graphene pn junctions

58
1 NCN@Purdue Summer School, July 20-24, 2009 Tony Low and Mark Lundstrom Network for Computational Nanotechnology Discovery Park, Purdue University West Lafayette, IN Graphene PN Junctions

Upload: liakman

Post on 07-Apr-2015

302 views

Category:

Documents


0 download

DESCRIPTION

NCN@Purdue Summer School, July 20-24, 2009Graphene PN JunctionsTony Low and Mark Lundstrom Network for Computational Nanotechnology Discovery Park, Purdue University West Lafayette, IN1acknowledgmentsSupriyo Datta and Joerg Appenzeller2outline1) Introduction 2) Electron optics in graphene 3) Transmission across NP junctions 4) Conductance of PN and NN junctions 5) Discussion 6) Summary3PN junctions: semiconductors vs. grapheneE (x) In EF 1EC (x) ∝ − qV (x)−+EV (x)

TRANSCRIPT

Page 1: Graphene PN Junctions

1

NCN@Purdue Summer School, July 20-24, 2009

Tony Low and Mark LundstromNetwork for Computational Nanotechnology

Discovery Park, Purdue UniversityWest Lafayette, IN

Graphene PN Junctions

Page 2: Graphene PN Junctions

2

acknowledgments

Supriyo Datta and Joerg Appenzeller

Page 3: Graphene PN Junctions

3

outline

1) Introduction

2) Electron optics in graphene

3) Transmission across NP junctions

4) Conductance of PN and NN junctions

5) Discussion

6) Summary

Page 4: Graphene PN Junctions

4

PN junctions: semiconductors vs. graphene

EC x( )∝ −qV x( )

EV x( )

x

E x( )

EF1

In

I0 ∝ ni2 ∝ e− EG kbT

q Vbi − VA( )

+−

I = I0eqVA kbT

Page 5: Graphene PN Junctions

5

experimental observation

ID

VA

GNP

GN+ N

GNP < GN+ N

B. Huard, J.A. Sulpizo, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, Transport measurements across a tunable potential barrier in graphene,” Phys. Rev. Lett., 98, 236803, 2007.

Page 6: Graphene PN Junctions

electron “optics” in graphene

Semiclassical electron trajectories are analogous to the rays in geometrical optics.

If the mfp is long, one may be able to realize graphene analogues of optical devices.

Page 7: Graphene PN Junctions

Snell’s Law

θ1

n1

θ2

n2

n1 sinθ1 = n2 sinθ2 sinθ2 =n1

n2

sinθ1

y

x

Page 8: Graphene PN Junctions

negative index of refraction

θ1

n1

θ2 < 0

n2 < 0

n1 sinθ1 = n2 sinθ2 sinθ2 =n1

n2

sinθ1

y

x

Page 9: Graphene PN Junctions

Veselago lens

n1 > 0

9

n2 = −n1

Page 10: Graphene PN Junctions

10

theoretical prediction

Science, 315, 1252, March 2007 N-type P-type

electron trajectories

Page 11: Graphene PN Junctions

making graphene PN junctions

From: N. Stander, B. Huard, and D. Goldhaber-Gordon, “Evidence for Klein Tunneling in Graphene p-n Junctions,” PRL 102, 026807 (2009)

11

Page 12: Graphene PN Junctions

12

band diagrams: conventional PN junctions

N+ P

EV x( )

x

E x( )

Fn

I +

q Vbi − VA( )

Fp

EI x( )∝ −qV x( )

EC x( )

Page 13: Graphene PN Junctions

13

band diagrams: graphene PN junctions

ENP x( )∝ −qV x( )

x

E

EF1

E

kx

E

kx

E

kx

Page 14: Graphene PN Junctions

14

an abrupt graphene N+N junction

x

E x( )EF1

ENP x( )

Apply a low bias. Conduction occurs through states near the Fermi level.

kx

E υx = +υFE

kx

υx = +υF

qVJ < 0

Page 15: Graphene PN Junctions

15

an abrupt graphene PN junction

kx

x

E x( )

EF1

E

ENP x( )E

kx

Apply a low bias. Conduction occurs through states near the Fermi level.

υx = +υF

υx = +υF

Note that kx – kx0 changes sign!

qVJ

Page 16: Graphene PN Junctions

ID

VA

GN+ N

16

conductance of graphene junctions

x

E x( )EF1

ENP x( )kx

E υx = +υFE

kx

υx = +υF

qVJ

N+N

kx

x

E x( )

EF1

E

ENP x( )E

kx

υx = +υF

υx = +υF

qVJ

NP

kx

x

E x( )

EF1

E

ENP x( )

E

kx

υx = +υF

υx = +υF

qVJ

NIGNP

GNI

Page 17: Graphene PN Junctions

17

objectives

To understand:

1) Electron “optics” in NP junctions

2) The conductance of NP and NN junctions

Page 18: Graphene PN Junctions

18

about graphene

kx

E x( )

EF

gV = 2

“neutral point”

“Dirac point”

( ) 2 2F F x yE k k k kυ υ= ± = ± +

( ) 1F

Ekk

υ υ∂= =

2 2( ) 2 FD E E π υ=

υF ≈ 1× 108 cm/s

( ) 1 cosx Fx

Ekk

υ υ θ∂= =

( ) 1 siny Fy

Ekk

υ υ θ∂= =

( ) 2 FM E W E π υ=

ky

Page 19: Graphene PN Junctions

electron wavefunction in graphene

y

x

ψ x, y( )=1A

ei kx x+ kyy( )

ψ x, y( )= 1seiθ

ei kx x+ kyy( )

s = sgn E( )

θ = arctan ky kx( )

Page 20: Graphene PN Junctions

20

absence of backscattering

kx

E x( )

EF

ψ x, y( )= 1seiθ

ei kx x+ kyy( )

s = sgn E( ) θ = arctan ky kx( )

11

1−1

kx

ky

k

′k

Page 21: Graphene PN Junctions

21

outline

1) Introduction

2) Electron optics in graphene

3) Transmission across NP junctions

4) Conductance of PN and NN junctions

5) Discussion

6) Summary

Page 22: Graphene PN Junctions

a graphene PN junction

kx

x

E x( )

EF1

E

ENP x( )E

kx

υx = +υF

υx = +υF

N-type P-type

kx

ky

υparallel to kυ

anti-parallel to kυ

kx

ky

υ

υx = −υF

y

Page 23: Graphene PN Junctions

23

group velocity and wavevector

kx

E x( )

ky

group velocity parallel to k

( ) 1g F

E kkk k

υ υ∂= =

group velocity parallel to -k

( ) 1g F

E kkk k

υ υ∂= = −

Page 24: Graphene PN Junctions

24

what happens for parabolic bands?

kx

ky

( ) ( )1g kk E kυ = ∇

conduction band

( ) *x

g xkk

mυ = +

valence band

( ) *x

g xkk

mυ = −

E k( )

Page 25: Graphene PN Junctions

25

optics

Snell’s Law

θ1

1θ ′ θ2

ki

kr

kt

n1 n2

n1 sinθ1 = n2 sinθ2

θr = θi

θ1

′θ1 θ2

υi

υr

υt

n1 n2

group velocity parallel to wavevector

Page 26: Graphene PN Junctions

26

electron trajectories in graphene PN junctions

rays in geometrical optics are analogous to semiclassical electron trajectories

θ1

1θ ′ θ2

ki

kr

kt

N-type P-type

( )e

d kF q

dt= = −

E

x

y1) ky is conserved

kyi = ky

r = kyt

2) Energy is conserved

Ei = Er = Et

Page 27: Graphene PN Junctions

27

on the N-side…

θ1

1θ ′ θ2

ki

kr

kt

N-type P-type

i r ty y yk k k= =

Ei = Er = EF

kyi = kF sinθ1 = ky

i = kF sin ′θ1

1 1θ θ ′=

angle of incidence = angle of reflection

x

y

F F FE kυ=

Page 28: Graphene PN Junctions

28

a symmetrical PN junction

kx

x

E x( )

EF

E

ENP x( )E

kx

υx = +υF

υx = +υF

N-type P-type

υx = −υF

( )F NPF

F

E E xk

υ−

=

Symmetrical junction:

EF − ENP 0( )= ENP L( )− EF

−qVJ = 2 EF − ENP 0( ) kF

i = kFt

ε1

ε2

One choice for ky, but two choices for kx.

Page 29: Graphene PN Junctions

29

wavevectors

θ1

′θ1

ki

kr

N-type P-type

1) transverse momentum (ky) is conserved

2) transmitted electron must have a positive x velocity

anti-parallel to kυ

kx

ky

υkyi = ky

r = kyt

kxi = −kx

r = −kxt

The sign of the tangential k-vector (ky) stays the same, and the normal component (kx) inverts.

x

y

θ2

kt

parallel to kυ

kx

υ

ky

υ

Page 30: Graphene PN Junctions

wavevectors and velocities

θ1

′θ1

θ2

ki

kr

ktN-type P-type

x

y

kyi = ky

r = kyt

kxi = −kx

r = −kxt

θ1

′θ1

θ2

υi

υr

υtN-type P-type

x

y

θ2 = −θ1

“negative index of refraction”

θ1 = ′θ1

n1 sinθ1 = n2 sinθ2

1 2n n= −

Page 31: Graphene PN Junctions

more generally

θ1

1θ ′

θ2

υi

υr

υtN-type P-type

1) y-component of momentum conserved

2) energy conserved

31

ε1 sinθ1 = ε2 sinθ2

critical angle for total internal reflection

θC = sin−1 ε2 ε1( ) ε1 > ε2( )

ε = EF − ENP( )1 1θ θ ′=

Page 32: Graphene PN Junctions

reflection and transmission

θ1

1θ ′

θ2

υi

υr

υtN-type P-type

32

We know the direction of the reflected and transmitted rays, but what are their magnitudes?

Page 33: Graphene PN Junctions

33

outline

1) Introduction

2) Electron optics in graphene

3) Transmission across NP junctions

4) Conductance of PN and NN junctions

5) Discussion

6) Summary

Page 34: Graphene PN Junctions

reflection and transmission

N-type P-type

34

x

y

R θi( )∝ r 2 T θi( )∝ t 2

θ1

ki

1) incident wave:

ψ i x, y( )= 1seiθ

ei kx x+ kyy( )

1θ ′

kr

2) reflected wave:

ψ r x, y( )= r 1seiθ

ei − kx x+ kyy( )

θ2

kt

3) transmitted wave:

ψ x, y( )= t 1seiθ

ei − kx x+ kyy( )

s = sgn E( ) θ = arctan ky kx( )

Page 35: Graphene PN Junctions

−90−60

−30

1.00

transmission: abrupt, symmetrical NP junction

perfect transmission for = 0

kx

ky

υ

kx

ky

υincident

transmitted

T θi( )= cos2 θi

Page 36: Graphene PN Junctions

conductance of abrupt NN and NP junctions

T θi( )= cos2 θi

This transmission reduces the conductance of NP junctions compared to NN junctions, but not nearly enough to explain experimental observations.

Page 37: Graphene PN Junctions

37

a graded, symmetrical PN junction

kx

x

E x( )

EF

E

ENP x( )E

kx

υx = +υF

N-type P-type

ε1

−ε1

d

E

The Fermi level passes through the neutral point in the transition region of an NP junction. This does not occur in an NN or PP junction, and we will see that this lowers the conductance of an NP junction.

Page 38: Graphene PN Junctions

38

treat each ray (mode) separately

x

y

θ

ki ky = kF sinθ

sinF FE k υ θ=

sinF FE k υ θ= −

2 2 2sinF x FE k kυ θ= +

ky

E

kx = 0kx

E

2 sinG F FE kυ θ=

Page 39: Graphene PN Junctions

39

for each ky (transverse mode)

kx

x

E x( )

EF

E

ENP x( )E

kx

υx = +υF

N-type P-type

ε1

−ε1

d

E

2 sinG F FE kυ θ=

band to band tunneling (BTBT)

Page 40: Graphene PN Junctions

40

NEGF simulation

T. Low, et al., IEEE TED, 56, 1292, 2009

Page 41: Graphene PN Junctions

41

propagation across a symmetrical NP junction

x

E x( )

EF

ENP x( )= ε1

−ε1

d

ENP x( )= −ε1

( ) 2 2F x yx k kε υ= +

( ) 2 2 2sinF x Fx k kε υ θ= +

( ) ( )( )22 2 2sinx F Fk x x kε υ θ= −

E

kx

ε1

kx > 0kx

E

kx < 0

kx2 < 0

E

kx

Page 42: Graphene PN Junctions

42

WKB tunneling

( ) ( )( )22 2 2sinx F Fk x x kε υ θ= −

For normal incidence, kx is real perfect transmission

ψ x( ) : eikx x For any finite angle, there will a region in the junction where kx is imaginary evanescent

T : e−2i kx x( )dx

− l

+ l

∫ Slowly varying potential no reflections.

( ) 2sinFk dT e π θθ −

2 sinG F FE kυ θ=

12 2 F Fkqd qdε υ

= =E

( )2 2G FE qT e π υ−

E

Page 43: Graphene PN Junctions

43

transmission vs. angle

More generally, to include the reflections for abrupt junctions (small d):

T θ( ) : cos2 θ e−π kF d sin2 θ

−30

−60−90

T θ( )= e−π kF d sin2 θ

T θ( )= cos2 θ

Page 44: Graphene PN Junctions

44

outline

1) Introduction

2) Electron optics in graphene

3) Transmission across NP junctions

4) Conductance of PN and NN junctions

5) Discussion

6) Summary

Page 45: Graphene PN Junctions

45

graphene junctions: NN, NP, PP, PN

kx

x

E x( )

EF

E

ENP = −qVJ

E

kx

qVJ < 0

two independent variables: 1) EF and 2) VJ

↑EF > 0

N

PEF < 0

↑−qVJ > EF

P

N−qVJ < EF

Page 46: Graphene PN Junctions

NN

qVJ > EF, right side N-type

PNNP

PP

qVJ < EF, right side P-type

46

graphene junctions

↑EF

qVJ → −qVJ = EF

0

EF > 0, left side N-type

EF < 0, left side P-type

Page 47: Graphene PN Junctions

47

conductance of graphene junctions

G =2q2

hM EF( ) G W =

2q2

h1

Wmin M1, M2( )

kx

x

E x( )

EF

E

ENP = −qVJ

E

kx

i) EF > 0,qVJ < EF ⇒ NP

M2 < M1

Page 48: Graphene PN Junctions

48

conductance vs. EF and VJ

x

E x( ) EF = 0.3EPN = −qVJ

x

E x( )

EF

EPN = 0.6

T. Low, et al., IEEE TED, 56, 1292, 2009

Page 49: Graphene PN Junctions

measured transport across a tunable barrier

B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, “Transport Measurements Across a Tunable Potential Barrier in Graphene, Phys. Rev. Lett., 98, 236803, 2007.

EF

Page 50: Graphene PN Junctions

experimental resistance

B. Huard, J. A. Sulpizio, N. Stander, K. Todd, B. Yang, and D. Goldhaber-Gordon, “Transport Measurements Across a Tunable Potential Barrier in Graphene, Phys. Rev. Lett., 98, 236803, 2007.

Page 51: Graphene PN Junctions

51

NEGF simulation of abrupt junctions

x

E x( ) EF = 0.3EPN = −qVJ

T. Low, et al., IEEE TED, 56, 1292, 2009

GPN GNN

GPN < GNN

Page 52: Graphene PN Junctions

52

conductance of abrupt graphene junctions

N-type P-type N-type N+ -type

GNN W =2q2

hM EF( )

GNP W =23

2q2

hM EF( )

( )22

y

NP yk

qG T kh

= ∑

GNN

GPN

T θ( )= cos2 θ =kx

kF

2

= 1−ky

kF

2

GNP =23

GNN

EF = 0.3 EF = 0.3

GNP < GNN

Page 53: Graphene PN Junctions

53

conductance of graded graphene junctions

N-type P-type N-type N+ -type

GNN W =2q2

hM EF( )

GNP = GNN kF d

GNP =2q2

hT ky( )

ky

EF = 0.3 EF = 0.3

GNP << GNN

kF d >> 1→ λF << dT. Low, et al., IEEE TED, 56, 1292, 2009

T θ( )= e−π kF d sin2 θ = e−π kF d ky kF( )2

Page 54: Graphene PN Junctions

54

outline

1) Introduction

2) Electron optics in graphene

3) Transmission across NP junctions

4) Conductance of PN and NN junctions

5) Discussion

6) Summary

Page 55: Graphene PN Junctions

55

conductance vs. gate voltage measurements

Back gate

(doped Si)

grapheneSiO2

L

VG

either N-type or P-type depending on the metal workfunction

either N-type or P-type depending on the back gate voltage

G

′VG

B. Huard, N. Stander, J.A. Sulpizo, and D. Goldhaber-Gordon, “Evidence of the role of contacts on the observed electron-hole asymmetry in graphene,” Pbys. Rev. B., 78, 121402(R), 2008.

Page 56: Graphene PN Junctions

56

outline

1) Introduction

2) Electron optics in graphene

3) Transmission across NP junctions

4) Conductance of PN and NN junctions

5) Discussion

6) Summary

Page 57: Graphene PN Junctions

57

conclusions

1) For abrupt graphene PN junctions transmission is reduced due to wavefunction mismatch.

2) For graded junctions, tunneling reduces transmission and sharply focuses it.

3) Normal incident rays transmit perfectly

4) The conductance of a graphene PN junction can be considerably less than that of an NN junction.

5) Graphene PN junctions may affect measurements and may be useful for focusing and guiding electrons.

Page 58: Graphene PN Junctions

questions

58