green lowimpact infrastructure for flood risk management &...

24
Oxford Consilium Ltd Flood risk & water storage in Al-Madinah Green low-impact infrastructure for flood risk management & water storage in Al-Madinah, KSA Internal document. Not for distribution. Property of Oxford Consilium Ltd . Oxford Consilium Ltd Page 1 of 24

Upload: others

Post on 29-Aug-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

Green low­impact infrastructure forflood risk management & waterstorage in Al­Madinah, KSA

Internal document. Not for distribution.

Property of Oxford Consilium Ltd.

Oxford Consilium Ltd Page 1 of 24

Page 2: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

Figure 1. Al­Madinah: the city and its surroundings.

Oxford Consilium Ltd Page 2 of 24

Page 3: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

Executive summaryOver the past twenty years, the city of Al­Madinah has been facing an increasing number of extreme flood                                 events. The naturally occurring floods, which previously fertilised wadi basins and irrigated nearby groves,                         are now increasingly devastating built­up areas. This is due to the rapid and large scale soil artificialisation                               over the past decades, compounded by climatic change. With the recently announced Haram Al­Sharif                         expansion and eastern Al­Madinah housing projects, combined with projected demographic growth and                     urban sprawl, the situation is set to significantly worsen in the years and decades to come, unless there are                                   major changes in the management of stormwater.

This study sheds light on how authorities can efficiently protect Al­Madinah’s population, key infrastructure                         and economic prosperity via a mix of low­impact stormwater harvesting, pre­filtering and storage, while                         recharging Al­Madinah’s depleted aquifer resources.

The strategy to do so is underpinned by principles of:

● Efficiency in protection of the populations and built environment.● Cost efficiency of the completed program.

This study introduces three groups of low­impact solutions, specially redesigned for Al­Madinah’s area:

● Artificial Aquifer Recharge (AAR), with flash­flood control and pre­filtration by gabions, for                     the recharge of aquifers with large quantities of stormwater in strategic areas.

● Urban low­impact infrastructure, located in the low­lying places of the inner city.● Basic and advanced rain gardens (e.g., with biopori holes and water reservoirs), to further                         protect the built environment and infrastructures of the inner city and key roads.

These solutions are deliberately labelled ‘low­impact’ because they do not require the existing storm water                           system to be redesigned or reconstructed. Instead, low­impact solutions, now recommended by the                       European Environmental Agency and the United States Environmental Protection Agency, provide an                     efficient addition to the existing storm water network.

Since no GCC country has ever introduced these green solutions, Al­Madinah and the Kingdom could                           become regional leaders in the use of low­impact water solutions. Finally, given the Al Selouly Group’s                             experience in landscaping, and Oxford Consilium’s expertise in water management and risk management in                         the Arab world and beyond, the solutions above can be implemented in an effective and cost­efficient                             manner by a joint venture aimed at enhancing Al­Madinah’s flood management and water security,                         inshaAllah.

Oxford Consilium Ltd Page 3 of 24

Page 4: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

ContentsExecutive summary

1. Introduction

2. Observations and analysis

2.1. Al­Madinah: current situation and critical perspectives

The lost resource

2.2. Strategy: Low­impact solutions and water storage

Aims

The strategy

Strategic orientation

3. The technology mix, adapted to Al­Madinah

3.1. Gabions and AAR (Artificial Aquifer Recharge)

3.2. Urban low­impact infrastructure

3.3. Rain gardens

3.4. Key considerations

4. Conclusions and recommendations

A. Appendix

References

Oxford Consilium Ltd Page 4 of 24

Page 5: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

Authors and contact● Dr Laurent Abdullah Lambert*. DPhil (Oxon), Europaeum Ad Hoc Research Director for                     Environmental Workshops. Oxford Consilium Director, Water R&D.● Dr Raveem Ismail. DPhil, MSc, MPhys (Oxon), MInstP. Oxford Consilium Chief Analyst.● Kristof von Csefelvay­Bartal. MSc, MA (Oxon), FRSA, MCIArb, AMRI. Oxford Consilium                   Chief Operating Officer.

* Primary contact. [email protected].

Document informationVersion Notes Date

0.1 Begun. 07/02/2014

0.2 Revised and expanded. 23/02/2014

0.3 For circulation with Sheikh Al Selouly. 01/03/2014

Typeset: 1st March, 2014.

Typesetting system: Google.

Oxford Consilium Ltd Page 5 of 24

Page 6: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

1. IntroductionOver the past ten years, floods in Western Saudi Arabia have had devastating consequences: with                           hundreds of victims, well over 25 billion dollars of direct material damage, and significant impact on local                               communities and the overall economy.

After analysing the current situation, trends and forecasts for Al­Madinah, this study will propose the first                             elements of an efficient strategy for the Al­Madinah area (including its key peripheral infrastructure), and                           introduce three main types of technological solution. Combined, these would serve to significantly mitigate                         the flood risks, replenish underground water resources in and around Al­Madinah, provide local                       employment, and effect green technology transfer to Saudi industry.

Oxford Consilium Ltd Page 6 of 24

Page 7: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

2. Observations and analysis

2.1. Al­Madinah: current situation and critical perspectives

Flooding is an old and recognised phenomenon in Saudi Arabia, but the devastating characteristics of the                             flooding since the late 1990s can be attributed to three main causes in Al­Madinah:

● Madinah lies in a natural depression between mountains, hills and wadi valleys.● Madinah was transformed from a small city in relative ecological equilibrium with its surroundings                         into a large modern metropolis with a rapidly growing urban sprawl.

Attribute Value Notes

Name Al­Madinah Officially al­Madīnah al­Munawwarah.

Location 24° 28’ N36° 30’ E

Capital of Al­Madinah Province.Located: Hejaz region, western SaudiArabia.

Geography Elevation: 608 m Soil: basalt.Surrounding hills: volcanic ash.Lower than surrounding terrain.120 miles (190 km) from the Red Sea.

Climate Hot desert Koppen classification: BWh.40°C day / 28° night.Limited precipitation annually, butviolent storms.

Population (2010) 1,180,770 Circa 1918: population of 10,000inhabitants.→ Over 10,000% demographic growth inless than a century.

Current storm water mitigation system

(Grey) drainagecanalisation,using gravity

Decreasingly capable of evacuatingstorm water and wadi floods because ofthe  city’s growth and its elevatedsurroundings.

Table 1. Al­Madinah: key information.

The rare but violent storm events produce vast quantities of water channelled by wadis near the city of                                 Al­Madinah (Photo 1) and even across the city (Photo 2).

Oxford Consilium Ltd Page 7 of 24

Page 8: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

Photo 1. Violent rain events create largelyuncontrolled wadis that threaten Al­Madinahyearly (January 2014). Source: SPA, Jan 2014.

Photo 2. Storm water flooding in Al­Madinah’sbuilt­up area (January 2014). Source: ArabNews, Jan 2014.

Photo 3. Flood damage due to insufficientdrainage infrastructure (January 2014). Source:Arab News, Jan 2014.

Oxford Consilium Ltd Page 8 of 24

Page 9: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

The lost resource

Beyond flooding risk, uncontrolled wadis in Al­Madinah’s area represent a large amount of precious fresh                           water resource, currently significantly under­utilised. Most of Al­Madinah’s wadi resources, representing                   well over one hundred million cubic metres of freshwater at least once a year (visible in the NASA satellite                                   imagery in Figure 2), will be lost in evaporation, while the rest ends up into the Red Sea, before being                                     desalinated again for the Kingdom’s water supply .1

Figure 2. On the satellite       imagery, flood water gushes     through the deep valleys     around Al­Madinah, Saudi   Arabia, resembling blue veins     amidst the marbled desert     landscape. The Moderate   Resolution Imaging Spectroradiometer (MODIS), flying on NASA’s Terra     satellite, captured the top     image of the floods on       January 24, 2005, two days       after the storm. In both       images, streaks of green     plants line the Wadi al Hamd,         which flows by the city from         the northwest.

Source: NASA, 2005, created     by Jesse Allen, Earth     Observatory. Instrument: Terra ­ MODIS.NASA2005

1 Yanbu’s large desalination plant desalinates 128,000 m3/day of sea water to provide Al­Madinah (190 km away and 608                                   m above sea level) via pipelines. The pipes have to circumnavigate the hills and mountains of Hejaz, and requires                                   pumping to reach Al­Madinah’s altitude. The total infrastructure, maintenance and energy costs (in crude oil, gas and                               electricity) of this wasteful water management system remains is beyond the scope of this current work, but is                                 undoubtedly significant.

Oxford Consilium Ltd Page 9 of 24

Page 10: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

2.2. Strategy: Low­impact solutions and water storage

Aims

● High efficiency in flood risk management.● Cost efficiency.

The strategy

In particular, to focus on the inner city within the two RRs (Ring Roads) and the most important road                                   segments (based on economic and strategic criteria). These should be secured from the main sources of                             storm water external to the second RR.

The external layers of the city would be secured by controlling and storing underground the excess rain and                                 flood water from the main wadis.

Strategic orientation

● Providing adapted infrastructure to key segments of selected wadis to control, pre­treat and store                         storm water. Key segments of wadis most particularly considered:○ Wadi Al­Aqeeq (various points between 2nd and 3rd RRs).○ Wadi Al­Hamd (along Uthman Bin Affan Rd and Al­Bayda Rd).○ Waadi Qunaah (just before it joins Wadi Al­Aqeeq).○ The storm water drainage canal (between 2nd and 3rd RRs).

● Protecting the inner city and key roads from the sources of torrential waters located outside the                             2nd RR. Key roads considered for pre­emptive work:○ King Abdullah Road (2nd RR).○  Airport Road.○  Jami’at Road.○ Tabuk Road (National 15).○ Al­Bayda Road.○ Uthman Bin Affan Road.○ National 60.○  Al­Salam Road.○ King Khaled Road (3rd RR).

● Controlling and storing storm water within the 1st and 2nd RRs with urban low­impact                         infrastructure:○ A selection of low­lying places within the 1st and 2nd RRs.

Oxford Consilium Ltd Page 10 of 24

Page 11: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

2.3. The case for green storm water solutions in Al­Madinah

Theoretically, conventional stormwater infrastructure drains the water and sends it away from the built                         environment. In rapidly expanding cities, the reality is that this water often finds its way toward low­lying                               places such as wadis and other streams, actually increasing peak flows and thus, flood risk. Eventually, this                               process exacerbates the destructive effect of all stormwater not successfully evacuated, as has repeatedly                         been seen in Jeddah.

Photo 4. The 2009Jeddah floods.Uncontrolled storm watertransformed roads intorivers.

Source: Al­Arabiyaarchives.

The 2009 Jeddah floods illustrated the incapacity for canalisation to alone control large amounts of storm                             water, and the structural impossibility for evacuating large volumes far and fast enough away from the built                               environment. In the meanwhile, Jeddah’s underground water reserves remain severely depleted, and                     Jeddah relies heavily on expensive desalination for most of its water needs.

The conventional, concrete­intensive “grey” infrastructure, conceived in late 19th Century Europe,                   generally imply significant construction and maintenance cost, with long timelines and business models                       adapted to highly industrialised cities. The heavy cost of canalisation is then split across multiple taxpayers                             and water users. This system is therefore not technologically, environmentally nor economically adapted to                         the fast­sprawling Saudi cities, where no taxation regime recovers the money invested, and where housing                           units are spread over a large territory.Beyond their long construction timelines and heavy costs, extended                           networks of canals do not fit the reality of widespread housing units, as in Saudi Arabia, a country with the                                     fourth lowest density of population in the world.

Oxford Consilium Ltd Page 11 of 24

Page 12: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

Photo 5. Water Pipelines in the         Makkah region.

Source: Arab News.

Green infrastructure, on the other hand, can mitigate flood risk by slowing, reducing and storing a significant                               amount of storm water at its source, or nearby. Because of the limited heavy work needed in the built                                   environment (water is stored, but not transported through extended canalisation) it is also known as                           “low­impact development”.

Low­impact solutions are now recommended to both municipal and private actors by the competent                         authorities in Australia, the USA and European Union for cost efficiency, rapid adaptability and                         environmental advantages.

Oxford Consilium Ltd Page 12 of 24

Page 13: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

3. The technology mix, adapted to Al­Madinah

Below is a short description of the specifically designed mix of low impact (green) infrastructure solutions                             for storm water control, management and storage, in order of descending work intensity.

3.1. Gabions and AAR (Artificial Aquifer Recharge)

Control and pre­filtration by gabions will         allow for the recharge of superficial and           deep aquifers with large quantities of storm           water.

Rainwater control, pre­filtering and storage       with gabions is the art of slowing down             stormwater and letting it infiltrate locally,         rather than channeling water too quickly by           letting it run off the land (leading to flooding               downstream) or stoppage by a dam         (leading to massive evaporation and soil         salinisation). Gabions treat rainwater as an         asset rather than a problem. It can then be               absorbed in large quantities by a well           placed behind the gabion, to recharge the           upper aquifers or the deeper aquifers,         depending on the hydrogeology.

Photo 6. A gabion dam in a large wadi valley,Al­Jaffa, Libya.

Water is slowed down (but not stopped)           by the gabion structure, subsequently       infiltrating underground. The water­carried     soil material (silt, stones, organic matter,         etc.) remain behind the structure and form,           year after year, a fertile ground for annual             crops within the flood plain, thus producing           a virtuous cycle of desert reclamation.

Photo 7. A very small community gabion for             upper aquifer recharge, India.

Oxford Consilium Ltd Page 13 of 24

Page 14: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

3.2. Urban low­impact infrastructure

These aim to collect and store stormwater underground, in the low­lying places of the city.

Rainwater is received, pre­filtrated with mulch, geotextiles and granular soils, after which a gravity reservoir                           stores the water underground. This water can then be reused for greening, or be collected for full                               treatment. Such low­impact infrastructure (not requiring canalis to be dug throughout the city) can rapidly                           be installed on parking spaces, large pavements or other under­utilised urban space. The efficiency arises                           not from each unit’s capacity, but from their collective action, number and strategic positioning within the                             built environment.

3.3. Rain gardens

These are basic/advanced infiltration units which serve to further protect the built environment and                         infrastructure, while replenishing upper aquifers.

By retaining rainfall during storms, rain gardens reduce stormwater discharge. Lower discharge volumes                       translate into reduced flooding risks. By multiplying the number of these small rain gardens, the urban                             environment remains able to cope with all local rain events.

Oxford Consilium Ltd Page 14 of 24

Page 15: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

Specific designs can be developed to be able to cope with rapidly increasing stormwater quantities.

Photo 8. A rain garden built on two former

parking spaces, processing excess water (USA).

It should be noted that uncontrolled storm           water, crossing over built areas, can         deliver many pollutants to wadis and         aquifers. This could include pathogens,       sediments, oil fuels and heavy metals from           roads, factories and parking facilities.       Water collected in rain gardens is         pre­treated by layers of mulch, granular         soils and geotextiles. The water can later           be used for outdoor irrigation, and thus           reduces municipal water use.

Oxford Consilium Ltd Page 15 of 24

Page 16: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

Photo 9 (annotated). Example of places in Al­Madinah where small rain gardens could drain storm water.

Storm water collected can be subsequently used as a reserve for the rain garden’s plants during most of the                                   

year. Plants should be selected based on their limited water needs, the depth of their root system, and                                 

sudden absorption capacities (which tends to be fairly high with local plants), limited need of maintenance,                             

and aesthetic quality.

Oxford Consilium Ltd Page 16 of 24

Page 17: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

3.4. Key considerations

The individual technologies mentioned in previous sections have been successfully tested over the past ten                           to twenty years in various conditions. The European Environmental Agency and the United States                         Environmental Protection Agency now support the implementation of green technologies for storm water                       management by their municipalities,  due to their efficiency and cost­effectiveness .2

As regards their appropriateness here:

● All three solutions are efficient in arid environments, with most originating from Australia and some                           

dry US states.

● They can be precisely calibrated for the local specificities of Al­Madinah (its precipitation regime,                         

topography, geology, water chemistry, etc.).

● All control stormwater 'on the spot', and pre­treat and store water underground for later recovery.                           

Increasing underground freshwater resources is a particularly cost­efficient alternative to lengthy                   

canalisation, desalination and/or artificial strategic reserves. The latter cost SR 1 billion for a single                           

reserve facility of capacity of 1.3 million cubic meters storage in Makkah , and SR 1.5 billion per                               3

reservoir in Jeddah for 1.5 million cubic meters (the city plans to have four) . Meanwhile, the                             4

majority of these cities’ aquifers (i.e., natural underground reservoirs) remain largely empty .5

● Private and public cost savings. According to the US Environmental Protection Agency : “when                       6

stormwater management systems are based on green infrastructure rather than gray                   

infrastructure (canalisation networks), developers often experience lower capital costs.               

These savings derive from lower costs for site grading, paving, ... and smaller or eliminated                           

piping and detention facilities.”.

2 The United States Environmental Protection Agency website states: “... green infrastructure reduces and treats                           stormwater at its source while delivering many other environmental, social, and economic benefits. ... Green                           infrastructure is a cost­effective and resilient approach to our water infrastructure needs that provides many                           community benefits.”.

3 Strategic water storage facility to cost SR1bn, Arab News, Monday 24 February 2014, available at:                             www.arabnews.com/news/530411.4 Jeddah’s houses to be linked to main drainage network in 2011, Saudi Gazette, available at:                             www.saudigazette.com.sa/index.cfm?method=home.PrintContent&action=Print&contentID=0000000084824.

5 In some places, forms of land subsidence (collapse) have been noted throughout the Hejaz region due to antropogenic                                   water level decline in aquifers (Bankher, Al­Harthi, 1999). The use of motor pumps for agricultural purposes leads also to                                   such geologic hazards in Al­Madinah’s surrounding area.

6  Official statement from the US EPA. See http://water.epa.gov/infrastructure/greeninfrastructure/gi_why.cfm.

Oxford Consilium Ltd Page 17 of 24

Page 18: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

● Energy savings. Treating and moving water throughout a city’s water network consumes a lot of                           

energy. By reducing storm water inflow into sewer systems, recharging aquifers, and conserving                       

water, green infrastructure can significantly reduce the municipality’s energy use.

● Increased vegetation and improved air quality. Ground level ozone or smog is created when                         

nitrogen oxides (NOx) and volatile organic compounds (VOCs) interact in the presence of heat                         

and sunlight. Smog conditions are usually worst in summer and can lead to respiratory health                           

problems. The increased vegetation due to these low­impact solutions can reduce ground­level                     

ozone by reducing air temperatures, reducing power plant emissions associated with air                     

conditioning, and removing a portion of air pollutants.

Oxford Consilium Ltd Page 18 of 24

Page 19: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

4. Conclusions and recommendationsThere is increasingly a critical flood risk in Al­Madinah’s built­up area, which could eventually resemble                           

Jeddah’s devastating flood events within a decade, due to the increased footprint of the built­up                           

environment and observed climatic variation.

This study has shed light on how authorities can efficiently protect Al­Madinah’s population, key                         

infrastructure and economic prosperity via a mix of low­impact stormwater harvesting, pre­filtering and                       

storage, while recharging Al­Madinah’s depleted aquifer resources.

A well­designed mix of low­impact solutions provides an efficient, cost­effective addition to the existing                         

storm water mitigation system, and can safely store the water for later recovery. These solutions would                             

also provide some local employment.

Given the Al Selouly Group’s record of landscaping in the Kingdom, and the significant consulting expertise                             

present in Oxford Consilium on water and risk management, the three above­mentioned technological                       

solutions can be implemented in an effective and cost­efficient manner by a joint venture. The results would                               

sharply enhance the flood management and water security of Al­Madinah, transfer green technological                       

expertise to the Saudi partners of the joint venture, and support the sustainable development of the Holy                               

City, inshaAllah.

Oxford Consilium Ltd Page 19 of 24

Page 20: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

A. Appendix

Figure A.1. WMO data (below) plotted to show average, monthly maximum and daily maximum precipitation.

Figure A.2. Location of stationused to gather measurements forFigure A.1.

Oxford Consilium Ltd Page 20 of 24

Page 21: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

Raw WMO station data used in figures above:       Station Name: MADINAH  WMO Station Number: 40430National I.D. Number:             Country: SAUDI ARABIA          WMO Region: REGION II ­ ASIA            Latitude:  24d 33m N           Longitude: 039d 42m E           Elevation:      636 m

In the following tables,   byr = beginning year of normals or extremes data period   eyr = ending year of normals or extremes data period   NA = Not Applicable, data not submitted or not computed   * = value > 0 but < units resolution   Ann­NCDC = annual value computed by NCDC from monthly              values provided by Members==========================================================The normals data and climate variable descriptions arepresented in these tables as provided by the WMO Membercountry.==========================================================

  Element 06:  Precipitation (mm)MEANMLY (Statistic 15):  Mean Monthly ValueMAX_MLY (Statistic 26):  Maximum Monthly ValueYRMXMLY (Statistic 27):  Year of Occurrence of Maximum Monthly Value­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­      byr:    1961    1961    1961      eyr:    1990    1990    1990Statistic: MEANMLY MAX_MLY YRMXMLY  Month­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­   Jan         8.0    70.0    1969   Feb         1.2     9.0    1966   Mar         8.3    47.0    1971   Apr        11.9    79.0    1982   May         4.6    39.6    1982   Jun          .4     6.8    1983   Jul          .2     6.0    1978   Aug          .3     4.9    1979   Sep          .1     0.6    1984   Oct         1.1    12.8    1982   Nov         9.2    62.0    1984   Dec         3.8    21.1    1989  Annual        NA      NA      NA Ann­NCDC     49.1      NA      NA­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­

  Element 08:  Maximum 24­Hour Precipitation (mm)MAX_VAL (Statistic 04):  Maximum ValueDATEMAX (Statistic 12):  Date (Year/Day) of Occurrence of Maximum Daily Value­­­­­­­­­­­­­­­­­­­­­­­­­­      byr:    1961    1961      eyr:    1990    1990Statistic: MAX_VAL DATEMAX  Month­­­­­­­­­­­­­­­­­­­­­­­­­­   Jan        70.0  196904   Feb         7.7  198624   Mar        38.0  197127   Apr        38.0  197112   May        20.7  198210   Jun         4.5  198301   Jul         6.0  197819   Aug         3.6  197927   Sep         0.6  198413   Oct         7.0  198217   Nov        43.9  198425   Dec        14.4  197404  Annual        NA      NA Ann­NCDC       NA      NA­­­­­­­­­­­­­­­­­­­­­­­­­­

Oxford Consilium Ltd Page 21 of 24

Page 22: Green lowimpact infrastructure for flood risk management & …seloulygroup.com/wp-content/uploads/2016/02/Preliminary... · 2016. 2. 1. · 2. Observations and analysis 2.1. AlMadinah:

Oxford Consilium Ltd Flood risk & water storage in Al­Madinah

ReferencesAl­Ballaa, Haifaa and Comber, Alexis and Smith, Claire. Distribution Pattern Analysis of Green space                         in Al­Madinah Using GIS. Conference proceedings. 2012.

Arab News. Heavy rains lash Madinah. URL: http://www.arabnews.com/news/517141, last visited:                 24/02/2014. 29/01/2014.

Arab News (Facebook page album). Rain and flood in Madinah. URL:                   https://www.facebook.com/media/set/?set=a.10152227176352125.1073741891.10250877124&type=1#, last visited: 25/02/2014. 28/01/2014.

BBC. Flooding kills 29 in Saudi Arabia. URL:             http://news.bbc.co.uk/1/hi/world/middle_east/4205373.stm, last visited: 23/02/2014. 25/01/2005.

Dawod, Gomaa M and Mirza, Meraj N and Al­Ghamdi, Khalid A. GIS­based estimation of flood                           hazard impacts on road network in Makkah city, Saudi Arabia. Environmental Earth Sciences. 2012.

NASA. Floods in Saudi Arabia. URL:         http://earthobservatory.nasa.gov/NaturalHazards/view.php?id=14554, last visited: 23/02/2014.

NOAA. [TITLE]. URL: ftp://ftp.atdd.noaa.gov/pub/GCOS/WMO­Normals/RA­II/SD/40430.TXT. Last       visited: 18/02/2014.

Subyani, Ali M and Al­Ahmadi, Fahd S. Rainfall­Runoff Modeling In The Al­Madinah Area Of                         Western Saudi Arabia. Journal Of Environmental Hydrology. Vol. 19, Paper 1. 01/2011.

United States Environmental Protection Agency. [TITLE]. URL: [URL]. Last visited:                 [DAY]/02/2014.

Bankher, K.A., Abbas A. Al­Harthi (1999) Earth Fissuring and Land Subsidence in Western Saudi                         Arabia, Natural Hazards, 20: 21­42, 1999.

Oxford Consilium Ltd Page 22 of 24