofthe

    characteristic structural collapse which, in thiswork,wasobservedthroughthemorphological

    degradeoftheHAPcrystals,inoppositiontotheregularcrystallinehexagonalhabitusoftheOCPcrystals.

    Thecrystalgrowthtechniques,herediscussed,are useful to provide suitable comparativecorrelationswiththeinorganicapatiticfractionofteethandbonesofthemammals(Mazz,2000;2002a;2003c).

    Besides,dataprovedthatosteopontin,whendispersedwithinthereactingsolutions,drasticallymodulatednucleationandgrowthofbrushite,OCPandHAP.Particularly,theinteractionOPNHAPhappenedbothwhencrystalsgrewatpH7.4andwhentheyformedthroughanacidicprecursor.Intheseinteractionsthekineticactionprevailedoverthethermodynamicequilibria.

    Withregardtotheprotein-brushitecrystalinteractionitseemsthatsomespecificpolarpartsoftheOPNmoleculeselectivelybondedthemselvestothepotentialsitesofthe(010)faces,furnished

    bytheextensivenetworkoftheirsuperficialwatermolecules.Thusthe(010)facesofferedmaximumresistancetohydrolysisdestabilization.WhenOPNwasfreetointeractwithbrushiteitshieldedtheplanesofthe{010}formfromtherestofthesolution.Suchactionpreventedthereleaseof

    hydrogen,W(1),W(2)andoftheirstructurallycontiguousatomsintothemothersolutions,sothatthebrushitehydrolysisandthenewOCPcrystalsformationweredelayed.Moreover,theadsorptionof OPN was responsible for the debilitatingmorphologicaleffects,duetotheincreaseofthesurfaceareaofthe{010}form.

    WhenOPNwasdispersedwithinthereactingsolutionsusedforHAPcrystalsgrowthtechnique1,thebulkoftheprocessestablishedhighlyselectivespecializedbondinginteractionsbetweenCa 2+ions

    andpartsofitsmolecule.Ca2+ionsweresubtractedfromsolutionssothatthenucleationandgrowthofHAPcrystalsweretotallyinhibited,startingby0.08g/mlOPN.Atlowerconcentrationsthanthementionedabove,OPNstabilizedHAPcrystalnucleiloweringtheirenergyofnucleation.Thus,their growth was favored and could continueundisturbedforming,attheconcentrationof0.04g/mlofprotein,greaterhemisphericconcretionswithrespecttothosegrowingwithinthecontrolwells(Fig.14).Althoughonecouldexcludeit a

    priori,suchaprocessmightbealsocontrolledby selective bonding interactions that OPN

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    22/26

    40 r. MAzz

    establisheswithCa2+ionsinsolution,and/orwithsomespecificcalciumsitesontheHAPsurface.Itcouldseemprobablethatthecalciumatomssubjecttosuchspecificactionarethosesurfacingwithrespecttothe{100}formand,toagreaterdegree,tothe{001}one,duetoitssurfacelargerthanthelateralhexagonalprism.StructurallytheHAP(001)faceiscomposedofasetofcalciumatomshavingalmostzeroheightalongcaxis.Ina

    mannersimilarofthatdescribedforthe(010)facesofthebrushitecrystals,thiscrystallographical

    organization, unique to the (001), potentiallyprovidesanextensivenetwork ofbondingsites.ThesefacesarenotusuallydiscriminatedonHAPsyntheticcrystalsgrownunderstandardconditions(BoskeyandPosner,1976;Jarcho et al.,1976;

    Nelson and Featherstone, 1982; Young andHolcomb,1982;AbbonaandFranchini-Angela,1995;Kandoriet al., 1995; Lazi, 1995; Liu, 1995;LuoandNieh,1996)owingtotheirindefinite

    habitus. Nevertheless, many other studies arenecessarytoconfirmsuchmechanism.

    Fig.18Aschematic3Dprojectionalong[001]ofthebrushitestructure.Blackcircles:W(1)andW(2)oxygenatoms;greatgreycircles:calciumatoms;littlegreycircles:hydrogenatoms.Theunitcellisunderlined.(010)isthecleavageplane.Notethatthe(010)facesatthefarleftandatthefarrightedgesofthethreedimensionalfigurearecomposedofsetsofoxygenandhydrogenatoms.ThoseatomsareavailablebothtostartcrystalshydrolysisandtofurnishpotentialbondingsitestoOPNwhendispersedintothesolutions.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    23/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 41OntheotherhandtheOPNquantitywhich

    totally inhibited the formation of HAP at pH7.4 is lower than the medium physiological

    urinaryconcentrationfoundinadultandhealthysubjects(1.9g/ml)astheidenticalaminoacidsequenceofuropontin(Min et al.,1998).Themedium uropontin content found within renalhydroxyapatiticcalculiisgenerallylowerthan10gper100mgofcalcification(Hoyer,1994).InadditionOPNisnormallyproducedbymanykindsofcells,itisfoundonagreatvarietyoftissuesanditisespeciallyconcentratedattheregionsofthe

    bonesurface,andgenerallyatthemineralizationfrontsandinterfaces.Inconclusion,osteopontiniscertainlyaparticularproteinabletopreventthe

    pathologicalcalcifications,asrenalcalculi.Itisalsoabletoplayapivotalrolebothintheformationandinthestabilizationofnormalmineralizedtissues.

    AcKnowledgeMents

    IamgratefultoG.I.LamprontiandA.Bigifortheirhelpfulreviewsandusefulsuggestionsthatimprovedthemanuscript.ThanksareexpressedtoG.Molinfortheassistanceinthemicroprobeanalyses.OsteopontinwaskindlyprovidedbyF.G.Toback.I

    amalsogratefultoLucaBindiforhimimpeccableeditorialcapacity.

    REFERENCES

    AbbonA f., cAlleri M., frAnchini-AngelA M.and ivAldi G. (1994 ) - Synthetic brushite,CaHPO

    42H

    2O: Correct polarity and surface

    features of some complementary forms.NeuesJahrb.Mineral.Abh.168,171-184.

    AbbonA F. and frAnchini-AngelA M. (1995) -

    Crystallization of hydroxyapatite from very dilutesolutions.NeuesJahrb.Mineral.Monatsh., 12,563-575.

    betts f., bluMenthAlN.C.andposnerA.S.(1981)-Bone mineralization.J.Cryst.Growth,53,63-73.

    bosKey A.l., MArescA M., ullrich w., doty s.b.,butlerW.T.andprinceC.W.(1993)-Osteopontin Hydroxyapatite interactions in vitro: inhibitionof hydroxyapatite formation and growth in agelatin gel.BoneandMiner.,22,147-159.

    bosKeyA.L.andposnerA.S.(1976)-Formation ofhydroxyapatite at low supersaturation.J.Phys.

    Chem.,80,40-45.chAng P.L. and prince C.W. (1991) - 1, 25-

    Dihydroxyvitamin D3

    stimulates synthesis andsecretion of nonphosphorylated osteopontin(secreted phosphoprotein 1) in mouse JB&

    epidermal cells.CancerRes.,51,2144-2150.chengP.(1987)-Formation of octacalcium phosphateand subsequent transformation to hydroxyapatiteat low supersaturation: a model for cartilagecalcification.Calcif.TissueInt.,40,339-343.

    crAig A.M. and denhArdt D.T. (1991) - Themurine gene encoding secreted phosphoprotein1 (osteopontin): Promoter structure, activity, andinduction in vivo by estrogen and progesterone.Gene,100,163-171.

    curryN.A.andJonesD.W.(1971)-Crystal structureof brushite, calcium hydrogen ortophosphate

    dihydrate: a neutron-diffraction investigation.J.Chem.Soc.(A),3725-3729.de groot K., geesinK r., Klein C.P.A.T. and

    sereKiAnP.(1987)-Plasma sprayed coatings ofhydroxylapatite.J.Biomed.Mater.Res.,21,1375-1381.

    denhArdtD.T.andguoX.(1993)-Osteopontin: aprotein with diverse functions.TheFASEBJ.,7,1475-1482.

    elliotJ.C.,MAcKieP.E.andyoungR.A.(1973)-Monoclinic hydroxyapatite.Science,180,1055-1057.

    fulMerM.T.andbrownP.W.(1998)-Hydrolysis ofdicalcium phosphate dihydrate to hydroxyapatite.J.Mater.Sci.-Mater.Med., 9,197-202.

    gAdAletA s.g., pAschAlis e.p., betts f., MendelsohnR.andbosKeyA.L.(1996)-Fourier TransformInfrared Spectroscopy of the Solution-MediatedConversion of amorphous Calcium Phosphate toHydroxyapatite: New Correlations between X-rayDiffraction and Infrared Data.Calcif.TissueInt.,58,9-16.

    grAhAMS.andbrownP.W.(1996)-Reactions ofoctacalcium phosphate to form hydroxyapatite.J.

    Cryst.Growth,165,106-115.grAses f., shnel o., vilAcAMpAA.I.andMArchJ.G.(1996)-Phosphates precipitating from artificialurine and fine structure of phosphate renal calculi.Clin.Chim.Acta,244,45-67.

    hingK.A.,bestS.M.,tAnnerK.E.,bonfieldW.andrevellP.A.(1997)-Biomechanical assessment ofbone ingrowth in porous hydroxyapatite.J.Mater.Sci.-Mater.Med.,8,731-736.

    hoyerJ.R.(1994)- Uropontin in urinary calciumstone formation.Min.ElectrolyteMetab., 20,385-392.

    hunterG.K.,hAuschKAP.V.,pooleA.R.,rosenbergL.C.and goldebergH.A.(1996)-Nucleation

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    24/26

    42 r. MAzz

    and inhibition of hydroxyapatite formation bymineralized tissue proteins.Bioch.J.,317,59-64.

    iiJiMAM.,KAMeMizuH.,wAKAMAtsuN., gotoT.,

    doi

    Y.andMoriwAKi

    Y.(1997)- Transition ofoctacalcium phosphate to hydroxyapatite insolution at pH 7.4 and 37 C.J.Cryst.Growth,181,70-78.

    iiJiMA M., nelson d.g.A., pAn y., KreinbrinKA.t.,AdAchi M., gotoT.and MoriwAKiY.(1996)-Fluoride Analysis of Apatite Crystals with aCentral Planar OCP Inclusion: Concerning theRole of F- Ions on Apatite/OCP/Apatite StructureFormation.Calcif.TissueInt.,59,377-384.

    JArcho M., bolen c.h., thoMAs M.b., bobicKJ., KAy R.H. a nd doreMus R.H. (197 6) -

    Hidroxylapatite synthesis and characterizationin dense polycrystalline form.J.Mater.Sci., 11,2027-2035.

    KAndori K., yAsuKAwAA.andishiKAwAT.(1995)-Preparation and characterization of sphericalcalcium hydroxyapatite.Chem.Mater.,7,26-32.

    KAy M.i., youngR.A.and posnerA.S.(1964)-Crystal structure of hydroxyapatite.Nature,204,1050-1052.

    LaziS.(1995)-Microcrystalline hydroxyapatiteformation from alkaline solutions. J. Cryst.Growth,147,147-154.

    leMonsJ.E.(1988)-Hydroxyapatite coatings.Clin.Orthop.Relat.Res.,235,220-223.liuD.M.(1995)-Fabrication and characterization

    of porous hydroxyapatite granules.Biomaterials,17,1955-1957.

    luoP.andniehT.G.(1996)-Preparing hydroxyapatitepowders with controlled morphology.Biomaterials,17,1959-1964.

    MAthew M., brown w.e., schroeder L.W. anddicKensB.(1988)-Crystal structure of octacalciumbis(hydrogenphosphate) tetrakis(phosphate)pentahydra te, Ca

    8(HPO

    4)

    2(PO

    4)

    4(H

    2O)

    5. J.

    Crystallogr.Spectrosc.Res., 18(3),235-250.MAzz R. (2000) - Compositional structuralheterogeneity of phosphatic remains. Implicationsand potential correlations with phases producedin synthesis.Plinius,23,108112.

    MAzzR.(2002a)-Studio strutturale e composizionaledi bioreperti umani provenienti dalla Valle delNilo.Plinius,28,206-208.

    MAzzR.(2002b)-Azione inibitrice svolta dallaproteina acida osteopontina sulla nucleazione ecrescita di cristalli di idrossiapatite.Plinius,28,202-204.

    MAzz R. (2002 c) - Produzione in sintesi diidrossiapatite da soluzioni a pH controllato con

    tecniche a diffusione di vapore.Plinius,28,204-206.

    MAzzR.(2003a)-Metodi geochimico mineralogici

    per valutare la misura dellalterazione dellafrazione apatitico inorganica di bioreperti divertebrati.In:GEOITALIA,4F.I.S.T.,418-419.

    MAzzR.(2003b)-Produzione in sintesi in sistemicontrollati di cristalli singoli di calcite e struvitecome fasi antagoniste dellidrossiapatite. In:GEOITALIA,4F.I.S.T.,641-643.

    MAzzR.anddegAnelloS.(2000)-Accrescimentodi idrossiapatite per diffusione di vapore.Plinius,Plinius,24,138-140.

    McKeeM.D.andnAnciA.(1996)- Osteopontinat mineralized tissue interfaces in bone, teeth,

    and osseointegration implants: ultrastructuraldistribution and implications for mineralizedtissue formation, turnover, and repair.Microsc.Res.,33,141-164.

    McKee M.d., nAnciA.and KhAnS.R.(1995)-Ultrastructural immunodetection of osteopontinand osteocalcin as majior matrix components ofrenal calculi.J.BoneMin.Res.,10,1913-1929.

    Min w., shirAgA h., chAlKo c., goldfArb s., KrishnAG.G.andhoyerJ.R.(1998)-Quantitative studiesof human urinary excretion of uropontin.KidneyInt.,53,189-193.

    MonMAH.andKAMiyAT.(1987)-Preparation ofhydroxyapatite by the hydrolysis of brushite.J.Mater.Sci.,22,4247-4250.

    Montel g., bonel g., heughebAert J.c., troMbeJ.C.andreyC.(1981)-New concepts in thecomposition, crystallization and growth of themineral component of calcified tissues.J.Cryst.Growth,53,74-99.

    nelsonD.G.A.and feAtherstoneJ.D.B.(1982)-Preparation, analysis, and characterization ofcarbonated apatites.Calcif.TissueInt., 34,S69-S81.

    nelsonD.G.A.andMcleAnJ.D.(1984)-High -resolution electron microscopy of octacalciumphosphate and its hydrolysis products.Calcif.TissueInt.,36,219-232.

    neweselyH. (1989)-Fossil bone apatite.Appl.Geochem.,4,233-245.

    nodA M., vogel r.l., crAig A.M., prAhl J., de lucAH.F.anddenhArdtD.T.(1990)-Identification ofa DNA sequence responsible for binding of the1,25-Dihydroxyvitamin D

    3receptor and 1,25-

    Dihydroxyvitamin D3

    enhancement of mousesecreted phosphoprotein 1(Spp-I or osteopontin)

    gene expression.Proc.Nat.Acad.Sci.U.S.A.,87,9995-9999.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    25/26

    Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques.... 43nonAMi t., KAMiyA A., nAgAnuMAK.andKAMeyAMA

    T.(1998)-Preparation of hydroxyapatite-granuleimplanted superplastic titanium-alloy.J.Mater.

    Sci.-Mater.Med.,9,203-206.piepenbrinK H. (1989) -Examples of chemicalchanges during fossilization.Appl.Geochem.,4,273-280.

    pouchou J.L. (1984) -A new model for x-raymicroanalysis.Rech.Arosp.,3,167-192.

    reinholt f.p., hultenby K., oldberg A. andheinegrdD.(1990)-Osteopontin a possibleanchor of osteoclasts to bone.Proc.Nat.Acad.Sci.U.S.A.,87,4473-4475.

    sAntos M. and gonzlez-d A z P.F. (1980) -Ultrastructural study of apatites in human urinary

    calculi.Calcif.TissueInt.,31,93-108.sudA h., yAshiMA M., KAKihAnAM.andyoshiMurAM. (1995) -Monoclinic hexagonal phasetransition in hydroxyapatite studied by x-raypowder diffraction and differential scanningcalorimeter techniques.J.Phys.Chem.,99,6752-

    6754.sudArsAnAnK.andyoungR.A.(1969)-Significant

    precision in crystal structural details: Holly

    Springs hydroxyapatite.ActaCryst.,B25,1534-1543.tAnAhAshi M., KoKubo t., nAKAMurA t., KAtsurAY.

    andnAgAnoM.(1996)-Ultrastructural study ofan apatite layer formed by a biomimetic process

    and its bonding to bone.Biomaterials,17,47-51.wAng c.K., chern lin J.h., Ju c.p., ongH.C.and

    chAngR.P.H.(1997)-Structural characterizationof pulsed laser-deposited hydroxyapatite film on

    titanium substrate.Biomaterials,18,1331-1338.yoon K., buenAgAR.and rodAnR.A.(1987)-

    Tissue specifity and development expression of rat

    osteopontin.Biochem.Biophys.Res.Commun.,148,1129-1136.

    youngR.A.andholcoMbD.W.(1982)-Variabilityof hydroxyapatite preparations.Calcif.TissueInt.,34,S17-S32.

  • 7/29/2019 Growth of Hydroxyapatite crystals from solutions with pH controlled by novel vapor diffusion techniques. Effects o

    26/26