gravitational wave detection in the introductory lab lior

18
Gravitational Wave Detection in the Introductory Lab Lior M. Burko * School of Science and Technology, Georgia Gwinnett College, Lawrenceville, Georgia 30043 February 14, 2016; Revised March 22, 2016 I. Introduction A long time ago in a galaxy far, far away two black holes, one of mass 36 solar masses and the other of mass 29 solar masses were dancing their death waltz, leading to their coalescence and the emission of gravitational waves carrying away with them three solar masses of energy. More precisely, it happened 1.3 billion years ago at a distance of 410 Mpc. When the waves were emitted the most complex life forms on Earth were eukaryots. As the gravitational waves propagated toward the Earth it changed much. Five hundred million years after the waves were emitted, or 800 million years ago, the first multicellular life forms emerged on the Earth. The Earth saw the Cambrian explosion 500 million years ago. Sixty-six million years ago the Cretaceous-Paleogene extinction event caused the disappearance of the dinosaurs. The first modern humans appeared 250,000 years ago. Independently of the event, one hundred years ago, in 1916, Albert Einstein concluded that gravitational waves exist. The construction of LIGO, the Laser Interferometer Gravitational-wave Observatory, commenced 22 years ago. Five years ago Advanced LIGO installation started, and was finished with a full engineering run during September 2015, just in time to catch on September 14, 2015 the gravitational waves that were emitted by the two black holes 1.3 billion years ago. The waves penetrated the southern hemisphere from the general direction of the Magellanic clouds (although one cannot pinpoint the direction with much accuracy because only two detectors were online), traveled through the Earth and were captured from below by the twin LIGO detectors, one in Louisiana near Livingston, and the other in the State of Washington near Hanford, thereby ushering in the new era of gravitational wave astronomy. * [email protected]

Upload: others

Post on 28-Jan-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gravitational Wave Detection in the Introductory Lab Lior

GravitationalWaveDetectionintheIntroductoryLabLiorM.Burko*

SchoolofScienceandTechnology,GeorgiaGwinnettCollege,Lawrenceville,Georgia30043

February14,2016;RevisedMarch22,2016I.IntroductionAlongtimeagoinagalaxyfar,farawaytwoblackholes,oneofmass36solarmassesandtheotherofmass29solarmassesweredancingtheirdeathwaltz,leadingtotheircoalescenceandtheemissionofgravitationalwavescarryingawaywiththemthreesolarmassesofenergy.Moreprecisely,ithappened1.3billionyearsagoatadistanceof410Mpc.WhenthewaveswereemittedthemostcomplexlifeformsonEarthwereeukaryots.AsthegravitationalwavespropagatedtowardtheEarthitchangedmuch.Fivehundredmillionyearsafterthewaveswereemitted,or800millionyearsago,thefirstmulticellularlifeformsemergedontheEarth.TheEarthsawtheCambrianexplosion500millionyearsago.Sixty-sixmillionyearsagotheCretaceous-Paleogeneextinctioneventcausedthedisappearanceofthedinosaurs.Thefirstmodernhumansappeared250,000yearsago.Independentlyoftheevent,onehundredyearsago,in1916,AlbertEinsteinconcludedthatgravitationalwavesexist.TheconstructionofLIGO,theLaserInterferometerGravitational-waveObservatory,commenced22yearsago.FiveyearsagoAdvancedLIGOinstallationstarted,andwasfinishedwithafullengineeringrunduringSeptember2015,justintimetocatchonSeptember14,2015thegravitationalwavesthatwereemittedbythetwoblackholes1.3billionyearsago.ThewavespenetratedthesouthernhemispherefromthegeneraldirectionoftheMagellanicclouds(althoughonecannotpinpointthedirectionwithmuchaccuracybecauseonlytwodetectorswereonline),traveledthroughtheEarthandwerecapturedfrombelowbythetwinLIGOdetectors,oneinLouisiananearLivingston,andtheotherintheStateofWashingtonnearHanford,therebyusheringintheneweraofgravitationalwaveastronomy.

*[email protected]

Page 2: Gravitational Wave Detection in the Introductory Lab Lior

II.WhatAreGravitationalWaves?Gravitationalwavesareripplesinthecurvatureofspaceandtime,whichpropagateatthespeedoflight.Saythesourceofagravitationalfieldweretoundergoanabruptchange,e.g.,saytheSunweretosuddenlydisappear.HowwouldthataffecttheorbitoftheEarth?StudentsoftheintroductorycollegecourselearnthattheEarthwouldmoveuniformlyalongatangenttoitspreviousorbit,asrequiredbyNewton’sFirstLaw.ButwhenwilltheEarthdepartfromitsorbitalmotionandstartmovinguniformly?AccordingtoNewtoniangravitythatwouldhappeninstantaneously,butinrealitytheremustbesomedelaybetweenthedisappearanceoftheSunandthemomentatwhichtheEarthwouldstartmovinguniformly,astheinformationthattheSundisappearedcannottravelfasterthanlight.Infact,itisthoughtthatthechangeinthegravitationalfieldpropagatesasgravitationalwaves.Gravitationalwavesarethemechanismbywhichthechanginggravitationalfieldofachangingmassdistributionpropagates,looselyanalogoustheelectromagneticwaves,whicharethemechanismbywhichachangingelectricchargedistributiontellsremotelocationsthatthesourceischanged.Thedirectdetectionofgravitationalwavesdidmuchmorethanjustproveexperimentallytheconceptofgravitationalradiationandthatbinaryblackholesystemsexist,bigachievementsinthemselves;ItopenedanewwindowontotheUniverse,thatmanybelievewillallowustoseehithertounimaginedastrophysicalphenomenainadditiontomanyconventionalorspeculativeastrophysicalsystems.Fromthispointofview,thedetectionofgravitationalwavesisarguablyevenmoretransformationalthantherecent2012discoveryoftheHiggsbosonandiscomparabletotherevolutionthatoccurredwhenGalileofirstpointedatelescopetotheskies.WhenEinsteinfirstpredictedtheexistenceofgravitationalwaves(Einstein,1916)itwasbelievedthattheireffectwassominisculethattheywouldneverbediscovered,andlatertheirveryexistencewasthetopicofalivelydebateamongrelativists(forahistoryofgravitationalwavesresearchseeKennefick,2007).Bothbetterunderstandingof

Page 3: Gravitational Wave Detection in the Introductory Lab Lior

astrophysics,specificallyaboutcompactobjectsthatmoveatrelativisticspeedsandunprecedentedprogressintechnologyallowedus,afteracenturyoftheoryandhalfacenturyofexperimentalsearchestofinallydetectgravitationalwaves.III.Howcanthedetectionofgravitationalwavesbeincludedintheintroductorycourse?Recentphysicsbreakthroughsarerarelyincludedintheintroductoryphysicsorastronomycourse.Generalrelativityandbinaryblackholecoalescencearenodifferent,andcanbeincludedintheintroductorycourseonlyinaverylimitedsense.(SeediscussionofgravitationalwavesinThePhysicsTeacherinRubboetal,2006;Larsonetal,2006;andSpetz,1984.SeealsoRubboetal,2007.)However,wecandesignactivitiesthatdirectlyinvolvethedetectionofGW150914,thedesignationofthegravitationwavesignaldetectedonSeptember14,2015(Abbottetal,2016a),therebyengagethestudentsinthisexcitingdiscoverydirectly.Theactivitiesnaturallydonotincludetheconstructionofadetectororthedetectionofgravitationalwaves.Instead,wedesignittoincludeanalysisofthedatafromGW150914,whichincludessomeinterestinganalysisactivitiesforstudents.Thesameactivitiescanbeassignedeitherasalaboratoryexerciseindataanalysisorasacomputationalprojectforthesamepopulationofstudents.Theanalysistoolsusedherearesimpleandavailabletotheintendedstudentpopulation.Itdoesnotincludethesophisticatedanalysistools,whichwereusedbyLIGOtocarefullyanalyzethedetectedsignal.However,thesesimpletoolsaresufficienttoallowthestudenttogetimportantresults.Onemayarguethattheinclusionofcomputationalprojectsintheintroductorycalculus-basedcourseisbeneficialtomanystudents,asitallowsstudentstobecomefamiliarwithaveryimportanttoolinthetoolkitoftheworkingphysicist,inadditiontootherbenefits(RedishandWilson,1993;ChabayandSherwood,2006).Itisthechoiceoftheinstructorwhethertorequireaspecificcomputerlanguage(apopularchoiceisPython),orletthestudentschooseanycomputerlanguagetheyalreadyknow(oruseaspreadsheetsuchasExceliftheydonotknowanycomputerlanguage.Inaddition,manycalculationscanbecarriedoutonplatformswidelyavailableintheintroductorylaboratory,

Page 4: Gravitational Wave Detection in the Introductory Lab Lior

suchasthePASCOCapstoneprogram.).Iamtypicallyinfavorofthelatter,asIbelievethatclasstimeinaphysicscourseshouldnotbedevotedtoteachingprogramming.However,Ihaveseenmanyinstructorsusetheformerapproachwithmuchsuccess.ThecomputationalprogramsIassignintheintroductorycourse(includingthepresentone)canallbedoneusingspreadsheets,suchthatstudentswithoutbackgroundinprogrammingcanstilldoalltheassignments.Whenusingaspreadsheetthestudentcancalculateanumericalderivativebydividingthedifferenceinthequantityofinterestbetweenthetimestepaftertheoneinquestion(typically,onecelllower)andtheoneprecedingit(typically,onecellhigher),anddividebythesameforthetimedifference.Thecomputationcanthenbecopiedfortheentirecolumn(skippingthefirstandlastcells,forwhichtheprocedureisilldefined),producingthenumericalderivativeatalltimesteps(exceptthefirstandthelast).Forexample,ifColumnAincludes,say,thedataforthetime,andcolumnBincludesthedataforpositioninthecorrespondingcells,wecancalculatethespeedincolumnCbyenteringinthecellC2theformula(B3-B1)/(A3-A1).Thisformulacanthenbefilledintheremainingofthecolumn.IV.Suggestionsforthedesignofclassactivitiesa)PresentationofthewaveformOnecanaccessonlinethedataofthegravitationalwavesignalanduseitforanalysis.Asthesedataaresomewhatnoisy,Iprefertousethenumericalrelativitywaveform,whichmatchestheobservedsignalverywell.Onemayofcourseusetheactualdetecteddatainsteadofthenumericalrelativitywaveform,atthecostofhavingtodealwithmorenoise.TheimpressiveagreementofthenumericalrelativitywaveformandtheobserveddatacanbeseeninFigure1.Thenumericalrelativitywaveformisatheoreticallyconstructedwaveformthatwascomputedusingthephysicalparametersthatcameoutofadetailedcomputersearchoftheobserveddata,lookingforatheoreticalwaveformthatbestmatchesthedata.Alsoavailableonlinearetheresiduals,thedifferencesbetweenthenumericalrelativitywaveformandthedetectedsignal.Interestedinstructorsmayincludetheresidualsintheactivity,or

Page 5: Gravitational Wave Detection in the Introductory Lab Lior

evenincludeabonusexercisetocalculatethecrosscorrelationintegralofthedetectedsignalandthenumericalrelativitywaveform.Alldataareavailableathttps://losc.ligo.org/events/GW150914/.(Allresultspresentedherewereobtainedfromthedatafilehttps://losc.ligo.org/s/events/GW150914/GW150914_4_NR_waveform.txt.)Theamountbywhichabodyisdistorted(stretchedorcompressed)relativetoitsreferencelengthisknownasstrain.Analogously,therelativestretchingorcompressionofspacewhenagravitationalwavepassesthroughthedetectorisalsocalledstrain.Plottingthestrainhasafunctionofdetectortime,weobtainFigure1.

Figure1:TheGWstrainhforGW150914(multipliedby10!")asafunctionofthetimetinseconds(fromthenumericalrelativitywaveform).Thetimeisshiftedsothatmaximumstrainisatt=0s.Theinsetshowsasectionofthedatainthemainfigure(inblue),togetherwiththeobservedH1data(inred),i.e.,thedatafromtheHanforddetector.ThefeaturesoftheL1data,thedatafromtheLivingstondetector,aresimilartothoseoftheH1data.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05−1.5

−1

−0.5

0

0.5

1

1.5

t ime [sec ]

GW

stra

in(×

1021 ) −0.06 −0.05 −0.04 −0.03 −0.02 −0.01 0 0.01

−1

0

1

Page 6: Gravitational Wave Detection in the Introductory Lab Lior

ThewaveformshowninFig.1includestwomainparts:first,atearliertimes,theso-called“chirppart”,andatlaterpartsthering-downpart.Thechirppartofthewaveformissonamedbecauseboththeamplitudeandfrequencyincreaseasafunctionoftime,thefeaturesofabird’schirp.Whilestudentsoftheintroductorycourseseeoscillationswithvaryingamplitude(say,inthecontextofdampedharmonicoscillations),theydonotnormallyseevaryingfrequencies.Thischirppartofthewaveformcanbeagoodlaboratoryorcomputationalexerciseinanalyzingdatawithavaryingfrequency,specificallytheemphasisonalocalcalculationoffrequencyasopposedtoaglobalcalculation.Itisinstructivetoletthestudentsseparatethesignalintoitstwomainparts,andemphasizethateachparthasdifferentpropertiesandthereforerequiresdifferentanalysistools.b)BasicrelationssatisfiedbygravitationalwavesfromacoalescingbinaryFortheanalysisofthegravitationalwavesignalwewillneedsomebasicrelationsthattheparametersofthewavessatisfy.Thefollowingdiscussionisajustificationoftheserelationsbasedonscalingarguments.Thefullequationsrequireadetailedsolutionusinggeneralrelativity,whichisbeyondthescopeofthisPaperandtheleveloftheintendedaudience.ConsiderasystemoftotalmassMandoftypicalsizeR,whosemomentofinertiascaleslike!!!.Anunchangingmassdistributioncannotradiate.Gravitationalwavesarethereforegeneratedbyatime-changingmomentofinertia.Auniformlymovingmassalsocannotradiate,becauseforaco-movingobserveritisseenasstatic.Asthepresenceofradiationmustbeobserverindependent,nootherinertialobservercanmeasureanyradiationeither.Onemustthereforehaveanacceleratingmassdistributiontohaveradiation.Morespecifically,thewavesdependonthesecondtimederivativeofthemomentofinertia.(Ananalogousargumentappliesalsoforacceleratingelectricchargesthatemitelectromagneticwaves.)

Page 7: Gravitational Wave Detection in the Introductory Lab Lior

Theluminosityofanywavedependsonthesquareoftheamplitude.(Theenergyofthewavemustbepositiveeventhoughthewaveoscillatesbetweenpositiveandnegativevalues,andthereforemustdependonanevenpoweroftheamplitude).Conservationofenergythendictatesthattheluminositydropswithdistanceasthesquareofthedistance,andthereforetheamplitudemustdecaylikethereciprocalofthedistancetotheobservationpoint,!.Inwhatfollowsweconsideronlythescalingrelationsanddonotworryaboutconstantordimensionlessfactors.Replacingatimederivativebythefrequency!,wefindthatℎ~!!!!! !.UsingKepler’sthirdlawforabinarysystem,or!~ ! !! ! !,wefindthatℎ~!!

!" .Infact,thisscalingrelationisconventionallywritten(afterusingKepler’slawagainandintroducingthechirpmass)asℎ~ !

! MC5/3f2/3.Whentheconstantfactorsareworkedout,theamplituderelationbecomes

ℎ = !!! !!! !

!! !"! !(GMC)5/3,(1)

wherewewritethedistancebetweenthedetectorandthesourceastheluminositydistanceDL,and!isthefrequencyofthewaves.Here,cisthespeedoflightandGisNewton’sconstant.SimpleargumentsfortheamplitudeequationintermsofdimensionalanalysisaregiveninSchutz(2003).

Next,westartwiththeluminosity!~4!!! !!ℎ!,inasimilarwaytohowluminosityoflightiswritten.(Theluminositymustdependonanevenpowerof!becausetheenergyofthewavesmustbepositiveforbothpositiveandnegativefrequencies.Adetailedcalculationshowsthattheluminositydependsonthesquareofthefrequency.)UsingKepler’slawandtheamplituderelation,wefindthat!~!! !!.Ontheotherhand,theluminosityLequals(thenegativeof)therateofchangeofthetotalenergyofthesource.Thetotalenergyisthegravitationalpotential

energy,or!~−!! !,andtherefore!~!!

!! !.Requiringthat! = −!wefindthat!~ − !!

!! .

Page 8: Gravitational Wave Detection in the Introductory Lab Lior

DifferentiatingKepler’sthirdlaw,!~ ! !! ! !,therateofchangeof

thefrequency!~!! !

!! ! !.Substitutingourresultfor!,wefindthat!~ !! !

!!! !.UsingKepler’slawagain,andreintroducingthechirpmass,we

writeourresultas!~ MC5/3f11/3.Whentheconstantfactorsareincluded,wefindthat

! = !"!!! !

!! !!! ! (GMC)5/3.(2)

Thisequationfortherateofchangeofthefrequencyisknownasthechirp.c)AnalysisofthedataArmedwithEqs.(1)and(2),wecannowstartanalyzingthewaves.i)FindingthefrequencyAssumethatthechirppartofthewaveshastheform

ℎ ! = ! ! sin ! ! ×! ,whereboththeamplitude!andtheangularfrequency!arefunctionsofthetime!.Asimpleanalysistoolistoassumethatthechangesintheparameters!and!areslowcomparedwiththemeasurementtimestep.Thatis,wemayassumethataslongasthechangeintheparameterisslowonthescaleofthetimeincrement,ateachvalueofthetimewecantreatthewaveformasifithadconstantparametersinthefirstapproximation.Therefore,wecandifferentiatethestrainexpressionabovetwiceinthisapproximationtoget

!! = − ℎℎwhereanoverdotdenotesthetimederivative.Studentsusethisrelationtogetanumericalestimateofangularfrequencyandhowitchangeswithtime.Noticethatwedonotneedtofindaphaseconstant,soitisassumedwithoutlossofgeneralitytoequalzero.Toobtainthesecondderivativestudentscaneitherwriteashortcodethatcalculatesthenumericalderivativeforacomputationalproject,useaspreadsheetsuchasEXCELasdescribedabove,orusesoftwarecommonlyavailable

Page 9: Gravitational Wave Detection in the Introductory Lab Lior

intheintroductorylaboratorysuchasPASCOCapstone.Thelatterallowsfindingthe“acceleration”ofanoscillatingsignal.InFig.2weplottheangularfrequencyasafunctionofthetime,aftersmoothingoutthenoisewithasimpleaveragingalgorithm.Inordertoaverageoutnoisethestudentcanaddanaveragingroutinetothecode,oraddacolumntotheEXCELspreadsheetthatfindsthesimpleaverageforacellforacertainrangeofcellsaroundit.IfusingCapstone,thestudentcanuseabestfitcurveasthenoisesmoothingalgorithmorusethebuilt-incurvesmoothingfunction.Theaveragingdonehereisforintervalsof25ms.Theunsmootheddatafortheangularfrequencymayincludeisolatedpointsatwhichthevaluesareverydifferentthaninneighboringpoints.Suchpointsmayberemovedfromthedataset,whichmakesthesmoothingprocesssimpler.Inwhatfollows,allourcalculationsaredoneinthedetectorframe.(Thetwoblackholemassesgiveninthefirstparagrapharegiveninthesourceframe.)WethereforecomparewiththeLIGOvaluesforthedetectorframe.

Figure2:Frequencyasafunctionofthetime.Theincreasingfrequencyisshownfromabout20Hztoover150Hzduring8

cyclesofthebinary.

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.050

20

40

60

80

100

120

140

160

180

200

t [sec]

f (H

z)

Page 10: Gravitational Wave Detection in the Introductory Lab Lior

ii)TheChirpmassTheleading-orderdependenceofthewaveformevolution(i.e.,theevolutionintheearlypartsofthewaveform)onthemassesofthebinaryblackholesisthroughtheso-calledchirpmass.Specifically,theindependentmassesofthebinaryblackholescannotbeeasilydeduced,asmoreinformation(whichincludesrelativisticeffectswhicharebeyondthescopeofthepresentPaper)isneededinordertofindtheindividualmasses.Itiscalledthechirpmassbecauseitistheparameterresponsibleforthechirp-likesound(increasingfrequencyandamplitude)thatisheardwhenagravitationalwavesignalfromabinarymergerisconvertedtosoundwaves.Thechirpmassisdefinedas

MC=!!!! !/!

!!!!! !/!,

wherem1andm2arethemassesofthetwomembersofthebinary.Itisthisparticularcombinationoftheindividualmassesthatcanbefoundfromtheleadingorderevolutionofℎ ! .Asthewaveformdependsatfirstonlyonthechirpmass,thewaveformdoesnotdependonanyothercombinationofthemasses,andforthatreasonitisausefulparametertointroduce.Thefrequencyevolutionofthewave,!,canbeusedfromEq.(2).Thisequationcannextbeinvertedtogivethechirpmassintermsofthecalculated!and!,whichcanbeconstructedfromtheGW150914data.(Thatis,havingfound! ! thestudentcannowcalculatethenumericalderivativetofind!.)InFig.3weplotthechirpmass,aftersomesmoothingdoneasabove.Noticethatthechirpmassiswelldefinedusingthesesimpleexpressionsonlyduringtheearlypartoftheinspiral.Wethereforereadthechirpmassasabout30solarmasses.Infindingthechirpmassonecanagaineitherwriteashortnumericalcode,useaspreadsheet,oralternativelyusePASCOCapstoneorasimilarprogram.Atearlytimesthechirpmassisnearlyconstant,butthenstartsoscillatingwildly.Indeed,ourcalculationofthechirpmassisonlyintendedtobeaccurateintheearlypartsoftheinspiral,whenthetwoblackholesarestillfarfromeachother.Astheygetcloserrelativisticcorrectionsbecomeimportant,andthesimplerelationsthatweusebecomelessandlessaccurateapproximations,asthebehaviorofthechirpmassshows.

Page 11: Gravitational Wave Detection in the Introductory Lab Lior

Figure3:Thechirpmassasafunctionoftime.Weonlyreadthechirpmassfromtheearlypartoftheevolution.Intheearlypartof

themergerthechirpmassisnearlyconstant,anditstartsoscillatingwidelyafterrelativisticcorrectionsbecomeimportant.

iii)EvaluatingthetotalmassThetotalmassofthebinaryblackholesystemcanbecrudelyestimatedfromthechirpmass.Ifweassumethatthetwoblackholeshavemassratio! = !! !!,onecanusethedefinitionofthechirpmassandsolveforthetotalmass:Firstsubstitute!! = !!!inthedefinitionforthechirpmass,andfindthat!! = 1 + ! ! ! !! ! MC.Next,write

! = !! +!! = 1 + ! !!,andfindthatthetotalmass! = !!! !/!

!!/! MC

>2! !MC.Noticethatonedoesnotneedtoknowthemassratioinorder

tofindthisinequality(as!!! !/!

!!/! asafunctionofqisboundedfrombelowby2! !),eventhoughthemassratioisneededinordertofindthetotalmassitself(andnotjustalowerbound).However,determiningthemassratiorequiresrelativisticeffectsthatarebeyondthescopeofthisPaper.Notethatthelowerboundisachievedwhenthetwomassesareequal,andforunequalmassesthetotalmassisalwaysgreater.Specifically,! > ~70solarmasses.

−0.5 −0.45 −0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.050

10

20

30

40

50

60

t [sec]

Chi

rp M

ass

[sol

ar m

asse

s]

Page 12: Gravitational Wave Detection in the Introductory Lab Lior

iv)DeterminationofthemassandspinrateofthefinalblackholeNext,weturnattentiontothering-downpartofthewaves.Inspectionrevealsitisaconstantfrequencysignalofexponentiallydecayingamplitude.Agoodquestiontoaskthestudentsiswhatkindofsystemdoesasignalsuchasthatsuggest.Itmaybeusefultorefrainuntilthispointfromcallingitthe“ring-down”part,asthenamesuggeststheanswertothequestion.Ifsuchaquestionisposed,instructorscandividethesignalintotheearlypartandlatepart,say,insteadofthechirppartandring-downpartwhenthesignalisfirstintroduced.Whenabellringsitemitssoundinacharacteristicspectrumoffrequencies.Anidealbell,whichringsonforeverwithnolosses,wouldemitsoundinfrequenciesknownasitsnormalmodes.Anyrealbellringsdownbecauseofthelossofenergytosoundwaves,anditsfrequenciesareknownasquasi-normalmodes.Blackholesarelikebells:whenperturbed,theytooemitradiationintheformofgravitationalwavesinfrequenciesoftheirquasi-normalmodes.Infact,blackholesarepoorbells,astheydon’tgettoringmanytimesbeforetheysettledowntoastationary,quiescentstate.Thespectrumofblackholequasi-normalmodesiscomplex,andthefrequenciesdependonlyonthemassandspinangularmomentumoftheblackhole.Inordertoprovethatthesourceisablackhole,multiplequasi-normalmodefrequenciesneedtobemeasured.However,ifweassumethatthering-downphaseoftheradiationisgivenbytheslowestdecayingquasi-normalmodeofaspinningblackholethatisperturbedfromitsstationarystate,wecancalculatethemassandspinangularmomentumofthefinalblackhole.Aswecanobserveinthedataonlyonemode(thatis,onefrequencyandonetimeconstantforthedecayrate),weassumethatthismodeistheslowestdampedmodeoftheblackhole’squasi-normalspectrum.Thechirpwaveformisfollowedbythequasi-normalring-downofthefinalsingleblackhole.Whenthefinalblackholeisfirstcreateditishighlydistorted,andemitsgravitationalwavesthatreducethisdistortionuntilitgettoitsstationaryandquiescentstate.Indeed,thewaveformforGW150914includesanexponentialdecayofthesignalwithconstantfrequencyafterthemerger.(Inpractice,theparametersforthering-downpublishedinAbbott,B.P.etal(2016a)arefoundfrom

Page 13: Gravitational Wave Detection in the Introductory Lab Lior

thenumericalrelativitywaveform,aswedohere.)InFig.4weshowthepartofthesignalafterthemerger(positivevaluesoftime).Thisisagoodexampleofthebenefitinplottingasemi-logarithmicgraph,asthestraightenvelopeshowstheexponentialdecayofthesignal,andtheconstantfrequencyiseasilyvisible.Thefrequencyanddecayratecanbereadfromthegraph,orinsteadcanbedeterminedfromthefitfunctionofprogramssuchasPASCOCapstone.Specifically,fittingtoadampedsinefunctionoftheformℎ ! = !!!!/!sin 2!"# + !! wedeterminetheparameterstobe! = 4.4×10!!sec,and! = 236Hz.ThesevaluesagreenicelywiththevaluesoftheLIGOexperiment,! = (4.0 ±0.3)×10!!sec,and! = 251 ± 8Hz(Abbottetal,2016b).Figure5showsthebestfitofthedataforthering-downportionofthewave,whichwedidusingPASCOCapstone.Amoresophisticatedapproach,alsoavailableinPASCOCapstone,involvestheFastFourierTransformofthedecayingoscillations,butisgenerallytoosophisticatedfortheintendedstudentpopulation.Asthering-downisassumedheretobeamonochromaticsignal(singlemode),thesimplerfittingtoadecayingsinefunctionissufficient.

Figure4:Aplotofthelogarithmofthesignalasafunctionoftimeforthering-downpartofthewaveform.Theexponentialdecay

rateandtheconstantfrequencyarevisibleinthesemi-logarithmicrepresentation.

−0.01 0 0.01 0.02 0.03 0.04 0.05−27

−26

−25

−24

−23

−22

−21

−20

t [sec]

log 10

| h

|

Page 14: Gravitational Wave Detection in the Introductory Lab Lior

Figure5:Bestfitfortheparametersofadampedsinefunctionforthe

ring-downpartoftheGW150914signal.Thefrequency!andtimeconstant!cannextbeusedtofindthemass!! andspecificangularmomentum!ofthefinalblackhole.Here,! = ! ! !!! ,where!istheblackhole’sspinangularmomentum.Thespecificangularmomentum0 ≤ ! ≤ 1,andisaconvenientdimensionlessvariable.Weusehereasimplemethodthatisbasedonsimplefitfunctionsfortheblackhole’squasi-normalmodes.Specifically,letthequalityfactor! = !"#.Then,

!!! ×2!"!! = !! + !! 1 − ! !!

and! = !! + !! 1 − ! !! ,

wherethefitparametersfortheprincipalleastdampedmodeare!! = 1.525, !! = −1.157, !! = 0.129,and!! = 0.700, !! = 1.419, !! = −0.499(Bertietal,2009).Thesefitequationsweredevelopedtoreproducethefrequencyandqualityfactortobetterthan1%withtheleastnumberofparametersfortheexpectedrangeofthespecificangularmomentum.Thesefitequationsarenotderivedfromphysicalprinciples,andarenotevenaphenomenologicalfit.Instead,theyarethesimplestmathematicalequationsthatreproducetheknowndatatoagivenaccuracylevel.(Thevaluesthattheequationsfit,however,arederivedfromaclearphysicalmodelforthequasi-normalring-down.)Whilethismayperhapsnotprovidesomestudentswithastrongphysicalmotivationforusingthese

Page 15: Gravitational Wave Detection in the Introductory Lab Lior

fitequations(andindeed,oneshouldprefertobeabletophysicallymotivateequationsthatoneuses),itisperhapsanopportunitytopointoutthatwhenonedoesresearch,sometimesonedoeswhatonecando.Instructors,whofeelthatthelackofphysicalmotivationfortheequationsandthefitparametersarereasonstonotusethem,mayomitthispartofthediscussion,andhavethestudentsonlyfindthefrequencyandtimeconstantofthering-down.Theseinstructorscanthendiscusshowthemassandspinofthefinalblackholecanbefoundfromdataavailableintables,whichwerederivedfromsolidphysicalmodels.Theauthor’sexperiencewithhisownstudentsisthatfindingthemassandspinofthefinalblackholeisoneofthefavoritepartsformanystudents.Bethatasitmay,theseequationsare,however,extremelyeffectiveforourpurposes.Wecannowsolvethissetoftwoequationsforthetwounknown!! and!,andfindthat!! = 67 !!"#and! = 0.67.Inthiscalculationweuse! !! = 0.248×10!!"skg-1,and!!"# = 1.99×10!"kg.ThevaluesreportedintheLIGOpaperare!! = 67 ± 4 !!"#and! = 0.67!!.!"!!.!".Sincewefoundabovethatthetotalmassbeforethemergerwas>~70!!"# ,weinferthatatleast3!!"#wereradiatedintheformofgravitationalwaves.Takingthemergertimetobe0.2s,theaveragepoweremittedis3×10!!ergs-1.v)DistancetothesourceIfthisactivityisassignedtostudentsofanintroductoryastronomyorcosmologycourse,wheretheconceptsofluminositydistanceandcosmicexpansionareintroduced,theactivitycanbeextendedtofindtheluminositydistance.Forstudentsoftheintroductoryphysicscoursethecalculationoftheluminositydistancedcanbeskipped.Onestartswiththeamplitudeequation(1),andcombinesitwiththefrequencyevolutionequation(2).Onecanthensolvefor!! intermsofonlyquantitiesthataredirectlymeasurablefromthewaveform,specifically,

!! = !!"!!

!!!!!.

Thelastresultisanextremelyimportantone,asitshowsthatthedistancefromthesourcecanbemeasureddirectlyfromthewaveform.Thisisauniquecaseforastronomy,asthedistancefromasourceobservedwithlightcannotbeinferredfromonlythesignal,andother

Page 16: Gravitational Wave Detection in the Introductory Lab Lior

methodsneedtobeusedinordertoestimatethedistance(theso-calleddistanceladder).E.g.,therewasatfirstafiercedebateaboutthedistancetoquasarsbeforetheirredshiftwasmeasured,asthedistancecouldnotbeinferreddirectlyfromtheobservations.ThedistancetothesourceofGW150914,400MPc,ismuchlongerthanthetypicaldistancebetweengalaxies,~1Mpc,whichitselfisabout50timesthesizeofasinglegalaxy.Ifthestudentsarefamiliarwithcosmologicalexpansionandknowtheredshift–distancerelation,theycancheckthatthesourceisatacosmologicaldistance,specificallytheredshift! = 0.1.Insummary,thedetectionofgravitationalwaveswithLIGOprovidesphysicsorastronomyinstructorswithanopportunitytoengagestudentsoftheintroductorycoursewiththisveryexcitingandimportantdiscoveryusingsimpledataanalysistoolsthatareavailabletothestudents.Thisresearchhasmadeuseofdata,softwareand/orwebtoolsobtainedfromtheLIGOOpenScienceCenter(https://losc.ligo.org),aserviceofLIGOLaboratoryandtheLIGOScientificCollaboration.LIGOisfundedbytheU.S.NationalScienceFoundation.ReferencesAbbott,B.P.etal(2016a),ObservationofGravitationalWavesfromaBinaryBlackHoleMerger,Phys.Rev.Lett.116,061102

Abbott,B.P.etal(2016b),TestsofGeneralRelativitywithGW150914,arXiv:1602.03841

Berti,E.,Cardoso,V.,andStarinets,A.O.(2009)Quasinormalmodesofblackholesandblackbranes,ClassicalandQuantumGravity26,163001

Chabay,R.andSherwood,B.(2008),Computationalphysicsintheintroductorycalculus-basedcourse,Am.J.Phys.76,307

Einstein,A.(1916)Sitzungsber.K.Preuss.Akad.Wiss.1,688

KennefickD.(2007)TravelingattheSpeedofThought(PrincetonUniversityPress,Princeton)

Page 17: Gravitational Wave Detection in the Introductory Lab Lior

Larson,M.B,Rubbo,L.J,.Zaleski,K.D,andLarson,S.L.(2006)ScienceIcebreakerActivities:AnExamplefromGravitationalWaveAstronomy,Phys.Teach.44,416Redish,E.F.andWilson,J.M.(1993),StudentProgrammingintheIntroductoryPhysicsCourse:M.U.P.P.E.T,Am.J.Phys.61,222Rubbo,L.J.,Larson,S.L.,Larson,M.B.,andZaleski,K.D.(2006)Gravitationalwaves:Newobservatoriesfornewastronomy,Phys.Teach.44,420Rubbo,L.J.,Larson,S.L.,Larson,M.B.,andIngram,D.R.(2007)Hands-ongravitationalwaveastronomy:Extractingastrophysicalinformationfromsimulatedsignals,Am.J.Phys.75,597Schutz,B.(2003),Gravityfromthegroundup(CambridgeUniversityPress,Cambridge,UK)Spetz,G.W.(1984),DetectionofGravityWaves,Phys.Teach.22,282

Page 18: Gravitational Wave Detection in the Introductory Lab Lior

Erratum: Gravitational Wave Detection in the Introductory Lab [The Physics Teacher 55, 288 (2017)]

Lior M. Burko, Georgia Gwinnett College

December 6, 2018

There is a typo in the amplitude relation, Eq. (1). The correct equation is

ℎ = !"!

#$"(%&)!/&(()")'/&.

Notice that this correction involves only constant factors, and therefore the derivation, which was done using scaling relations, remains unaffected.