groundwater investigation and possible zones identification...

12
542 INDIAN J MAR SCI. VOL 43 (4) APRIL 2014 Groundwater investigation and possible zones identification through schlumberger resistivity data using GIS tools in Omalur Taluk, Salem District, Tamil Nadu, India * D. Karunanidhi 1 , G. Vennila 2 , M. Suresh 3 & R. Rangarajan 4 1 Department of Civil Engineering , Jayam College of Engineering and Technology, Dharmapuri – 636 813, India 2 Department of Civil Engineering, K S Rangasamy College of Technology, Tiruchungode – 637 215, India 3 Department of Geology, Periyar University, Periyar Palkalai Nagar, Salem – 636 011, India 4 Groundwater Division, -National Geophysical Research Institute, Council of Scientific and Industrial Research, Uppal Road , Hyderabad – 500 007, India [E-Mail: [email protected]; [email protected]; [email protected]; [email protected] ] Received 7 February 2013; revised 13 February 2013 In the present investigation 50 ( Vertical electrical sounding) survey were carried out in the study area. Field data were interpreted by curve matching techniques in IPI2WIN software to determine the resistivity and thickness of the different layers. By using conventional GIS method, the spatial distribution maps for weathered zone and fracture zones resistivity and thicknesses were prepared. Integration of the said themes was carried out in GIS. Integration analysis was carried out with weathered zone thickness and a resistivity map. This map was superposed over geology map. To locate the shallow groundwater zones. Overlay analysis was used in the thickness of first and second layer fracture zone with the corresponding resistivity maps. This map was superposed over geology map. The suitable zones for groundwater were delineated from first layers combinations of low resistivity with more thickness in areas occupied by Dunite, hornblende-biotite-gneisses and charnockite. Depth for the construction of tube-wells and dug-wells were suggested in the present investigation. Spatial distribution variation results are given in the findings. [Keywords: Geographic Information System (GIS), Vertical Electrical Sounding (VES), Dug well, Tube well] * For Correspondence is still a very challenging task. Geophysical surveys for groundwater exploration in hard rock areas have been attempted by many authors 8 to17 .Vertical electrical sounding (i.e. Schlumberger sounding) is effectively used for groundwater studies due to the simplicity of the technique, easy interpretation and rugged nature of the associated instrumentation. The technique is widely used in soft and hard rock areas 18,19,20 . However, groundwater investigations in hard rock areas are often more difficult, as tube- wells must be located exactly to be successful. Tube-wells drilled without proper geophysical and hydrogeological study often fail to produce groundwater. In the present study, detailed geophysical study was conducted. The interpreted Introduction GIS has emerged as a powerful technology for instruction, for research, and for building the stature of programs 1,2,3 . GIS is an important technology for geologists 4 . Groundwater is the largest available source of fresh water. It has become crucial not only to find out groundwater potential zones, but also to monitor and conserve this important resource 5 . GIS Overlay analysis is highly helpful in locating the groundwater potential zones 6,7 . Schlumberger resistivity method is the most suitable method for groundwater investigations in hard rock area compared to other geophysical methods. Delineation of fracture zones in low permeability hard rock area Indian Journal of Geo-Marine Sciences Vol. 43(4), April 2014, pp. 542-553

Upload: others

Post on 02-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • 542 INDIAN J MAR SCI. VOL 43 (4) APRIL 2014

    Groundwater investigation and possible zones identification throughschlumberger resistivity data using GIS tools in Omalur Taluk, Salem

    District, Tamil Nadu, India*D. Karunanidhi1 , G. Vennila2 , M. Suresh3 & R. Rangarajan4

    1Department of Civil Engineering , Jayam College of Engineering and Technology,

    Dharmapuri – 636 813, India2Department of Civil Engineering, K S Rangasamy College of Technology, Tiruchungode – 637 215, India

    3Department of Geology, Periyar University, Periyar Palkalai Nagar, Salem – 636 011, India4Groundwater Division, -National Geophysical Research Institute, Council of Scientific and Industrial Research, Uppal Road ,

    Hyderabad – 500 007, India

    [E-Mail: [email protected]; [email protected]; [email protected]; [email protected] ]

    Received 7 February 2013; revised 13 February 2013

    In the present investigation 50 ( Vertical electrical sounding) survey were carried out in the study area. Field data wereinterpreted by curve matching techniques in IPI2WIN software to determine the resistivity and thickness of the differentlayers. By using conventional GIS method, the spatial distribution maps for weathered zone and fracture zones resistivityand thicknesses were prepared. Integration of the said themes was carried out in GIS. Integration analysis was carried outwith weathered zone thickness and a resistivity map. This map was superposed over geology map. To locate the shallowgroundwater zones. Overlay analysis was used in the thickness of first and second layer fracture zone with the correspondingresistivity maps. This map was superposed over geology map. The suitable zones for groundwater were delineated from firstlayers combinations of low resistivity with more thickness in areas occupied by Dunite, hornblende-biotite-gneisses andcharnockite. Depth for the construction of tube-wells and dug-wells were suggested in the present investigation. Spatialdistribution variation results are given in the findings.

    [Keywords: Geographic Information System (GIS), Vertical Electrical Sounding (VES), Dug well, Tube well]

    * For Correspondence

    is still a very challenging task. Geophysical surveysfor groundwater exploration in hard rock areas havebeen attempted by many authors8 to17.Verticalelectrical sounding (i.e. Schlumberger sounding)is effectively used for groundwater studies due tothe simplicity of the technique, easy interpretation andrugged nature of the associated instrumentation.The technique is widely used in soft and hard rockareas18,19,20. However, groundwater investigationsin hard rock areas are often more difficult, as tube-wells must be located exactly to be successful.Tube-wells drilled without proper geophysical andhydrogeological study often fail to producegroundwater. In the present study, detailedgeophysical study was conducted. The interpreted

    Introduction

    GIS has emerged as a powerful technology forinstruction, for research, and for building the statureof programs1,2,3. GIS is an important technology forgeologists4. Groundwater is the largest availablesource of fresh water. It has become crucial not onlyto find out groundwater potential zones, but also tomonitor and conserve this important resource5. GISOverlay analysis is highly helpful in locating thegroundwater potential zones6,7. Schlumbergerresistivity method is the most suitable method forgroundwater investigations in hard rock areacompared to other geophysical methods. Delineationof fracture zones in low permeability hard rock area

    Indian Journal of Geo-Marine SciencesVol. 43(4), April 2014, pp. 542-553

  • 543KARUNANIDHI et al: GROUNDWATER WATER INVESTGATION USING GIS TOOLS

    parameters and the goodness of fit in the curve fittingalgorithm are expressed in terms of curve fitting error(less than 10). Resistivity of different layers and thecorresponding thickness are reproduced by a numberof inversions until the model parameters of all theVES curves are totally resolved with the fitting error.These results are taken into GIS platform, theirattributes are added and analyzed in ArcGIS version9.3 software. Spatial analysis tools were used for thepreparation of interpolation map. Maps wereinterpolated by using inverse distance methods toarrive the spatial distribution map. Then, these mapswere integrated one over the other to find out the bestcombinations for groundwater targeting, resulting intwo kinds of maps are follow as, first to describe theshallow depth of groundwater such as its weatheredzone thickness and resistivity. Second one of theresults such as its fracture zone first layer resistivity,thickness, fracture zone second layer resistivity andthickness. Geological map was collected fromGeological Survey of India. The map was traced,registered and digitized and then clipped in the studyarea geology map.

    Results and Discussion

    The interpreted sounding results show the top soilthickness and resistivity, weathered zone thicknessand resistivity, first fracture zone thickness and

    results were taken in to GIS. In GIS, multiple thematicmaps overlay analyses were carried out.

    Materials and Methods

    Omalur Taluk, Salem District is an interior partof Tamil Nadu with an area of 666.88 km2 and isbounded (Fig. 1) by Dharmapuri district in the north,Tiruvannamalai in the northeast, Villuppuram in the

    Southeast, Erode in the West and Namakkal in thesouth. Omalur taluk lies between latitudesN 11°36’21” and 11°57’43”, longitudes E 77°52’57”and 78°14’36”. Major source for groundwater in thestudy area is rainfall during monsoon season. Averageannual rainfall is about 957 mm.

    The study area base map was prepared from Talukmap registration in GIS environment with referenceto the toposheets 58 E/13, 14, 58I/1 and 2 of 1:50,000scale. Schlumberger vertical electrical soundings(VES) survey was carried out at 50 locations (Fig.1),with the maximum electrode spacing of 300 m. Thecurrent electrode (AB/2) spacing varied from 1 to 150 mand the potential electrode (MN/2) spacing variedfrom 0.5 to 15 m. All the data were plotted in thefield to check the quality of data and to avoidmistakes. Field data were interpreted by curvematching techniques. For this work, the computersoftware IPI2WIN Software was also used. Thedegree of uncertainty of the computed model

    Table 1. Geology – GIS Spatial Distribution Results

    Rock Types Area in Km2

    Charnockite - Charnockite Group 263.37

    Amphibolite - Satyamangalam Group 0.74

    Fuchsite quartzite - Satyamangalam 3.26Group

    Fissile Hornblende biotite gneiss - 367.78Bhavani Gneiss (Peninsular GneissYounger)

    Laterite - Quaternary 4.75

    Pegmatite - Younger Intrusive 3.95

    Syenite (Jalakandapuram) - 6.61

    Alkali Complex

    Dunite - Alkali Complex 14.95

    Peridotite - Alkali Complex 1.25

    Pyroxenite, Dunite, Peridotite 0.23

    Fig. 1 Location of the Omalur Taluk and the Geophysicalsurvey location marked in points with Geology of the study

    area details are given in figure.

  • 544 INDIAN J MAR SCI. VOL 43 (4) APRIL 2014

    covering major parts of the study area. The spatialdistribution results of the geological units are givenin the Table 2. Hornblende-biotite-gneiss is relativelyporous and can be considered as favorable forgroundwater storage (Fig. 1). This rock type and itsassociated combinations are usually acted as afavorable zone for groundwater.

    resistivity and second fracture zone thickness andresistivity (Table 1). This result was taken as pointinformation in GIS environment.

    The study area is mainly underlined by FissileHornblende biotite gneiss and Charnockite. Thesetypes of rocks are the dominant group of rocks

    Table 2. Geophysical Investigations Results

    Geophysical Resistivity Ohm-m /Thickness m Total

    Survey Locations ñ1 & h

    2 & h

    3 & h

    4 & h

    5Thickness

    ‘h’m

    Elattur 11.6/1.61 77/39.82 3890/42.9 - - 84.33

    Muttanampatti 1.95/0.93 52507/20.8 51555/57.3 50659/56.2 - 135.23

    Periyavadagampatti 10.7/2.26 487/2.18 37/7.5 30563/29.12 672/49.1 90.16

    Andiyur 15.1/2.69 4012/8.02 4012/7.52 96130/16.1 96130/28.1 62.43

    Maniyakkaranur 15.9/1.46 1.43/1.85 7457/21.2 29.4/52.8 - 77.31

    Rangappanur 43.4/0.5 30.2/6.24 2393/21.3 2317/26.3 - 54.34

    Agraharam 0.019/0.5 8.07/3.41 539/24.9 0.027/53.1 - 81.91

    Chinna Yercaud 4.49/1.09 38.6/9.46 235/3.63 5862/6.42 - 20.6

    Danishpet 24.2/0.5 37.1/6.77 24.4/17.1 9584/33.3 - 57.67

    Bommiyampatti 525/0.5 85.4/1.58 11.7/6.54 2.44/27.1 - 37.72

    Marakkottai 1.76/0.493 2357/8.2 7599/8.56 4979/0.104 - 17.357

    Kanjinayakkanpatti 10.6/0.672 8.68/42.2 67.6/46.328 - - 89.2

    Chinna Nagalur 12.3/0.5 104/7.54 54222/28.6 56457/48.4 - 85.04

    Tinnappatti 0.173/0.5 315/2.03 36965/19 2.54/78.5 - 100.03

    Kanjeri 22.8/1.67 31.7/7.72 10386/17 70542/45.1 - 71.49

    Kullakavundanur 150/1.68 1.28/6.28 59459/42.1 104/41.7 - 91.76

    Umbalikkampatti 18.9/4.6 12089/3.03 640/53.6 4371/57.5 - 118.73

    Semmandapatti 17.2/0.5 163.9/8.9 21843/31.5 - - 40.9

    Darapuram 11/1.93 51682/15.2 2379/23.7 6838/43.3 - 84.13

    Sattur 28.5/0.5 9.23/9.53 1756/13.2 11655/72.9 - 96.13

    Olaippatti 1.11/0.5 3.96/4.04 381/5.54 398/38.9 - 48.98

    Maramangalam 1.85/0.051 66792/0.255 34.9/36.5 9037/79 - 115.806

    Palikkadai 1.77/0.5 2126/24.9 3.19/30.3 3.31/33.1 - 88.8

    Balbakki 1.36/0.5 4.285/3.86 27196/8 187/7.39 14063/73 92.75

    Mailappalaiyam 6015/2.93 4.74/16.3 6542/30.5 84.5/52.8 - 102.53

    Siranganur 55.2/1.82 251/0.812 10.8/16.3 4546/109 - 127.932

    Amarakundi 809/1.16 855/0.877 163/39.4 32.6/39.7 - 81.137

    Periyerippatti 22/1.83 2244/3.65 152/20.1 3692/53.6 - 79.18Table 2 contd.

  • 545KARUNANIDHI et al: GROUNDWATER WATER INVESTGATION USING GIS TOOLS

    Weathered Zone – Spatial Distribution Results

    Weathered zone resistivity spatial distributionmap (Fig. 2) was prepared using the geophysicalresults. The spatial distribution map results are givenin Table 3. In the present investigation, weatheredzone resistivity was classified in to four classes, suchas VLR, LR, MR and HR. Groundwater potentialzones are related by VLR (Very low resistivity). Verylow resistivity zones cover an area of 73.52 km2.

    Similarly weathered zone thickness spatialdistribution map (Fig. 3) was prepared using GIS. Thespatial distribution results are given in Table 4.Weathered zone thickness was classified in to fourclass, such as LT, MT, HT, and VHT. The bestgroundwater potential areas are indicated by VHT(Very high thickness). Very high thickness zones coveran area of 30.75 km2.

    Vellakavundanur 6545/0.547 37.1/3.7 56796/35.1 3978/36.1 - 75.447

    Omalur 32.8/1.95 4215/4.7 116/18.4 - - 25.05

    Vettalaikkaranur 58.6/1.9 126/2.36 527/42.8 7715/25.7 - 72.76

    Karuppur 0.104/0.949 31.3/2.59 36.9/5.93 5289/35.4 - 44.869

    Chinnakovundanur 16.2/0.51 1261/5.8 1082/16 5990/52.7 - 75.01

    Vellakkalpatti 39.7/0.902 0.826/1.09 4528/25.9 174/15.6 - 43.492

    Chikkampatti 0.63/1.86 3756/2.59 0.189/11.17 490/27.4 - 43.02

    Mottaiyanteruvu 10.1/2.94 97639/16.6 142/43.6 2614/31.3 - 94.44

    Ellavur 0.627/0.5 11.5/1.1 5.11/19 0.603/43.7 - 64.3

    Pakalpatti 5.31/0.5 10.21/5.43 13.4/15.9 11695/31.3 497/79.7 132.83

    Nallakovundanpatti 0.031/0.5 13.2/2.49 27/4.68 1903/25.7 - 33.37

    Nattakkattanur 2.56/1.19 8.71/7.52 1.48/12.5 22296/2.19 - 23.4

    Tadikaranpatti 3.54/0.5 2797/0.175 24.4/4.93 32041/53.1 1228/41.3 100.005

    Kuttakkattanur 14.4/0.5 2382/0.76 56.6/3.46 614/101 - 105.72

    Attikkattanur 32.3/1.22 228/1.6 22.5/35.1 6326/53.9 - 91.82

    Kanganur 20.6/3.31 88/9.23 2665/5.75 299/26.2 - 44.49

    Maramangalattupatti24.8/1.48 5.15/35 3.82/25.2 9338/85 - 146.68

    Sarkar Gollapatti 72.7/3.74 20.3/0.789 3827/1.66 39.3/9.71 1303/19.6 35.499

    Chinnappampatti 1479/0.331 33.4/3.28 4240/13.9 1.66/106 - 123.511

    Mattaiyampatti 23.3/3.86 2.73/1.55 585/5.29 4491/24.4 59110/80.4 115.5

    Sittanur 95.6/4.01 106/12 503/28.3 95.5/19.8 - 64.11

    Konangiyur 8133/0.016 78/0.918 344/2.62 31.6/8.68 3599/74.7 86.934

    Fig. 2 Weathered Zone resistivity of the study area withspatially represented and land marks.

  • 546 INDIAN J MAR SCI. VOL 43 (4) APRIL 2014

    Spatial distribution results of first fracture zone

    Spatial resistivity distribution map (Fig. 4) wasprepared using the geophysical results. Results ofthe spatial distribution map are given in the Table 3.In the present investigation, first layer resistivity canbe classified in to four classes, such as First FractureZone Very Low Resistivity, First Fracture Zone LowResistivity, First Fracture Zone Medium Resistivityand First Fracture Zone High Resistivity.Groundwater potential zones are relates by 1VLR(Very Low Resistivity). Very low resistivity zonescover an area of 121.07 km2. Similarly spatialdistribution map of first layer thickness (Fig. 5) wasprepared using GIS which is given in Table 4. Thefirst layer thickness can also be classified in to four

    Fig. 3 Weathered Zone thickness of the study area withspatially represented and land marks.

    Fig. 4 First Fracture Zone resistivity of the study area withspatially represented and land marks.

    Table 3 Spatial distribution results of various layers resistivity

    Class Weathered Zone First Fracture Zone Second Fracture ZoneResistivity in km2 Resistivity in km2 Resistivity in km2

    VLR 73.52 121.07 92.16

    LR 344.71 199.40 279.25

    MR 113.82 199.12 147.33

    HR 3.3 15.82 16.66

    classes, such as First layer Low Thickness, First layerMedium Thickness, First layer High Thickness andFirst layer Very High Thickness out of which the bestgroundwater potential area is indicated by VHT (VeryHigh Thickness). Very high thickness zones cover anarea of 53.89 km2.

    Spatial distribution results of second layer

    The spatial resistivity distribution map (Fig. 6)and the results of spatial distribution (Table 3)indicates that second layer resistivity can be classifiedin to four classes, such as Second Layer Very LowResistivity, Second Layer Low Resistivity SecondLayer Medium Resistivity and Second Layer High

  • 547KARUNANIDHI et al: GROUNDWATER WATER INVESTGATION USING GIS TOOLS

    potential area is indicated by VHT (Very HighThickness). The possibility of the best groundwaterpotential areas is related to VHT (Very HighThickness) zones. Very high thickness zones coveran area of 113.78 km2.

    GIS Analysis

    The weathered zone resistivity map wassuperposed over the weathered zone thickness map.Output map 1 is designated as weathered zone –

    Fig. 5 First Fracture Zone thickness of the study area withspatially represented and land marks.

    Table 4 Spatial distribution results of various layers thickness

    Class Weathered Zone First Fracture Zone Second Fracture Zone

    Thickness in km2 Thickness in km2 Thickness in km2

    VHT 30.75 53.89 113.78

    HT 196.40 224.24 184.53

    MT 211.23 199.24 192.93

    LT 97.02 58.04 44.17

    Resistivity. Deeper groundwater favorable zonesrelate to VLR (Very Low Resistivity) values. Verylow resistivity zones cover an area of 92.16 km2.

    Similarly spatial distribution map of second layerthickness (Fig. 7) was prepared using GIS which isgiven in the Table 4. The second layer thickness canalso be classified in to four classes, such as Secondlayer Very Low Thickness, Second layer LowThickness, Second layer Medium Thickness andSecond layer High Thickness, the best groundwater

    Fig. 6 Second Fracture Zone resistivity of the study area withspatially represented and land marks.

  • 548 INDIAN J MAR SCI. VOL 43 (4) APRIL 2014

    Fig. 7 Second Fracture Zone thickness of the study area withspatially represented and land marks.

    Resistivity and thickness integration map. This outputmap 1 was superposed over Geology map and theresult output map-2 (Fig. 8). The output map-2 showsthat there are 62 combinations (Table 5). Thefollowing combinations are the highly expected zone

    Table 5– Resistivity and thickness integration resultedmap and geology map overlaid results of weathered zone

    Sl.No. Class Area in

    1st Layer 2nd Layer Geology Km2

    1 WLT - WVLR - Ac 0.513

    2 WLT - WVLR - Fq 0.004

    3 WLT - WVLR - Hbg 26.990

    4 WLT - WVLR - Uma 0.351

    5 WLT - WVLR - Pdp 0.009

    6 WLT - WLR - Ac 1.493

    7 WLT - WLR - Fq 0.003

    8 WLT - WLR - Hbg 55.478

    9 WLT - WLR - Sy 2.128

    10 WLT - WLR - Uma 0.166

    11 WLT - WMR - Ac 0.082

    12 WLT - WMR - Hbg 6.203

    13 WLT - WMR - Sy 2.765

    14 WLT - WMR - Uma 0.070

    15 WLT - WHR - Hbg 0.769

    16 WMT - WVLR - Ac 2.369

    17 WMT - WVLR - Amp 0.336

    18 WMT - WVLR - Fq 0.001

    19 WMT - WVLR - Hbg 31.664

    20 WMT - WVLR - Lt 0.324

    21 WMT - WVLR - Sy 0.480

    22 WMT - WVLR - Uma 3.694

    23 WMT - WVLR - Pdp 0.110

    24 WMT - WLR - Ac 36.729

    25 WMT - WLR - Amp 0.400

    26 WMT - WLR - Fq 1.417

    27 WMT - WLR - Hbg 80.789

    28 WMT - WLR - Lt 0.681

    29 WMT - WLR - Sy 0.008

    30 WMT - WLR - Uma 7.662

    Fig. 8 Weathered Zone thickness and resistivity with Geologyintegration output map. This map indicated that shallow depth

    of groundwater prospective zones.

  • 549KARUNANIDHI et al: GROUNDWATER WATER INVESTGATION USING GIS TOOLS

    31 WMT - WLR - Umb 0.254

    32 WMT - WLR - Pdp 0.108

    33 WMT - WMR - Ac 8.811

    34 WMT - WMR - Hbg 34.330

    35 WMT - WMR - Sy 0.252

    36 WMT - WMR - Uma 0.790

    37 WMT - WHR - Hbg 0.029

    38 WHT - WVLR - Ac 1.612

    39 WHT - WVLR - Hbg 2.321

    40 WHT - WVLR - Uma 0.173

    41 WHT - WLR - Ac 57.394

    42 WHT - WLR - Fq 1.061

    43 WHT - WLR - Hbg 71.801

    44 WHT - WLR - P 3.301

    45 WHT - WLR - Sy 0.027

    46 WHT - WLR - Uma 1.502

    47 WHT - WLR - Umb 1.001

    48 WHT - WMR - Ac 22.088

    49 WHT - WMR - Hbg 30.375

    50 WHT - WMR - P 0.194

    51 WHT - WMR - Sy 0.948

    52 WHT - WMR - Uma 0.046

    53 WHT - WHR - Hbg 2.340

    54 WHT - WHR - Uma 0.224

    55 WVHT - WVLR - Ac 0.311

    56 WVHT - WVLR - Hbg 2.154

    57 WVHT - WVLR - Uma 0.105

    58 WVHT - WLR - Ac 8.728

    59 WVHT - WLR - Hbg 12.421

    60 WVHT - WLR - Uma 0.166

    61 WVHT - WMR - Ac 5.076

    62 WVHT - WMR - Hbg 1.792

    of groundwater potential zone. VLRVHT in Dunitecombination covers 0.11 km2, VLRVHT inHornblende-biotite-gneiss combination covers2.15 km2 and VLRVHT in Charnockite combinationcovers an area of 0.31 Km2. It is also verified in thefield. This combination is noticed in the foot hill areasand river course. This area is recommended for theconstruction of open wells. In this combination

    shallow depth of groundwater zone is predicted andverified in the field.

    The first fracture zone resistivity map wassuperposed over first fracture zone thickness map.The output map-1 is designated as first fracture zone– Resistivity and thickness integration map. Similarly,second fracture zone resistivity map was superposedover second fracture zone thickness map. The outputmap-2 is designated as second fracture zone –Resistivity and thickness integration map. The outputmap of 1st layer was superposed over the output mapof 2nd layer giving a final output map. This final outputmap was superposed over Geology map giving theresultant output map (Fig. 9) showing 229

    Fig. 9 First and Second Fracture Zone thickness andresistivity with Geology integration output map. This map

    indicated that deeper depth of groundwater prospective zones.

    combinations (Table 6). The combinations likeFVHT/VLR-SVHT/VLR in Dunite 0.04 km2, FVHT/VLR-SVHT/VLR in hornblende-biotite-gneiss arepotential groundwater zones which are also verifiedin the field. This combination in alluvium is noticedin the foot hill areas and river course and isrecommended for the construction of dug wells ortube wells.

  • 550 INDIAN J MAR SCI. VOL 43 (4) APRIL 2014

    Table 6–Resistivity and thickness integration resultedmap and geology map overlaid results of first and second

    layers

    Sl.No. Class Area in

    1st Layer 2nd Layer Geology Km2

    1 FLT -FVLR-SLT- SVLR-Hbg 2.04

    2 FLT -FVLR-SLT- SLR-Ac 0.12

    3 FLT -FVLR-SMT- SVLR-Hbg 3.08

    4 FLT -FVLR -SMT- SLR-Hbg 2.27

    5 FLT -FVLR -SMT- SMR-Ac 0.94

    6 FLT -FVLR -SMT- SMR-Hbg 0.36

    7 FLT -FVLR -SHT- SVLR-Hbg 3.40

    8 FLT -FVLR -SHT- SLR-Hbg 1.33

    9 FLT -FVLR -SHT- SMR-Hbg 7.85

    10 FLT -FVLR -SVHT- SVLR-Hbg 1.46

    11 FLT -FVLR -SVHT- SVLR-Sy 0.42

    12 FLT -FVLR -SVHT- SLR-Hbg 7.80

    13 FLT -FVLR -SVHT- SLR-Sy 0.13

    14 FLT -FVLR -SVHT- SLR-Uma 0.00

    15 FLT -FVLR -SVHT- SMR-Hbg 0.94

    16 FLT -FLR -SLT - SVLR-Hbg 0.01

    17 FLT -FLR -SLT - SLR-Ac 0.78

    18 FLT -FLR -SLT - SLR-Hbg 1.58

    19 FLT -FLR -SLT - SMR-Ac 0.32

    20 FLT -FLR -SLT - SHR-Hbg 1.95

    21 FLT -FLR -SMT - SVLR-Hbg 0.51

    22 FLT -FLR -SMT - SVLR-Uma 0.00

    23 FLT -FLR -SMT - SLR-Hbg 1.51

    24 FLT -FLR -SMT - SMR-Ac 0.11

    25 FLT -FLR -SMT - SMR-Hbg 0.01

    26 FLT -FLR -SMT - SHR-Hbg 0.54

    27 FLT -FLR -SHT - SVLR-Hbg 1.01

    28 FLT -FLR -SHT - SVLR-Uma 0.01

    29 FLT -FLR -SHT - SLR-Hbg 2.16

    30 FLT -FLR -SHT - SMR-Hbg 0.30

    31 FLT -FLR -SVHT- SVLR-Hbg 6.43

    32 FLT -FLR -SVHT- SVLR-Uma 0.76

    33 FLT -FLR -SVHT- SLR-Hbg 6.41

    34 FLT -FLR -SVHT- SLR-Sy 0.42

    35 FLT -FLR -SVHT- SMR-Hbg 0.21

    36 FLT -FMR -SLT- SVLR-Hbg 0.71

    37 FLT -FMR -SLT - SLR-Hbg 0.13

    38 FLT -FMRSLT - SMR-Ac 0.00

    39 FMT -FVLR -SLT - SVLR-Hbg 0.17

    40 FMT -FVLR -SLT - SMR-Amp 0.19

    41 FMT -FVLR -SLT - SMR-Hbg 2.90

    42 FMT -FVLR -SMT - SVLR-Hbg 1.99

    43 FMT -FVLR -SMT - SVLR-Sy 1.18

    44 FMT -FVLR -SMT - SLR-Hbg 0.33

    45 FMT -FVLR -SMT - SMR-Ac 0.47

    46 FMT -FVLR -SMT - SMR-Amp 0.15

    47 FMT -FVLR -SMT - SMR-Hbg 8.97

    48 FMT -FVLR -SMT - SMR-Lt 0.01

    49 FMT -FVLR -SHT - SVLR-Hbg 2.38

    50 FMT -FVLR -SHT - SVLR-Sy 0.30

    51 FMT -FVLR -SHT - SLR-Amp 0.02

    52 FMT -FVLR -SHT - SLR-Hbg 16.18

    53 FMT -FVLR -SHT - SLR-Sy 0.89

    54 FMT -FVLR -SHT - SMR-Hbg 5.89

    55 FMT -FVLR -SVHT- SVLR-Hbg 2.15

    56 FMT -FVLR -SVHT -SVLR-Uma 0.20

    57 FMT -FVLR -SVHT -SLR-Hbg 13.57

    58 FMT -FVLR -SVHT -SLR-Sy 0.22

    59 FMT -FVLR -SVHT -SLR-Uma 0.06

    60 FMT -FVLR -SVHT -SMR-Hbg 0.42

    61 FMT -FLR -SLT - SVLR-Hbg 1.48

    62 FMT -FLR -SLT - SLR-Ac 0.04

    63 FMT -FLR -SLT - SLR-Hbg 4.01

    64 FMT -FLR -SLT - SMR-Ac 0.38

    65 FMT -FLR -SLT - SMR-Hbg 0.73

    66 FMT -FLR -SLT - SHR-Hbg 0.00

    67 FMT -FLR -SMT - SVLR-Hbg 0.01

    68 FMT -FLR -SMT - SLR-Ac 0.00

    69 FMT -FLR -SMT - SLR-Hbg 7.19

    70 FMT -FLR -SMT - SLR-Sy 0.08

    71 FMT -FLR -SMT - SMR-Ac 9.90

    72 FMT -FLR -SMT - SMR-Fq 0.23

    73 FMT -FLR -SMT - SMR-Hbg 3.87

    74 FMT -FLR -SMT - SMR-Lt 0.31

    75 FMT -FLR -SMT - SHR-Hbg 3.58

  • 551KARUNANIDHI et al: GROUNDWATER WATER INVESTGATION USING GIS TOOLS

    76 FMT -FLR -SHT - SVLR-Hbg 0.87

    77 FMT -FLR -SHT - SLR-Ac 0.38

    78 FMT -FLR -SHT - SLR-Hbg 8.30

    79 FMT -FLR -SHT - SMR-Ac 1.24

    80 FMT -FLR -SHT - SMR-Hbg 0.74

    81 FMT -FLR -SHT - SMR-Lt 0.10

    82 FMT -FLR -SHT - SMR-P 0.12

    83 FMT -FLR -SHT - SHR-Ac 0.04

    84 FMT -FLR -SHT - SHR-Lt 0.07

    85 FMT -FLR -SVHT -SVLR-Hbg 12.64

    86 FMT -FLR -SVHT -SVLR-Uma 1.99

    87 FMT -FLR -SVHT -SLR-Hbg 23.79

    88 FMT -FLR -SVHT -SLR-Sy 0.06

    89 FMT -FLR -SVHT -SLR-Uma 3.77

    90 FMT -FLR -SVHT -SMR-Ac 1.66

    91 FMT -FLR -SVHT -SMR-Hbg 0.69

    92 FMT -FLR -SVHT -SMR-P 0.35

    93 FMT -FMR -SLT -SVLR-Hbg 4.50

    94 FMT -FMR -SLT -SLR-Ac 0.00

    95 FMT -FMR -SLT -SLR-Hbg 2.51

    96 FMT -FMR -SLT -SMR-Ac 0.06

    97 FMT -FMR -SMT -SVLR-Hbg 1.08

    98 FMT -FMR -SMT -SLR-Ac 1.31

    99 FMT -FMR -SMT -SLR-Hbg 6.66

    100 FMT -FMR -SMT -SLR-Sy 0.54

    101 FMT -FMR -SMT -SMR-Ac 5.91

    102 FMT -FMR -SMT -SMR-Fq 0.24

    103 FMT -FMR -SMT -SMR-Hbg 4.12

    104 FMT -FMR -SMT -SHR-Hbg 1.55

    105 FMT -FMR -SHT -SVLR-Hbg 0.26

    106 FMT -FMR -SHT -SLR-Ac 0.58

    107 FMT -FMR -SHT -SLR-Fq 0.14

    108 FMT -FMR -SHT -SLR-Hbg 1.21

    109 FMT -FMR -SHT -SLR-P 0.11

    110 FMT -FMR -SHT -SMR-Ac 11.09

    111 FMT -FMR -SHT -SMR-Fq 0.37

    112 FMT -FMR -SHT -SMR-Hbg 0.10

    113 FMT -FMR -SHT -SMR-Lt 0.00

    114 FMT -FMR -SHT -SMR-P 0.49

    115 FMT -FMR -SHT -SHR-Ac 4.37

    116 FMT -FMR -SHT -SHR-Lt 0.51

    117 FMT -FMR -SVHT -SVLR-Ac 0.03

    118 FMT -FMR -SVHT -SLR-Ac 1.54

    119 FMT -FMR -SVHT -SLR-Hbg 1.14

    120 FMT -FMR -SVHT -SMR-Ac 1.17

    121 FMT -FMR -SVHT -SMR-P 0.03

    122 FMT -FHR -SVHT -SVLR-Ac 0.25

    123 FMT -FHR -SVHT -SLR-Ac 0.10

    124 FMT -FHR -SVHT -SMR-Ac 0.02

    125 FHT -FVLR -SMT -SVLR-Hbg 0.68

    126 FHT -FVLR -SMT -SVLR-Sy 0.12

    127 FHT -FVLR -SHT -SVLR-Ac 0.20

    128 FHT -FVLR -SHT -SVLR-Hbg 3.26

    129 FHT -FVLR -SHT -SVLR-Sy 1.56

    130 FHT -FVLR -SHT -SLR-Amp 0.13

    131 FHT -FVLR -SHT -SLR-Hbg 8.02

    132 FHT -FVLR -SVHT -SVLR-Hbg 6.01

    133 FHT -FVLR -SVHT -SVLR-Uma 0.11

    134 FHT -FVLR -SVHT -SLR-Amp 0.26

    135 FHT -FVLR -SVHT -SLR-Hbg 5.14

    136 FHT -FVLR -SVHT -SLR-Uma 0.17

    137 FHT -FLR -SLT -SVLR-Hbg 0.31

    138 FHT -FLR -SLT -SLR-Ac 0.02

    139 FHT -FLR -SLT -SLR-Hbg 1.40

    140 FHT -FLR -SMT -SVLR-Hbg 6.43

    141 FHT -FLR -SMT -SVLR-Uma 0.01

    142 FHT -FLR -SMT -SLR-Ac 6.77

    143 FHT -FLR -SMT - SLR-Hbg 14.21

    144 FHT -FLR -SMT - SLR-Uma 2.81

    145 FHT -FLR -SMT - SLR-Pdp 0.06

    146 FHT -FLR -SMT - SMR-Ac 2.49

    147 FHT -FLR -SMT - SMR-Uma 0.63

    148 FHT -FLR -SHT - SVLR-Ac 1.66

    149 FHT -FLR -SHT - SVLR-Hbg 2.87

    150 FHT -FLR -SHT - SVLR-Uma 0.36

    151 FHT -FLR -SHT - SLR-Ac 3.30

    152 FHT -FLR -SHT - SLR-Hbg 17.15

    153 FHT -FLR -SHT - SLR-Uma 0.11

    154 FHT -FLR -SHT - SMR-Ac 1.71

    155 FHT -FLR -SHT - SMR-Hbg 0.04

  • 552 INDIAN J MAR SCI. VOL 43 (4) APRIL 2014

    156 FHT -FLR -SVHT - SVLR-Hbg 1.24

    157 FHT -FLR -SVHT - SVLR-Uma 0.13

    158 FHT -FLR -SVHT - SLR-Ac 0.02

    159 FHT -FLR -SVHT - SLR-Hbg 4.32

    160 FHT -FLR -SVHT - SLR-Uma 2.77

    161 FHT -FMR -SLT - SVLR-Hbg 5.03

    162 FHT -FMR -SLT - SLR-Hbg 3.74

    163 FHT -FMR -SMT - SVLR-Hbg 4.09

    164 FHT -FMR -SMT - SVLR-Sy 0.07

    165 FHT -FMR -SMT - SLR-Ac 4.64

    166 FHT -FMR -SMT - SLR-Hbg 36.06

    167 FHT -FMR -SMT - SLR-Sy 0.54

    168 FHT -FMR -SMT - SMR-Ac 7.50

    169 FHT -FMR -SMT - SMR-Fq 1.44

    170 FHT -FMR -SMT - SMR-Hbg 8.45

    171 FHT -FMR -SMT - SMR-Uma 0.10

    172 FHT -FMR -SHT - SVLR-Ac 0.50

    173 FHT -FMR -SHT - SVLR-Hbg 0.49

    174 FHT -FMR -SHT - SLR-Ac 9.55

    175 FHT -FMR -SHT - SLR-Fq 0.00

    176 FHT -FMR -SHT - SLR-Hbg 4.25

    177 FHT -FMR -SHT - SLR-P 0.49

    178 FHT -FMR -SHT - SMR-Ac 29.66

    179 FHT -FMR -SHT - SMR-Fq 0.07

    180 FHT -FMR -SHT - SMR-Hbg 0.98

    181 FHT -FMR -SHT - SMR-P 1.25

    182 FHT -FMR -SHT - SMR-Umb 1.25

    183 FHT -FMR -SHT - SHR-P 0.01

    184 FHT -FMR -SVHT - SLR-Ac 0.00

    185 FHT -FMR -SVHT - SLR-Hbg 0.91

    186 FHT -FMR -SVHT - SMR-Ac 0.49

    187 FHT -FHR -SMT - SLR-Hbg 2.30

    188 FHT -FHR -SHT - SMR-Ac 1.21

    189 FHT -FHR -SHT - SMR-P 0.22

    190 FHT -FHR -SHT - SHR-Ac 1.90

    191 FHT -FHR -SHT - SHR-P 0.44

    192 FHT -FHR -SVHT - SMR-Ac 0.16

    193 FVHT -FVLR -SLT - SVLR-Hbg 0.71

    194 FVHT -FVLR -SMT - SLR-Hbg 2.08

    195 FVHT -FVLR -SMT - SLR-Uma 0.17

    196 FVHT -FVLR -SHT - SVLR-Hbg 0.54

    197 FVHT -FVLR -SHT - SVLR-Sy 0.09

    198 FVHT -FVLR -SHT - SLR-Ac 0.23

    199 FVHT -FVLR -SHT - SLR-Hbg 0.08

    200 FVHT -FVLR -SVHT- SLR-Hbg 0.71

    201 FVHT -FVLR -SVHT -SLR-Uma 0.04

    202 FVHT -FLR -SLT - SVLR-Ac 1.27

    203 FVHT -FLR -SLT - SVLR-Hbg 1.05

    204 FVHT -FLR -SLT - SLR-Ac 0.89

    205 FVHT -FLR -SLT - SLR-Hbg 2.39

    206 FVHT -FLR -SMT - SLR-Ac 0.40

    207 FVHT -FLR -SMT - SLR-Hbg 2.78

    208 FVHT -FLR -SMT - SLR-Uma 0.52

    209 FVHT -FLR -SMT - SLR-Pdp 0.16

    210 FVHT -FLR -SHT - SLR-Ac 1.92

    211 FVHT -FLR -SHT - SLR-Hbg 0.02

    212 FVHT -FLR -SHT - SMR-Ac 3.02

    213 FVHT -FLR -SVHT - SLR-Hbg 0.26

    214 FVHT -FLR -SVHT - SLR-Uma 0.21

    215 FVHT -FMR -SLT - SVLR-Ac 0.00

    216 FVHT -FMR -SLT - SLR-Ac 2.50

    217 FVHT -FMR -SLT - SLR-Hbg 0.24

    218 FVHT -FMR -SMT - SLR-Ac 6.06

    219 FVHT -FMR -SMT - SLR-Hbg 3.95

    220 FVHT -FMR -SMT - SMR-Ac 4.14

    221 FVHT -FMR -SMT - SMR-Hbg 0.10

    222 FVHT -FMR -SHT - SMR-Ac 8.11

    223 FVHT -FMR -SHT - SHR-Ac 0.03

    224 FVHT -FHR -SMT - SVLR-Hbg 0.01

    225 FVHT -FHR -SMT - SLR-Hbg 4.17

    226 FVHT -FHR -SHT - SVLR-Hbg 2.02

    227 FVHT -FHR -SHT - SLR-Hbg 1.02

    228 FVHT -FHR -SHT - SMR-Ac 0.34

    229 FVHT -FHR -SHT - SHR-Ac 1.68

    Conclusion

    The final integration map gives 62 combinationsof different lithology with weathered zone resistivityand thickness. VLRVHT in Dunite combinationcovers 0.11 km2, VLRVHT in Hornblende-biotite-

  • 553KARUNANIDHI et al: GROUNDWATER WATER INVESTGATION USING GIS TOOLS

    gneiss combination covers 2.15 km2 and VLRVHTin Charnockite combination covers an area of 0.31 km2.This is the most favorable zone for groundwaterpotential in the study area. After the investigation,field validation was done it in this area. This areaproves with good groundwater zones. Final map gives229 combinations (lithology along with first andsecond layer resistivity and thickness). The FVHT/VLR-SVHT/VLR in Dunite 0.04 km2, FVHT/VLR-SHT/SVLR in hornblende-biotite-gneiss 0.54 km2

    respectively are also good. This area is best forconstructing dug wells and bore wells. Thiscombination is noticed in the foot hill areas and rivercourse and is recommended for the construction ofdug wells or tube wells. It clearly reveals that theGeographic information system enables simultaneousevaluation of number of parameters for demarcatinggroundwater potential zone through overlay analysis.

    References

    1 Longley, Paul A. The academic success of GIS in geography:Problems and prospects. Journal of Geographical Systems,2000, 2 No. 1: 37 – 42.

    2 Openshaw, S. A view on the crisis in geography, or usingGIS to put humpty-dumpty back together again.Environment and Planning, 1991, A 23, No. 5: 621-628.

    3 Sui, Daniel and Richard Morrill. Computers and geography:From automated geography to digital earth. In Geographyand Technology, 2004, edited by Stanley D. Brunn, SusanL. Cutter, and J. W. Harrington, Jr. Dordrecht, NL: Kluwer.

    4 Baker, Thomas R., and Case, Steven B. 2000. Let GIS beyour guide. The Science Teacher 67, No. 7: 24-26. http://kangis.org/learning/publications/science teacher/print/tst0010 24. pdf.

    5 Rokade.V. M, Kundal. P and Joshi.A. K. Water resourcesDevelopment Action plan for Sasti Watershed, ChadrapurDistrict, Maharashtra using Remote sensing and GeographicInformation System. Jour. Indian. Soc. Remote Sensing,2004, Vol.32(4), pp.359-368.

    6 Rokade.V. M, Kundal. P and Joshi.A. K. Groundwaterpotential modelling through Remote *Sensing and GIS: Acase study from Rajura Taluka, Chandrapur District,Maharastra.Journal of Geological Society of India, 2007,Vol.69, May 2007, pp.943-948.

    7 Gurugnanam. B, Prabhakharan. N, Suvetha. M, Vasudevan.S, and Gobu. B Geographic Information Technologiesfor Hydrogeomorphological Mapping in Parts of VellarBasin,Central Tamilnadu, South India. Journal ofGeological Society of India, Vol. 72, Oct 2008, pp. 471-478.

    8 Flathe, H., Possibilities and limitations in applyinggeoelectrical methods to hydrogeological problems in thecoastal areas of North West Germany. GeophysicalProspecting, 1955, 3, 95–110.

    9 Zohdy, A. A. R., The use of Schlumberger and equatorialsoundings in ground-water investigations near El Paso,Texas. Geophysics, 1969, 34, 713–728.

    10 Fitterman, D. V., Stewart, M. T., Transient electromagneticsounding for groundwater. Geophysics, 1986, 51, 995–1005.

    11 Bernard, J., and Valla, P., Groundwater Exploration infissured media with electrical and VLF methods.Geoexploration, 1991, 27, 81-91.

    12 Ronning, Jan S., Lauritsen, and T., Mauring, E., LocatiNGbedrock fractures beneath alluvium using variousgeophysical methods. Journal of Applied Geophysics, 1995,34, 137 – 167.

    13 Kaikkonen, P., and Sharma, S. P., Delineation of near-surface structures using VLF and VLF-R data-an insightfrom the joint inversion result. The Leading Edge, 1997,16 (11), 1683-1686.

    14 Ramteke, R. S., Venugopal, K., Ghish, N., Krishnaiah, C.,Panvaikar, G. A., and Vaidya. S. D., Remote sensing andsurface geophysical techniques in the exploration ofgroundwater at Usha Ispat Ltd., Sindhurg Dist., Maharastra,India. Journal of IGU, 2001, 5 (1), 41-49.

    15 Krishnamurthy, N. S., Kumar, D., Rao Anand, V., Jain, S.C., and Ahmed, S., Comparison of surface and sub-surfacegeophysical investigations in delineating fracture zones.Current Science, 2003, 84 (9), 1242-1246.

    16 Sharma, S. P, Baranwal, V. C., Delineation of groundwaterbearing fracture zones in a hard rock area integrating verylow frequency electromagnetic and resistivity data. Journalof Applied Geophysics, 2005, 57, 155, 166.

    17 Porsani, J. L., Elis, V. R., Hiodo, F. Y., Geophysicalinvestigations for the characterization of fractured rockaquifers in Itu, SE Brazil. Journal of Applied Geophysics,2005, 57, 119-128.

    18 Van Overmeeren, R. A., Aquifer boundaries explored bygeoelectrical measurements in the coastal plain of Yemen:a case of equivalence. Geophysics, 1989, 54, 38–48.

    19 Urish, D. W., Frohlich, R. K., Surface electrical resistivityin coastal groundwater exploration. Geoexploration, 1990,26, 267–289.

    20 Ebraheem, A. M., Sensosy, M. M., Dahab, K. A.,Geoelectrical and Hydro-geochemical studies for delineatingground-water contamination due to salt-water intrusion inthe northern part of the Nile deta, Egypt. Ground Water

    1997, 35, 216-222.