gpu alcatel

162
Alcatel BSS B9 BSS Configuration Rules BSS Document Reference Guide Release B9 3BK 17422 5000 PGZZA Ed.06b

Upload: hoang-thanh-dung

Post on 30-Sep-2015

55 views

Category:

Documents


4 download

DESCRIPTION

GPU Alcatel

TRANSCRIPT

  • Alcatel BSS

    B9 BSS Configuration Rules

    BSS Document

    Reference Guide

    Release B9

    3BK 17422 5000 PGZZA Ed.06b

  • Status RELEASED

    Short title Configuration Rules

    All rights reserved. Passing on and copying of this document, useand communication of its contents not permitted without writtenauthorization from Alcatel/Evolium.

    BLANK PAGE BREAK

    2 / 162 3BK 17422 5000 PGZZA Ed.06b

  • Contents

    ContentsPreface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

    1.1 BSS Equipment Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.2 Supported Hardware Platforms, Restrictions and Retrofits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.3 Platform Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.4 Release Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.5 BSS Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.6 New B9 Features and Impacted Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    2 BSS Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.1 Transmission Architecture with CS Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.2 Transmission Architecture with CS and PS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.3 GPRS in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

    2.3.1 GPRS Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222.3.2 GPRS General Dimensioning and Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    2.4 LCS in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.4.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.4.2 Logical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.4.3 Physical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.4.4 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.4.5 GPS LCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.4.6 BSS and Cell Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.4.7 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.4.8 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    2.5 HSDS in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.5.1 Definitions and Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.5.2 Transmission Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392.5.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

    2.6 PLMN Interworking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433 BTS Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    3.1 BTS Generation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.2 Evolium BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    3.2.1 Evolium BTS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.2.2 Evolium BTS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    3.3 G2 BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.4 G1 BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.5 BTS Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.6 Physical Channel Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    3.6.1 GSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.6.2 GPRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

    3.7 Frequency Band Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.7.2 Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.7.3 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    3.8 Speech Call Traffic Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.9 Adaptive Multi-rate Speech Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    3.9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543.9.2 Rules and Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

    3.10 Data Call Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.11 OML and RSL Submultiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.12 Cell Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

    3.12.1 Cell Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.12.2 Frequency Hopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573.12.3 Shared Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

    3BK 17422 5000 PGZZA Ed.06b 3 / 162

  • Contents

    3.13 SDCCH Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.13.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593.13.2 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

    4 BSC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.1 A9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

    4.1.1 A9120 BSC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624.1.2 ABIS TSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674.1.3 ATER TSU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.1.4 TSC Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

    4.2 A9130 BSC Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.2.1 A9130 BSC Evolution Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 734.2.2 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 774.2.3 A9130 Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

    4.3 Delta A9130 BSC Evolution versus A9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 815 TC Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    5.1 G2 TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.1.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 855.1.2 Rules and Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    5.2 A9125 Compact TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 865.2.2 Rules and Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

    6 MFS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 896.1 A9135 MFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

    6.1.1 MFS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906.1.2 MFS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926.1.3 MFS Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

    6.2 A9130 MFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946.2.1 MFS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 946.2.2 MFS Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 956.2.3 MFS Clock Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

    6.3 Delta A9135MFS versus A9130MFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 977 ABIS Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

    7.1 Abis Network Topology and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1007.2 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017.3 Abis Channel Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    7.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1017.3.2 TS0 Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    7.4 Signaling Link on Abis Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027.4.1 RSL and OML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027.4.2 Qmux Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027.4.3 OML Autodetection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

    7.5 Signaling Link Multiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037.5.1 Signaling Link Multiplexing Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037.5.2 Signaling Link Multiplexing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1037.5.3 Multiplexed Channel Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

    7.6 Mapping Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047.6.1 Free Mapping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047.6.2 Abis-TS Defragmentation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057.6.3 RSL Reshuffling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057.6.4 Cross-Connect Use on Abis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1067.6.5 SBL Numbering Scheme in A9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077.6.6 SBLs Mapping on HW Modules in A9130 BSC Evolution versus A9120 BSC 1097.6.7 TCU Allocation Evolution in A9130 BSC Evolution . . . . . . . . . . . . . . . . . . . . . . . . 109

    7.7 Abis Link Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1107.8 Abis Satellite Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    4 / 162 3BK 17422 5000 PGZZA Ed.06b

  • Contents

    7.9 Two Abis Links per BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138 Ater Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

    8.1 Ater Network Topology and Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188.2 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188.3 Numbering Scheme on A9120 BSC-Ater/Atermux/TC Ater/A Interface . . . . . . . . . . . . . . . . . 118

    8.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1188.3.2 Numbering Scheme on the A9120 BSC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1198.3.3 Numbering Scheme at G2 TC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

    8.4 Numbering Scheme on A9130 BSC Evolution-Ater/Atermux/TC Ater/A Interface . . . . . . . . 1208.4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208.4.2 SBLs Mapping on HW Modules in A9130 BSC Evolution versus A9120 BSC 120

    8.5 Signaling on Ater/Atermux Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1218.5.2 Signaling Link Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1228.5.3 SS7 Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

    8.6 GPRS and GSM Traffic on Atermux versus A9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238.6.2 Hole Management in a G2 TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248.6.3 Sharing Atermux PCM Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248.6.4 Ratio of Mixing CS and PS Traffic in Atermux . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    8.7 Ater Satellite Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279 GB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

    9.1 Gb Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309.2 Gb Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

    10 CBC Connection, SMSCB Phase 2+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13310.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13410.2 GSM Cell Broadcast Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13410.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

    10.3.1 Solutions in A9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13410.3.2 Solutions in A9130 BSC Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

    Appendix A : BSS Hardware Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Appendix B : Cell Radio Channel Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    B.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139B.1.1 Cell Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139B.1.2 TRX Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139B.1.3 Hopping Types in a Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141B.1.4 Radio Carrier Hopping Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142B.1.5 Use of the Hopping Types per Subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

    B.2 Mapping Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144B.2.1 ARFN/CU Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144B.2.2 TCU/RSL & TRX/RSL Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

    B.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146B.3.1 ARFCN Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146B.3.2 TRX Channel Configuration Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    3BK 17422 5000 PGZZA Ed.06b 5 / 162

  • Figures

    FiguresFigure 1: BSS with GPRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Figure 2: Transmission Architecture with CS Only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 3: Transmission Architecture with CS and PS (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 4: Transmission Architecture with CS and PS (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Figure 5: MFS in the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Figure 6: GPRS NE, Interfaces and Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Figure 7: Example 1 of a Link Configuration: 3/4 GSM& 1/4 GPRS Atermux 4:1 mapping . . . . . . . . . . . . . . 28Figure 8: Example 2 of a Link Configuration: 3/4 GSM& 1/4 GPRS Atermux 4:1 mapping . . . . . . . . . . . . . . 30Figure 9: Generic LCS Logical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Figure 10: SAGI Physical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Figure 11: Impact on Hub Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Figure 12: Choice of Modulation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Figure 13: BTS in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45Figure 14: BSC in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61Figure 15: A9120 BSC Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Figure 16: Ater TSU Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Figure 17: A9130 BSC Evolution HW Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74Figure 18: 600 TRX LIU Shelf connections assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78Figure 19: TC in the BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83Figure 20: MFS Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90Figure 21: BSC Connection for Multi-GPU per BSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92Figure 22: A9130 MFS Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95Figure 23: Chain Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Figure 24: Ring or Loop Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101Figure 25: Example of Cross-Connect Use on Abis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106Figure 26: Gb Link Directly to SGSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Figure 27: Gb Link through the TC and MSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130Figure 28: Gb Link through the MSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131Figure 29: Gb Logical Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132Figure 30: CBC-BSC Interconnection via PSDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Figure 31: CBC-BSCs Interconnection via the MSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Figure 32: Maximum Number of Frequencies that can be Encoded in a CBCH Mobile Allocation and a Cell

    Allocation (GPRS and of SoLSA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151Figure 33: Maximum number of extended measurement frequencies that can be included in the Extended

    Measurement Frequency List according to the frequency span. . . . . . . . . . . . . . . . . . . . . . . . . . . 153

    6 / 162 3BK 17422 5000 PGZZA Ed.06b

  • Tables

    TablesTable 1: BSS Equipment Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Table 2: Supported Hardware Platforms, Restrictions and Retrofits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Table 3: New Features B9 and Impacted Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Table 4: GPRS General Dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Table 5: GPRS Coding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Table 6: EGPRS Modulation and Coding Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Table 7: GMSK and 8-PSK Transmission Power Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Table 8: BTS Generation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46Table 9: Evolium BTS Minimum and Maximum Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Table 10: Typical GSM 900 and GSM 1800/1900 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Table 11: Typical Multiband Configuration G3 BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Table 12: G2 BTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Table 13: BTS Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Table 14: Frequency band configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Table 15: Hardware Transmission Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Table 16: Speech Call Traffic Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Table 17: AMR Codec List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Table 18: Data Call Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Table 19: OML and RSL Submultiplexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Table 20: Cell Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Table 21: Maximum Supported Capacities and Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Table 22: A9120 BSC Globally Applicable Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Table 23: BSS Evolution Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Table 24: B9 A9120 BSC Capacity per Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67Table 25: TSL / TCU Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Table 26: Configuration Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Table 27: DTC Configuration and SBL Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Table 28: G2 TC/A9125 Compact TC capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84Table 29: G2 TC configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Table 30: G2 TC Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Table 31: MFS Capacity for DS10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93Table 32: Maximum MFS Configurations on MX Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96Table 33: Multiplexed Channel Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104Table 34: TS Mapping Table for Corresponding Abis Chain or Ring Configurations . . . . . . . . . . . . . . . . . . . . 107Table 35: SBL Numbering at A9120 BSC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Table 36: Abis Port - BIUA - TCU SBL Numbering in A9120 BSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108Table 37: Number of TS available in one Abis Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110Table 38: Number of Required TS versus TRX Number and Sub-Multiplexing Type . . . . . . . . . . . . . . . . . . . 111Table 39: Example of FR/DR Ratios According to Cell Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

    3BK 17422 5000 PGZZA Ed.06b 7 / 162

  • Tables

    Table 40: Numbering Scheme on BSC-Ater/Atermux/TC Ater/A Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Table 41: Numbering Scheme on A9120 BSC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Table 42: Numbering Scheme on G2 TC Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120Table 43: SS7, Atermux, DTC and Ater Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Table 44: GPU Atermux Connections Example Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126Table 45: Ratio of Mixing CS and PS Traffic in Atermux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

    8 / 162 3BK 17422 5000 PGZZA Ed.06b

  • Preface

    PrefacePurpose This document describes the configuration rules for release B8 of the Alcatel

    BSS. It describes the possible BSS configurations supported in release B9, anddescribes the new equipment in this release and the corresponding impact onthe various interfaces. Note that the OMC-R, RNO, NPA and LASER productsare beyond the scope of this document; refer to the appropriate documentationfor more information about these products.

    Whats New In Edition 06bUpdate made in Extended Cell Configuration (Section 3.2.2.3) due to systemevolution.

    In Edition 06Creation from doc version to.xml.Introduction of A9130 MFS in GPRS General Dimensioning and Rules (Section2.3.2), MFS Configuration (Section 6)Introduction of A9130 BSC Evolution in BSC Configuration (Section 4),Impedance (Section 7.2), Overview (Section 7.3.1), Qmux Bus (Section 7.4.2),RSL Reshuffling Algorithm (Section 7.6.3), Cross-Connect Use on Abis (Section7.6.4), Numbering Scheme on A9130 BSC Evolution-Ater/Atermux/TC Ater/AInterface (Section 8.4), SBLs Mapping on HW Modules in A9130 BSC Evolutionversus A9120 BSC (Section 7.6.6), TCU Allocation Evolution in A9130 BSCEvolution (Section 7.6.7), Rules (Section 3.13.2), Solutions (Section 10.3).PS is supported in extended cell. Plus other additional rules regarding theextended cells in Cell Types (Section 3.12.1), Extended Cell Configuration(Section 3.2.2.3)Editorial updates in chapters :New B9 Features and Impacted Sections (Section1.6), GPRS Configurations (Section 2.3.1), GPRS General Dimensioning andRules (Section 2.3.2), Rules (Section 2.5.3), A9130 BSC Evolution BoardConfigurations (Section 4.2.2.1), Centralized Mode (Section 6.1.3.2), MFSArchitecture (Section 6.2.1), MFS Clock Synchronization (Section 6.2.3)Update chapter with BTS number on A9130 BSC type 1A9130 Capabilities(Section 4.2.3)

    In Edition 05

    3BK 17422 5000 PGZZA Ed.06b 9 / 162

  • Preface

    Overall document quality was improved following an editorial review.

    In Edition 04A new feature allows the usage of TREs at their real power. More details inCell Types (Section 3.12.1), GMSK Output Power (Section 2.5.2.1), Rules(Section 2.5.3).The secured single Gb details are included in chapters Gb Configuration(Section 9.2) and MFS Clock Synchronization (Section 6.1.3).

    In Edition 03Editorial review

    In Edition 02Creation from doc version to.xml

    Audience This manual is for people requiring an in-depth understanding of theconfiguration rules of the Alcatel BSS:

    Network decision makers who require an understanding of the underlyingfunctions and rules of the systemIincluding:

    Network plannersTechnical design staffTrainers.

    Operations and support staff who need to know how the system operates innormal conditionsIncluding

    OperatorsSupport engineersMaintenance staffClient Help Desk personnel.

    This document can interest alsothe following teams:

    Quality Acceptance First-OffCellular OperationsTechnical Project ManagersValidationMethods.

    10 / 162 3BK 17422 5000 PGZZA Ed.06b

  • Preface

    Assumed Knowledge The document assumes that the reader has an understanding of:

    GSMGPRS

    Mobile telecommunications.

    3BK 17422 5000 PGZZA Ed.06b 11 / 162

  • Preface

    12 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 1 Introduction

    1 Introduction

    Introduction gives a brief mentioning of synonymus of terms and a firstapproach of the Alcatel BSS, its equipments and features.

    3BK 17422 5000 PGZZA Ed.06b 13 / 162

  • 1 Introduction

    1.1 BSS Equipment NamesThe following table lists the Alcatel commercial product names and thecorresponding Alcatel internal names.

    Note: The names used in this document are those defined for internal use in Alcatel,and not the commercial product names.

    Alcatel Commercial Product Name Alcatel Internal Name

    Evolium A9100 G3, G3.5, G3.8, G4.2 BTS

    Evolium A9110 M4M

    Evolium A9110-E M5M

    A9135 MFS AS800, DS10 RC23, DS10 RC40

    A1353-RA OMC-3

    A9125 A9125 Compact TC

    A9120 G2 BSC

    A9130 BSC Evolution A9130 BSC Evolution

    A9130 MFS Evolution A9130 MFS Evolution

    Table 1: BSS Equipment Names

    1.2 Supported Hardware Platforms, Restrictions and RetrofitsThe following table lists the Alcatel hardware platforms supported in by theBSS, and corresponding restrictions and retrofits.

    Equipment B9 Support Retrofit Required

    BSC

    A9120 BSC Yes

    A9130 BSC Evolution Yes

    TC

    G2 TC Yes

    A9125 Compact TC Yes

    BTS Evolium

    M4M, M5M Yes

    G3, G3.5 Yes

    14 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 1 Introduction

    Equipment B9 Support Retrofit Required

    G4 (G3.8, G4.2) YesG2 BTS

    G2 Yes *

    G1 BTS

    G1 Mark II Yes *

    MFS

    MFS / AS800 Yes

    MFS / DS10 ** Yes

    MFS / DS10 *** Yes

    MFS A9130 Yes

    * : For BTS G1 and G2 only DRFU configuration is supported. BTS G1 is not supported at all for A9130 BSC Evolution.** : DS10 with network mirroring disks RC23*** : DS10 with local disks RC40Table 2: Supported Hardware Platforms, Restrictions and Retrofits

    1.3 Platform TerminalsThe Alcatel BSS supports the Windows XP and Windows 2000 OperatingSystems (OS).

    1.4 Release MigrationMigration from release B8 to release B9 infers the succession of the OMC,MFS and BSC.

    1.5 BSS UpdatesNo hardware upgrades are required.

    1.6 New B9 Features and Impacted SectionsThe following table lists the new B9 features, and provides links to impactedsections of this document.

    New B9 Features Impacted Sections

    GCH Statistical Multiplexing Rules (Section 2.5.3)Autonomous Packet ResourceAllocation

    GPRS (Section 3.6.2)

    3BK 17422 5000 PGZZA Ed.06b 15 / 162

  • 1 Introduction

    New B9 Features Impacted Sections

    HCM Improvements (TRX/RSL andTRE/TCU)

    TCU/RSL & TRX/RSL Mapping (Section B.2.2)

    Preparation for Complete CellIdentification

    PLMN Interworking (Section 2.6)

    Up to 64 cell reselection adjacenciesper cell

    PLMN Interworking (Section 2.6)

    Enhanced Transmission ResourceManagement

    Definitions and Prerequisites (Section 2.5.1)

    Enhanced support of EGPRS in uplink Definitions and Prerequisites (Section 2.5.1), Rules (Section2.5.3)

    Enhanced E-GSM band handling GPRS General Dimensioning and Rules (Section 2.3.2), EvoliumBTS Configuration (Section 3.2.2), G1 BTS (Section 3.4),Frequency Band Configuration (Section 3.7)

    Secured single Gb GPRS General Dimensioning and Rules (Section 2.3.2)Unbalancing TRX Output Power perBTS sector

    GMSK Output Power (Section 2.5.2.1), Cell Types (Section3.12.1), Rules (Section 2.5.3)

    New platform introduction A9130 MFSEvolution

    GPRS General Dimensioning and Rules (Section 2.3.2), MFSConfiguration (Section 6)

    New platform introduction A9130 BSCEvolution and rack sharing

    BSC Configuration (Section 4), Impedance (Section 7.2),Overview (Section 7.3.1), Qmux Bus (Section 7.4.2), RSLReshuffling Algorithm (Section 7.6.3), Cross-Connect Useon Abis (Section 7.6.4), Numbering Scheme on A9130 BSCEvolution-Ater/Atermux/TC Ater/A Interface (Section 8.4), SBLsMapping on HW Modules in A9130 BSC Evolution versus A9120BSC (Section 7.6.6), TCU Allocation Evolution in A9130 BSCEvolution (Section 7.6.7), Rules (Section 3.13.2),Solutions(Section 10.3)

    PS in extended cell Cell Types (Section 3.12.1)

    Table 3: New Features B9 and Impacted Items

    16 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    2 BSS Overview

    BSS Overview describes the Alcatel BSS, and corresponding features andfunctions.

    The GSM Radio System (GRS) is a set of hardware and software equipmentprovided by Alcatel to support the radio part of the GSM network. The GRScomprises one OMC-R and one or more BSS. The OMC-R supervises oneor more BSS.The BSS provides radio access for Mobile Stations (MS) to the PLMN. Thereare one or more GRS per PLMN.The following figure shows a BSS with GPRS. All BSS operating over thefield are with/without data service.

    3BK 17422 5000 PGZZA Ed.06b 17 / 162

  • 2 BSS Overview

    Figure 1: BSS with GPRS

    The different Network Elements (NE) within the BSS are:The Base Station Controller (BSC)The Transcoder (TC)The Base Transceiver Station (BTS)The Multi BSS Fast packet Server (MFS).

    The BSS interfaces are:

    The Um interface (air or radio interface), between the MS and the BTSThe Abis interface, used to connect the BTS to the BSC

    The Atermux interfaceused to connect:

    The BSC to the TC and/or the MFSThe MFS to the TC

    The A interface, used to connect the TC to the MSC

    18 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    The Gb interface, used to connect the MFS to the SGSN (directly, or throughthe TC and the MSC).

    Note: The Gs interface, between the MSC and the SGSN, is not described in thisdocument, as it is not considered to be part of the BSS. For more informationabout this interface, refer to the BSS System Description.For specific information about the LCS dedicated interfaces, refer to LCSin the BSS (Section 2.4).Given that the transmission architecture depends on GPRS, there are twopossible transmission architectures:

    Transmission architecture with Circuit Switched (CS) onlyTransmission architecture with CS and Packet Switched (PS).

    3BK 17422 5000 PGZZA Ed.06b 19 / 162

  • 2 BSS Overview

    2.1 Transmission Architecture with CS OnlyThis section provides information about static Abis only.The following figure shows the overall transmission architecture with CS only,inside the BSS.

    Figure 2: Transmission Architecture with CS Only

    The transmission interfaces are:

    The Abis interface, between the BIE BTS and the BIE BSC

    The Ater interface, between the SM and the DTC inside the BSC, andbetween the SM and the TRCU inside the TC

    The Atermux interface, between the BSC-SM and the TC-SM

    The A interface, between the TRCU and the MSC.

    The Abis, Ater, Atermux and A interfaces are structured in 32 time slots (TS),each of which is composed of 8 bits at 64Kbit/s, resulting in a 2048 Kbit/sE1 digital hierarchy.

    20 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    The TS are numbered from TS0 to TS31. Each 64 Kbit/s TS takes place in onebyte, sized of 8 bits numbered from 1 to 8.

    Note: Microwave equipment is external to and independent of Alcatel transmissionequipment, however, in some cases, the microwave can be housed in thetransmission equipment rack and in the BTS.

    2.2 Transmission Architecture with CS and PSPS is directly linked to GPRS and related MFS platforms.The following figures represent the MFS with its physical interfaces, whenconnected to the network.

    Figure 3: Transmission Architecture with CS and PS (1)

    Figure 4: Transmission Architecture with CS and PS (2)In addition to the interfaces defined in Transmission Architecture with CS Only(Section 2.1), the following MFS physical interfaces are used:

    The MFS-BSC interface, which is the Atermux interface (a 2Mbit/s PCM linkcarrying 32 TS at 64Kbit/s). The Atermux interface can be fully dedicatedto GPRS (only PS conveyed), or mixed CS/GPRS. In this case, the CSchannels (called CICs) coexist with GPRS channels (called GICs) onthe same link.

    3BK 17422 5000 PGZZA Ed.06b 21 / 162

  • 2 BSS Overview

    The MFS-TC interface, which is also a 2Mbit/s PCM link carrying CS only,GPRS only, or mixed CS/GPRS channels. The Gb interface can be routedthrough the TC for SGSN connection. While GSL is used between BSC andMFS for signaling and not for traffic, the GCH is used between the BTS andMFS. There are up to 4 tributaries multiplexed in one Atermux.

    The MFS-SGSN interface, which carries the Gb interface when there is adedicated MFS-SGSN link. This interface can cross a Frame Relay networkor not (direct connection MFS-SGSN).The MSC-SGSN interface, which carries the Gb interface to/from the MFSwhen there is no dedicated MFS-SGSN link. This interface can cross aFrame Relay network or not (direct connection MSC-SGSN).The MFS-OMC-R interface, which is a Q3 and FTP interface.

    Note: The MFS can be directly connected to the MSC (that is, without crossing theTC) for cabling facilities, however this still results in an MFS-SGSN interface,because the MSC only cross-connects the GPRS traffic.

    2.3 GPRS in the BSSThe MFS enables GPRS in the network. The following figure shows the locationof the MFS in the network.

    Figure 5: MFS in the Network

    2.3.1 GPRS ConfigurationsThe introduction of GPRS into the BSS basically requires the followingmodifications:

    The introduction of the Packet Control Unit (PCU). The PCU controls theGPRS activities for one Alcatel BSS.

    The introduction of the Gb interface termination function.

    22 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    The Alcatel approach for the implementation of GPRS is to group the PCUand Gb termination functions of several BSS into one new NE called theMFS (MFS-A9135).The following figure shows the GPRS NEs, interfaces and channels.

    Figure 6: GPRS NE, Interfaces and Channels

    Within the Alcatel BSS, two communication planes are used:

    The transmission planeThe PCU at the MFS converses with the CCU on the BTS side, via GCH,transparently through the BSC.

    The control plane.The following two signaling interfaces are used:

    The GPRS Signaling Link (GSL) between the MFS and BSC. This link isused for co-ordination between the BSC and the PCU, mainly for GPRScapacity on demand, and for GPRS paging, access request and accessgrant when the CCCH is used for GPRS.The Radio Signaling Link (RSL) between the BTS and the BSC. TheRSL is mainly used for GPRS paging, access request and access grant,when the CCCH is used for GPRS.

    The following configurations are supported:

    The Gb interface can be routed via the G2 TC and A9125 Compact TC tothe SGSN across the MSC

    The MFS can be connected to one OMC-R only

    The MFS and all connected BSS are managed by the same OMC-R. TheBSS connected to the same MFS can be linked to different MSC.

    3BK 17422 5000 PGZZA Ed.06b 23 / 162

  • 2 BSS Overview

    2.3.2 GPRS General Dimensioning and Rules

    O:OperatorChoiceS:SystemCheck

    Maximum Quantity (No MultipleGPU)

    Maximum Quantity (MultipleGPU*)

    BSS per A9135MFS

    O, S 22 22

    BSS per A9130MFS

    O, S 21 21

    BSS per GPU S 1 1

    GPU per BSS O, S (onmaximumvalue)

    1 6 GPU per BSS (committed value)

    GPU per A9135MFS

    O, S 24=2(11+1) 32=2*(15+1) (DS10)24=2*(11+1)(AS800)

    GPU perA9130MFS 1 shelf

    O, S 9+1/8+1 9+1/8+1

    GPU perA9130MFS 2shelfs

    O, S 21+1 21+1

    Number of GCHsimultaneouslyallocated per GPU

    S 240 240

    Number of GCHsimultaneouslyallocated per GP

    S 1560 1560

    Number of PDCHreached on GP

    S 960 PDCH CS-2912 PDCH MCS-1784 PDCH CS-4/MCS-5520 PDCH MCS-6390 PDCH MCS-7312 PDCH MCS-9

    960 PDCH CS-2912 PDCH MCS-1784 PDCH CS-4/MCS-5520 PDCH MCS-6390 PDCH MCS-7312 PDCH MCS-9

    Atermux A9120BSS-A9135MFS

    O 8 17 (minimum (ater Mux-1,nb.GPU*8))

    Atermux A9120BSS-A9130MFS

    O 6 17 (minimum (ater Mux-1,nb.GPU*6))

    Cells / GPU S 264 264

    24 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    O:OperatorChoiceS:SystemCheck

    Maximum Quantity (No MultipleGPU)

    Maximum Quantity (MultipleGPU*)

    Cells / MFS S 2000 2000

    Frame Relay BC /GPU

    O, S 120 120

    BVC per GPU S 264 264

    TRX with PDCHper Cell

    O,S 16 16

    Allocated PDCHper TRX

    S 8 8

    NSE per A9135MFS

    O, S 22=2*(11) 30=2*(15)(DS10)22=2*(11)(AS800)

    NSE perA9130MFS

    O, S 21 21

    GSL per BSC O 4GSL/GPU 4 GSL/GPU: up to 12 GSL/BSCminimum (12, 4*nb.GPU)

    Allocated GICs perBSC

    480=4*120 2000

    BVC-PTP 240 240

    NS-VC per NSE O, S 120 120

    Bearer Channelper MFS

    O, S 300 300

    Bearer ChannelPer PCM

    O, S 31 31

    PVC per BC S 1 1

    * : GPU concerns the logical unit, and GP is expressed for A9130 MFS.Table 4: GPRS General Dimensioning

    The following rules and recommendations apply:

    CS traffic going through the MFS is transparently connected. Thecross-connection capacity in the MFS is at the 64k TS level.

    Gb traffic going to the TC is routed transparently at the TC site

    3BK 17422 5000 PGZZA Ed.06b 25 / 162

  • 2 BSS Overview

    There is no GPRS traffic directly on the BSC-TC Atermux, as there is noway to connect GPRS TS between the BSC and the MFS through the TC

    Maximum 1 GSL per Atermux. The GSL is located on TS28 of the 2ndtributary

    To avoid complexity, the capacity to drop 64 Kbit/s TS in the TC (e.g. for theX.25 OMC-R link) is not used to drop Gb trafficWhen frame relay (Gb) is supported on a PCM, bearer channels on thisPCM are organizedas follows:

    64 Kbit/s TS (up to 31 independent TS)Nx64 Kbit/s or bundles of TS (a bundle of TS is a list of contiguous PCMTS belonging to the same PCM). One exception that can break the TScontiguity is the TS16 for SS7).Whole 2Mbit/s PCM for the MFS/SGSN interface only.

    To maximize the TS bundle for the Gb, Atermux TS routed transparently atTC site are supported by a single tributary at A interface

    CS traffic coming from different Atermux (of a same BSC) cannot be mergedat the MFS site to go to the TC

    The GPRS Preference Mark (GPM) is removed after migration in release B8(it no longer exists in release B8). The value "0" of TRX Preference Mark(TPM) in release B8 means that the concerned TRX is PS capable.GPRS is not supported by the G1 band TRXs, nor by the inner zone TRXsof a concentric or a multiband cell

    GPRS is not supported on extended cells

    A dynamic SDCCH TS cannot be used to carry GPRS traffic

    The setting of a new parameter (i.e. EN_FAST_INITIAL_GPRS_ACCESS) must interact with the MIN_PDCH parameter and the number of themaster channels in the cell. It must fulfill the following rule: MIN_PDCH -Nb_TS_MPDCH > 0 if EN_FAST_INITIAL_GPRS_ACCESS = enabled.

    If there are several FHS, all PS TRX have the same FHS

    In BBH, the FHS for PS TRX contains the BCCH TRX, if there is a masterchannel.

    The AS800/DS10 MFS supports only 8 BSC/MFS links (and 32 gicGroupinstances per GPU). The A9130 MFS supports up to 13 BSC/A9130 MFSlinks (and up to 52 gicGroups instances per GP).In case of A9130 BSC Evolution mono GPU do not configured more than448 TRX on this GPU.

    The following figures show an example link configuration (3/4 GSM& 1/4GPRS Atermux 4:1 mapping).

    26 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    MFS-TC Atermux Interface 16 Kbit/s Ater Interface Trib. 1,2,3,4 A InterfaceTrib. 1,2,3,4

    3BK 17422 5000 PGZZA Ed.06b 27 / 162

  • 2 BSS Overview

    Figure 7: Example 1 of a Link Configuration: 3/4 GSM& 1/4 GPRS Atermux 4:1 mapping

    28 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    3BK 17422 5000 PGZZA Ed.06b 29 / 162

  • 2 BSS Overview

    Figure 8: Example 2 of a Link Configuration: 3/4 GSM& 1/4 GPRS Atermux 4:1 mapping

    2.4 LCS in the BSS

    2.4.1 PrerequisitesLocation Services (LCS) are new end-user services which provide thegeographical location of an MS (i.e. longitude, latitude and optionally altitude).LCS are applicable to any target MS, whether or not the MS supports LCS, butwith restrictions concerning the choice of positioning method when LCS orindividual positioning methods are not supported by the MS.The LCS client resides in an entity (including the MS) within the PLMN, orin an entity external to the PLMN.LCS provides the position of the target MS. Depending on the positioningtechniques, some LCS functions reside in the MS.

    2.4.2 Logical ArchitectureLCS support requires new functions in the network sub-system, and optionally,on the radio side, depending on the positioning technique and on the networksynchronization.These new functions are respectively:

    The Gateway Mobile Location Center (GMLC)The Serving Mobile Location Center (SMLC).

    The following figure shows the generic LCS logical architecture.

    30 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    Figure 9: Generic LCS Logical Architecture

    As shown above:

    The GMLC is the first NE serving external Location Application (LA) accessin a GSM PLMN. The GMLC requests routing information from the HomeLocation Register (HLR) via the Lh interface. After performing registrationauthorization, it sends positioning requests to the MSC and receives finallocation estimates from the MSC or the SGSN via the Lg interface.

    The SMLC is the NE which serves the client. The SMLC manages theoverall coordination and scheduling of the resources required to performingMS positioning. The SMLC calculates the final location estimate andaccuracy, and controls a number of LMUs to obtain the radio interfacemeasurements required to locate the MS in the area it serves. The SMLCis connected to the BSS (via the Lb interface).

    2.4.3 Physical ImplementationThe following physical implementation rules apply:

    For hardware, the existing GPU boards support the SMLC function. AnA-GPS server is required for some LCS positioning method implementation.

    For software, the GPU software supports both GPRS functions and SMLCfunctions, and is handled as a whole (there is no dedicated software for eachfunction), in that the LCS software is a module on top of the GPRS software.

    3BK 17422 5000 PGZZA Ed.06b 31 / 162

  • 2 BSS Overview

    For a BSC connected to several GPUs, the SMLC function for the whole BSSis supported by the current pilot GPU and only by this GPU (the pilot GPUbeing the GPU handling procedures at the BSS level). When the pilot GPU isre-elected (e.g. following the loss of all GSLs on the current pilot GPU), theSMLC function restarts on the new pilot GPU.

    2.4.4 Functional RequirementsThe Alcatel BSS supports the LCS feature, which implies:

    The SMLC, a new functional NE in the BSS, is integrated into the MFS andconfigured by the OMC-R. (MFS - GPRS services - several BSCs SMLC - LCS services - same BSCs).A new Alcatel proprietary interface (BSCLP, or Lb) for LCS signalingprotocols between the BSC and the SMLC (i.e. the MFS)Support of the followingpositioning methods:

    The Timing Advance (TA) positioning method, which implies the deliveryof Cell Id and TA. The TA positioning method regroups several distinctmethods (Cell Id only (CI), Cell Id + TA (CI+TA)). The TA positioningmethod is the only method applicable to all the MS (regardless ofwhether they support LCS or not).The conventional GPS positioning method, based on the GPS locationestimation performed in the MS itself and provided to the SMLCThe Assisted GPS (A-GPS) positioning method, which is split into MSAssisted A-GPS and MS Based A-GPS positioning methods, dependingwhere the location calculation is processed (in the network or in the MS):

    MS Assisted A-GPSThe MS receives GPS Assistance Data from the SMLC (which hasreceived the data previously from the external GPS server), performsGPS measurements, and returns the resulting GPS measurements tothe SMLC. The SMLC provides these GPS measurements to theexternal GPS server, which computes the MS location estimate.

    MS Based A-GPSThe MS receives GPS Assistance Data from the SMLC (which hasreceived the data previously from the external GPS server), performsGPS measurements and location calculation, and returns its locationestimation to the SMLC.For the last two positioning methods, a GPS-capable MS is required.

    New signaling messages on the A interface for LCS, as location requestsare received from the core network

    New signaling messages on the radio interface, in the case of ConventionalGPS and A-GPS positioning methods

    A new Alcatel proprietary interface (SAGI) between the SMLC (i.e. the MFS)and an external GPS server in the case of A-GPS positioning methods.

    32 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    2.4.5 GPS LCSIf a high accuracy is required, GPS positioning method(s) are preferred, whenpossible.The following figure shows the interface towards the external A-GPS server.

    Figure 10: SAGI Physical Architecture

    The communication between a pilot GPU supporting the SMLC function of agiven BSS and the external GPS server is supported by:

    An Ethernet LAN within the MFS (which already exists, except that 2additional Ethernet cables must be added to connect the hubs to theexternal router)The customer network, the adaptation of the IP traffic (TCP/IP over Ethernet)to the format of the customer network being under the responsibility of anexternal router ( Alcatel OmniAccess 512 which is NOT capable of allowingthe MFS to present only one IP address to the A-GPS Server).

    A router is used, regardless of whether the server and the MFS are collocatedor not collocated.The following figure shows the impact on hub connectivity.

    3BK 17422 5000 PGZZA Ed.06b 33 / 162

  • 2 BSS Overview

    Figure 11: Impact on Hub Connectivity

    Each hub has 24 slots to plug in the Ethernet cables.If the MFS is equipped with only one telecom subrack on a given hub, up to 22slots (15 GPU + 1 spare GPU + 2 JBETI + 2 control stations + 1 PC + 1 router)can be used, which means 2 free slots on this hub.If the MFS is equipped with two telecom subracks on a given hub, up to 23 slots(15 GPU + 1 spare GPU + 2 JBETI + 2 control stations + 1 PC + 1 HUB + 1router) can be used, which means one free slot on this hub.

    2.4.6 BSS and Cell ConfigurationLCS is an optional feature in the Alcatel BSS. This feature can be blocked bythe manufacturer. When provided to the customer, LCS can be enabled ordisabled by the operator at cell level.To have LCS support for a cell, the operator must:

    Attach the BSC to an MFS in order to declare the BSC in the MFS. Thisleads to the download of the BSS configuration (GPRS and LCS-relatedattributes of the BSS, even if GPRS or LCS is not supported) in the MFSProvide the geographical coordinates of the cell

    Activate GPRS for the cell (i.e. set the MAX_PDCH to > 0, so that the cell islocked for GPRS if the operator does not want to have GPRS running onthis cell)Configure all the required transmission resources (Ater and Gb resources)on the GPU(s) connected to the BSCActivate LCS (by setting the EN_LCS flag, the common BSC/MFSparameter, to true ) on the BSS handling the cellEnable at least one of the following flags: EN_CONV_GPS,EN_MS_ASSISTED_AGPS, EN_MS_BASED_AGPS

    Enable the EN_SAGI flag, to indicate whether the SAGI interface isconfigured for the BSS (physical and transport level configuration) forGPS LCS only.

    34 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    Ater resources are required (GSL, Gb).The OMC-R provides centralized management of the LCS.

    2.4.7 Traffic ModelLCS traffic support is provided for as a short-term requirement that will bemet in release B8, and as a long-term objective that the initial B8 systemarchitecture support, as follows:

    Long-term objective:38 location requests/s per 6 BSC configuration (the BSC can handle up to1900 Erlang) and 680 location requests/s per MFS. This traffic is basedon the assumption of one location request per call (mean call duration =80 s). This traffic requirement will remain unchanged when replacing CStraffic by PS traffic.

    Note: With regard to the long-term objective:The consensus is to accept one location request per CS call, whichleads to 38 location requests/s for a 1900 Erlang (448 TRX) BSC and acall duration of 50 s.

    The capacity of an MFS being limited to 8000 TRX, the total number oflocation requests/s to be processed is limited to 680.

    Short term requirement:3.8 location requests/s per configuration 6 BSC, i.e. 68 location requests/sper MFS.

    2.4.8 RulesThe following rules apply:

    LCS is not supported in the PS domain

    Network Measurement Results (NMR) are not supported with LCSA-GPS positioning methods can be used only if the new SAGI interfacehas been installed

    LCS is supported on extended cells if it is in the GPRS locked administrativestate

    An MFS with a router in front presents only one IP address to the GPSserver. Reciprocally, the GPS server presents only one IP address to arouter in front of the MFS

    The router is external to the MFS, which implies that it is not supervised bythe MFS. The declaration of SAGI interface is supported by a EN_SAGIflag defined on a per BSS basis.

    2.5 HSDS in the BSS

    2.5.1 Definitions and PrerequisitesThe High Speed Data Service (HSDS) consists of:

    3BK 17422 5000 PGZZA Ed.06b 35 / 162

  • 2 BSS Overview

    A basic service to offer CS3 and CS4 for GPRS and MCS1 to MCS9for EGPRS (two optional features)Additional functionssuch as:

    Adapting radio resource allocation in order to take into account E-GPRSMSThe ability to avoid Ater blocking.

    EDGE consists of two concepts defined by ETSI:

    ECSD

    E-GPRS.

    EGPRS is 2.5 to 3 times more efficient than GPRS, regardless of the frequencyband, the environment and the mobile velocity.EDGE is available in Evolium BSS with minimum impact on the network.There is no hardware impact on the MFS and the BSC, and the Evolium BTSis EDGE- ready simply by plugging in the EDGE-capable TRX where andwhen it is needed.

    2.5.1.1 GPRS Coding SchemesTwo new coding schemes are proposed for GPRS in release B9:

    CS-3

    CS-4.

    The following table lists the coding schemes and the corresponding modulationtypes and maximum transmission rates.

    Scheme Modulation Maximum Rate [Kbps] perRadio TS

    CS-4 GMSK 20

    CS-3 GMSK 14.4

    CS-2 GMSK 12

    CS-1 GMSK 8

    Table 5: GPRS Coding Schemes

    2.5.1.2 E-GPRS Modulation and Coding SchemesE-GPRS enables the support of data transmission at a bit rate which exceedsthe capabilities of GPRS.E-GPRS relies on new modulation and coding schemes on the air interface,allowing a data throughput which is optimized with respect to radio propagationconditions (referred to as link adaptation).The basic principle of link adaptation is to change the Modulation and CodingSchemes (MCS) according to the radio conditions. When the radio conditions

    36 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    worsen, a more protected MCS (more redundancy) is chosen for a lowerthroughput. When the radio conditions become better, a less protected MCS(less redundancy) is chosen for a higher throughput.Nine modulation and coding schemes are proposed for enhanced packet datacommunications (E-GPRS), providing raw RLC data rates ranging from 8.8kbit/s (the minimum value under the worst radio propagation conditions perTS) up to 59.2 kbit/s (the maximum value achievable per TS under the bestradio propagation conditions). Data rates above 17.6 kbit/s require that 8-PSKmodulation is used on the air interface, instead of the regular GMSK.The following table lists the coding schemes and the corresponding modulationtypes and maximum transmission rates.

    Scheme Modulation Maximum Rate [Kbps] perRadio TS

    MCS-9 8-PSK 59.2

    MCS-8 8-PSK 54.4

    MCS-7 8-PSK 44.8

    MCS-6 8-PSK 29.6 A/27.2 A padding

    MCS-5 8-PSK 22.4

    MCS-4 GMSK 17.6

    MCS-3 GMSK 14.8 A/13.6 A padding

    MCS-2 GMSK 11.2

    MCS-1 GMSK 8.8

    Table 6: EGPRS Modulation and Coding Schemes

    2.5.1.3 HSDSHSDS provides support for GPRS with CS1 to CS4, and for E-GPRS withMCS1 to MCS9.There are 3 families of modulation and coding schemes:

    Family A: MCS3, MCS6, MCS8 and MCS9

    Family B: MCS2, MCS5 and MCS7

    Family C: MCS1 and MCS4.

    Each family has a different unit of payload:

    37 bytes: family A

    34 bytes: family A padding (MCS3, MCS6 and MCS8)28 bytes: family B

    22 bytes: family C.

    3BK 17422 5000 PGZZA Ed.06b 37 / 162

  • 2 BSS Overview

    The different code rates within a family are achieved by transmitting a differentnumber of payload units within one radio block.When 4 payload units are transmitted, these are split into 2 separate RLCblocks (i.e. with separate sequence numbers).When a block has been retransmitted with a given MCS, it can be retransmitted(if needed) via ARQ with a more robust MCS of the same family.The following figure shows the choice of modulation schemes.

    Figure 12: Choice of Modulation Scheme

    The choice of modulation schemes is based on the measurement of thebit error probability (BEP).The coding scheme and the radio modulation rates are modified to increase thedata traffic throughput of a given radio TS. This implies that the increase ofthroughput is handled on the Abis and Ater interfaces (previously, for each radioTS in use, only a 16kb/s nibble was allocated on both interfaces).

    2.5.1.4 Ater interfaceIn order to handle a throughput higher than 16Kb/s on the Ater interface,several Ater nibbles are dynamically allocated by MFS Telecom.

    2.5.1.5 Abis InterfaceOn the Abis interface, to handle a throughput higher than 16Kb/s, severalAbis nibbles are also used. The configuration is dynamic for TRX insidethe same BTS.A number of 64k EXTS (Extra TS) are defined for each BTS by O&M. Thisgroup of TS replaces the number of transmission pool types used previously.

    38 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    Due to the increase in Abis resource requirements, a single Abis link may notbe enough to introduce HSDS into a large BTS configuration. In this case, asecond Abis link is required (see Two Abis Links per BTS (Section 7.9) ).

    2.5.1.6 M-EGCHThis term is used to refer to a link established between the MFS and the BTS.One M-EGCH is defined per TRX.

    2.5.1.7 Enhanced Transmission Resource ManagementA dedicated manager sequences the GCH establishment, release, redistributionor pre-emption procedures.The transmission resource manager is on the MFS/GPU level. It handles bothAbis and Ater resources (GCH level).It is in charge of:

    Creating and removing the M-EGCH links

    Selecting, adding, removing, and redistributing GCHs over the M-EGCHlinks

    Managing transmission resource preemptions

    Managing Abis and/or Ater congestion states

    Optionally, monitoring M-EGCH links usage, depending on the (M)CS oftheir supported TBFs (UL and DL).

    2.5.1.8 Abis Nibble Sharing RulesTo ensure that each cell of a given BTS is able to support PS traffic at all times,there must be a minimal number of Abis nibbles for every cell in the BTS.

    2.5.1.9 Ater Nibble Sharing RulesA given amount of Ater transmission resource is allocated per GPU. Afterwards,this Ater transmission resource is shared among the 4 DSPs of the GPU,via the GPU on-board Ater switch.Only 64K Ater TS are handled at GPU level between the DSPs. Therefore,a 64K Ater TS is moved from one DSP to another if, and only if, all of itsfour 16K Ater nibbles are free. This is the unique restriction concerning Aternibble sharing at GPU level.

    2.5.2 Transmission Power

    2.5.2.1 GMSK Output PowerGMSK is a constant amplitude modulation.

    2.5.2.2 8-PSK Output PowerFor one given TRE, the maximum output power is lower in 8-PSK than in GMSKbecause of the 8-PSK modulation envelope which requires a quasi-linearamplification.The TRE transmit power in 8-PSK does not exceed the GMSK transmit powerin the sector and in the band.8-PSK is a varied digital phase modulation.Leveling of 8-PSK Output Transmission Power is new in release B8.

    3BK 17422 5000 PGZZA Ed.06b 39 / 162

  • 2 BSS Overview

    For a TRE, there is a major difference in the output transmission power betweenthe GMSK and the 8-PSK modulation. This is shown in the following table.

    G4 TRE Medium Power G4 TRE High Power

    GMSK (CS1-CS2/MCS1-MCS4) 46.5 dBm 47.8 dBm

    8-PSK (MCS5-MC9) 41.8 dBm 44.0 dBm

    Table 7: GMSK and 8-PSK Transmission Power Differences

    Note that the operator is allowed to allocate the E-GPRS TBF on the BCCHTRX, and the BCCH frequency must have a quite stable radio transmissionpower.Due to this constraint, the 8-PSK output transmission power is not leveled persector, in order to effectively exploit the TRE capability, and the E-GPRS TRXsare preferably mapped to a TRE with the best 8-PSK capability.The Modulation Delta Power is the difference between the GMSK output powerof the sector for the TRE band, and the 8-PSK output power of the TRE.According to the 8-PSK delta power value, a TRE is called "High Power" or"Medium Power". 8-PSK High Power Capability is true if Modulation DeltaPower is less than 3 dB.

    2.5.3 RulesThe following rules apply:

    TCU Allocation:Extra Abis TS are allocated only on the FR TCURSL, OML and TCH are mapped on a TCU, regardless of extra Abis TSExtra Abis TS are moved automatically from one TCU to another.

    Allocation priorities (from highest to lowest)PS TRX/TRE are ordered according to the following rules:

    PS allocation is preferred on the BCCH TRXThe TRE hardware capabilityThe DR TRE configurationThe maximum PDCH group criterionThe TRX Identifier.

    TRX TRE mapping:G4 TRE or M5M is preferentially used for PS allocationTRE with 8-PSK HP capability is preferentially used for PS allocationPS traffic is allocatedin priority to:

    G4 TRE with 8-PSK HP capability

    G4 TRE without 8-PSK HP capability

    40 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    G3 TRE.

    DR TRE is preferentially used for CS allocations. DR is reserved forCS trafficThe DR must be assignedin priority of:

    G3 TRE

    G4 TRE without 8-PSK HP capability

    G4 TRE with 8-PSK HP capability.

    TRE and TRX are classifiedaccording their characteristics:

    Full-rate, high power, E-GPRS capable TRE

    Dual-rate, high power, E-GPRS capable TRE

    Full-rate, medium power, E-GPRS capable TRE

    Dual-rate, medium power, E-GPRS capable TRE

    Full-rate, non-E-GPRS capable TRE

    Dual-rate, non-E-GPRS capable TRE

    When PS_Pref_BCCH_TRX = True, then the TRX supporting theBCCH is mapped on the best TRE

    3BK 17422 5000 PGZZA Ed.06b 41 / 162

  • 2 BSS Overview

    The TRE of the preferred class must be mapped to a TRX of thepreferred classIn the case where HSDS is not activated, only a reduced adjust isperformed, as shown below:

    TRX ranking:PS capable TRXs are ranked according to the following criteria, forPS traffic

    TRX supporting the BCCH, if PS_Pref_BCCH_TRX = True

    TRX capability (E-GPRS capable, high power, then E-GPRS capable,medium power and finally, non-E-GPRS capable)Dual-rate capability (FR, then DR)Size of the PDCH group.

    This ranking will be used in the reverse order for CS traffic

    BTSA mix of the G4 TRE medium power and G4 TRE high power (that offersa higher output power useful for 8-PSK modulation) in the same EvoliumBTS is allowed.

    PS Capability of BTSsOnly Evolium BTS (including Evolium Micro-BTS) support the HSDS, butthe PS capability is function of the TRE generation. This is shown inthe following table.

    TRE generation PS Capability

    G3 TRE and M4M CS1 to CS4

    G4 TRE and M5M CS1 to CS4 and MCS1 to MCS9

    To support MCS1 to MCS9, an Evolium BTS must be upgraded withsome G4 TRE

    42 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 2 BSS Overview

    A mix of G3 and G4 TRE in the same Evolium BTS is allowed. From asoftware point of view, there are no specific rules that define the positionof G3 and G4 TRE: their position in the BTS rack is free

    MFS capacity:The MFS capacity is defined by the maximum throughput of the GPUThe maximum throughput of the GPU isthe minimum of:

    PPC maximum throughput

    4 x DSP maximum throughput.

    For example, for A9135 MFS, the maximum throughput for a DSP, in onedirection, is about 800 kbit/s for pure GPRS and 1 Mbit/s with E-GPRS(with some assumptions regarding MCS and CS distribution)

    The support of 8PSK in UL is optional for the MS.

    2.6 PLMN InterworkingA foreign PLMN is a PLMN other than the PLMN to which OMC-R internal cellsbelong. Only cells external to the OMC-R can belong to a foreign PLMN. Allinternal cells must belong to their own PLMN. Both OMC-R owned cells andcells which are external to the OMC-R can belong to the primary PLMN.The Alcatel BSS supports:

    Incoming inter-PLMN 2G to 2G handovers

    Outgoing inter-PLMN 2G to 2G handovers, as an optional featureThe operator can define handover adjacency links towards external cellsbelonging to a foreign PLMN, (i.e. handovers from a serving cell belongingto the primary PLMN towards a target cell belonging to a foreign PLMN).Inter-PLMN 2G to 2G cell reselectionsThe Alcatel BSS allows the operator to define cell reselection adjacencybetween two cells belonging to different primary PLMN (which musttherefore be owned by two different BSC).Multi-PLMN, as an optional featureThe Multi-PLMN feature allows operators to define several primary PLMN,in order to support network sharing (Tool Chain, OMC-R, MFS, Abistransmissions, and also BTS, via rack sharing). Inter-PLMN handovers andcell reselections between two different primary PLMN are supported.The BSC itself cannot be shared and therefore remains mono-PLMN (i.e. allBSC owned cells belong to the same primary PLMN).The Alcatel BSS supports several primary PLMN (at least one, up to four).An OMC-R therefore manages at least one (primary) PLMN and up to eightPLMN (four primary and four foreign). Both cell reselections and handoversare allowed between two cells which belong to different primary PLMN.The operator can define handover adjacency between two cells belonging todifferent primary PLMN (which must therefore be owned by two differentBSC).

    3BK 17422 5000 PGZZA Ed.06b 43 / 162

  • 2 BSS Overview

    The OMC-R (and the Tool Chain) is by definition of the feature itself alwaysshared between the different primary PLMN. On the other hand:

    The MFS can be shared

    The BSC cannot be shared

    The BTS can be shared up to the rack sharing level (no radio part sharing)The Abis transmission part can be shared

    The transcoder part can be shared.

    The outgoing inter PLMN handovers feature is a prerequisite for the multi-PLMNfeature.It is not allowed to modify the "PLMN friendly name" of a cell, even if the"Multi-PLMN" feature is active and several PLMN have been defined on theOMC-R side.The primary PLMN cannot be added, removed or modified online.Customers no longer need to ensure CI (or LAC/CI) unicity over all PLMNinvolved in their network.With regard to clock synchronization, the only constraint is that when theMFS is connected to different SGSN, these SGSN are not synchronizedtogether, therefore, central clocking and cascade clocking cannot be used onthe MFS side.

    44 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 3 BTS Configurations

    3 BTS Configurations

    BSS Overview describes the Alcatel BSS, and corresponding features andfunctions.

    The following figure shows the location of the BTS inside the BSS.

    Figure 13: BTS in the BSS

    3BK 17422 5000 PGZZA Ed.06b 45 / 162

  • 3 BTS Configurations

    3.1 BTS Generation SummaryThe following table lists the successive BTS generations, along with thecorresponding commercial name.

    G1 BTS G2 BTS Evolium BTS Evolium Evolution

    G1 BTS G2 BTS G3 BTS G4 BTS (*)

    MK2 Mini Std G3 M4M G3.5 G3.8 G4.2 M5M MBS

    * : Note that G3.8 and G4.2 are the TD used names for respectively Evolium Evolution Step 1 and Evolium EvolutionStep 2.

    Table 8: BTS Generation Summary

    The BTS are grouped into the following families:

    A9110 BTS, which include the micro BTS M4M, and the A9110-E forM5M micro BTS

    A9100 BTS, which include all Evolium BTS, but not the micro BTS.

    3.2 Evolium BTS

    3.2.1 Evolium BTS ArchitectureThe Evolium BTS is designed with the following three levels of modules tocover many cell configuration possibilities, including omni or sectored cellsconfigurations:

    The antenna coupling level, which consists of ANX, ANY and ANC

    The TRX, which is implemented as a TRE, and handles the GSM radioaccess

    The BCF level implemented in the SUM, which terminates the Abis interface.

    Note: The above-mentioned architecture does not include micro BTS.

    3.2.2 Evolium BTS ConfigurationThe Evolium BTS family began with the G3 BTS, whose architecture isdescribed in Evolium BTS Architecture (Section 3.2.1).Further evolutions were introduced, with the G3.5 and G4 variants:

    G3.5 BTS, which is a G3 BTS with new power supply modules

    G4 BTS Step 1 (also referred to within TD as the G3.8), which is a G3.5BTS in whichthe following modules have been redesigned:

    SUMA, which is the new SUM boardANC, which is a new antenna network combining a duplexer anda wide band combiner

    46 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 3 BTS Configurations

    New power supply modules which are compatible with BTS subracks.

    G4 BTS Step 2 (also referred to within TD as the G4.2) introduces a newTRE with EDGE hardware capability,including:

    CBO, which is the compact outdoor BTSMBS, which is provides multistandard cabinets withthe following G4.2 modules:

    MBI3, MBI5 for Indoor

    MBO1, MBO2 for Outdoor

    The Evolium BTS family also includesthe two following micro BTS:

    M4M

    M5M.

    3.2.2.1 Product PresentationThere are different types of Evolium cabinets:

    The indoor cabinet, which exists in different sizes: Mini, Medi, MBI3 andMBI5

    The outdoor cabinet, which exists in different sizes and packaging: Mini,Medi, CPT2, CBO, MBO1 and MBO2

    3.2.2.2 Evolium BTS Rules and DimensioningThe following table lists the extension and reduction capacity rules for theEvolium BTS.

    Extension / ReductionConfiguration

    Physical Logical

    Minimum Maximum Minimum

    Evolium BTS 1 TRE Up to 12TRE1 to 6Sectors

    1 TRE 1 TRE

    3BK 17422 5000 PGZZA Ed.06b 47 / 162

  • 3 BTS Configurations

    Extension / ReductionConfiguration

    Physical Logical

    Minimum Maximum Minimum

    M4MMicro-BTS

    2 TRE Up to 6 TRE1to 6 Sectors

    2 TRE 1 TRE

    M5MMicro-BTS

    2 TRE Up to 12TRE1 to 6Sectors

    2 TRE 1 TRE

    Table 9: Evolium BTS Minimum and Maximum Capacity

    The following table summarizes the typical GSM 900, GSM 1800 and GSM1900 configurations.These configurations constitute only a subset of the possible configurations.

    Network GSM 900 MHz GSM 1800 MHz, GSM 1900 MHz

    Indoor /Outdoor

    Indoor Outdoor Indoor Outdoor

    Cabinetsize

    Mini Medi Mini Medi Mini Medi Mini Medi

    Numberof TRE1sector

    1x2 to1x4

    1x2 to1x12

    1x2 to1x4

    1x2 to1x12

    1x2 to1x4

    1x2 to1x12

    1x2 to1x4

    1x2 to1x12

    2 sectors 2x1 to2x2

    2x2 to2x6

    2x1 to2x2

    2x2 to2x6

    2x1 to2x2

    2x2 to2x6

    2x1 to2x2

    2x2 to2x6

    3 sectors 3x1 3x1 to3x4

    3x1 to3x2

    3x1 to3x4

    3x1 3x1 to3x4

    3x1 to3x2

    3x1 to3x4

    Table 10: Typical GSM 900 and GSM 1800/1900 Configurations

    The following table summarizes the typical Multiband 900/1800 BTSconfigurations.These configurations constitute only a subset of the possible configurations.

    Network Multiband BTS or Multiband Cell

    Cabinet size Medi

    Number of TRE4 sectors 2x2 GSM 900 & 2x4 GSM 18002x4 GSM 900 & 2x2 GSM 1800

    48 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 3 BTS Configurations

    Network Multiband BTS or Multiband Cell

    6 sectors 3x2 GSM 900 & 3x2 GSM 1800 (outdoor only)Diversity 4 sectors : Yes

    6 sectors : Yes

    Table 11: Typical Multiband Configuration G3 BTS

    3.2.2.3 Extended Cell ConfigurationUp to 12 TRX CS+PS capable, including the BCCH TRX can be offered in eachcell (inner + outer).M4M and M5M do not support extended cell configurations.Only one extended cell per BTS is possible.Extended cell is not supported by SUMP.

    3.2.2.4 Mixture of M5M and M4M BTSThe following 4 configurations rules are defined for pure M5M and M4M/M5Mmixed configurations:

    A maximum of 3 hierarchic levels ( master, upper and lower slave ) areallowed

    Each M4M upper slave terminates the master-slave link, which is theInter Entity Bus (IEB)M4M is not allowed in the lower slave position

    M5M must be set as master in M4M/M5M mixed configurations.

    3BK 17422 5000 PGZZA Ed.06b 49 / 162

  • 3 BTS Configurations

    3.2.2.5 Mixed configuration G3 and G4In case of mixed hardware configuration in a cell with both G3 and G4 TREsin the same cell, it is recommended to map to E-GSM TRX on G4 TRE andP-GSM TRX on G3 TRX.Under some conditions, the BSC does not guarantee that the PS TRXs havingthe highest priority for PS allocations are mapped on the G4 TREs.

    3.3 G2 BTSThe following rules apply:

    Only G2 BTS with DRFU are supported in release B8

    The FUMO in G2 BTS must be replaced by the DRFU, before migration torelease B7/B8 BSS

    G2 BTS release B7.2 functions are unchanged.

    The following table lists the maximum and minimum capacity for G2 BTS..

    Extension / ReductionConfiguration

    Physical Logical

    BTS Minimum Maximum Minimum

    G2 1 TRE 1 Sector:8 TRE 1 TRE 1 TRE

    Table 12: G2 BTS

    3.4 G1 BTSOnly MKII G1 BTS with DRFU and DRFE are supported in release B9, andrelease B7.2 functions are unchanged.G1 BTS are allowed to have channel combinations other than TCH.G1 BTS can support GPRS, unless they belong to the inner zone.

    3.5 BTS SynchronizationIn terms of dimensioning, from a software point of view, there can but up to3 BTS slaves.Depending on the hardware configuration, the number of BTS slaves canbe reduced to 2 or 1 BTS.The following table lists the type of slave BTS which can be synchronized to themaster and the number of BTS slaves, for each BTS master.

    Master Slaves Hardware Limitation Software Limitation

    G2 standard G2 5 3

    G2 standard Evolium 5 3

    50 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 3 BTS Configurations

    Master Slaves Hardware Limitation Software Limitation

    G2 mini G2 2 3

    G2 mini Evolium 2 3

    Evolium medi/mini G2 1 3

    Evolium medi/mini Evolium 3 BTS slaves maximumin a chain configuration

    3

    Table 13: BTS Synchronization

    3.6 Physical Channel Types

    3.6.1 GSMIn terms of TS content, there are several possible configurations, the mostrelevant of which are:

    Traffic channels (TCH)Signaling channels:

    BCC = FCCH + SCH + BCCH + CCCHCBC = FCCH + SCH + BCCH + CCCH + SDCCH/4 + SACCH/4SDC = SDCCH/8 + SACCH/8.

    Note: Two CBCH channels can be defined for cells used for SMS-CB:

    The basic CBCH channel

    The extended CBCH channel.

    If the basic CBCH channel is configured, the extended CBCH channel can beoptionally configured. The extended CBCH channel is managed in the samemanner as the basic CBCH channel (2 instances of scheduling per cell).When the initial SDCCH number in a cell is small, a reduction in the numberof SDCCH due to the configuration of the CBCH can increase the SDCCHaverage load. In such a case, the operator may need to add one SDCCH TS.

    3.6.2 GPRSWhen the TRX_PREF_MARK parameter is set to 0, GPRS service is available.If it is set to 1, GPRS is not supported in the cell.GPRS radio time-slots (PDCH) are dynamically allocated according to thefollowing, customer-defined parameters:

    MIN_PDCH defines the minimum number of PDCH TS per cell

    MAX_PDCH defines the maximum number of PDCH TS per cell

    MAX_PDCH_HIGH_LOAD defines the maximum number of PDCH TS per cellin the case of CS traffic overload.

    3BK 17422 5000 PGZZA Ed.06b 51 / 162

  • 3 BTS Configurations

    Those parameters allow the operator to prioritize CS traffic versus GPRS trafficin order, for example, to avoid a QoS drop while introducing GPRS.The following quality parameters can also be used:

    N_TBF_PER_SPDCH defines the number of MS that can share the same PDCH

    The number of Temporary Block Flow (TBF) allocated on one or morePDCHs.

    3.7 Frequency Band Configuration

    3.7.1 OverviewE-GSM is used for the whole GSM-900 frequency band, i.e. the primary band(890-915 MHz / 935-960MHz) plus the extension band (880-890 MHz/925-935MHz), this corresponds to 174 addressable carrier frequencies and leads to anincrease of 40 % against the 124 frequencies in the primary band.

    Frequency span (U)ARFCNs Uplink frequencies Downlink frequencies

    P-GSM band 1.. 124 890.2 to 915.0 MHz 935.2 to 960.0 MHz

    G1 band 975.. 1023, 0 880.2 to 890.0 MHz 925.2 to 935.0 MHz

    GSM850 band 128... 251 824.2 MHz to 848.8 MHz 869.2 MHz to 893.8 MHz

    DCS1800 band 512.. 885 1710.2 to 1784.8 MHz 1805.2 to 1879.8 MHz

    DCS1900 band 512.. 810 1850.2 to 1909.8 MHz 1930.2 to 1989.8 MHz

    3.7.2 CompatibilityThe following table shows BTS generation equipment versus radio band.

    Multiband (BTS or Cell)Yes = a GSM 850 GSM 900 GSM

    1800GSM1900

    850/1800 850/1900 900/1800 900/1900

    G3/G4BTS

    a

    (*)E-GSM a a a a a a

    M5MBTS

    a E-GSM a a a a a a

    M4MBTS

    N.A a a N.A N.A N.A a N.A

    G2 BTS N.A E-GSM a a N.A N.A N.A N.A

    G1 MKIIBTS

    N.A a N.A N.A N.A N.A N.A N.A

    52 / 162 3BK 17422 5000 PGZZA Ed.06b

  • 3 BTS Configurations

    * : The BTS can be a G3 BTS, but the TRE is a G4.2 TRE.Table 14: Frequency band configuration

    3.7.3 RulesFrom functional point of view, two types for the multiband behavior:Multiband BTS: The frequency bands (850/1800, or 850/1900, or 900/1800) areused in different sectors of the BTS. There are 2 BCCH carriers, one in thesector with frequency band 1, one in sector with frequency band 2.Multiband cell: The sector (cell) is configured with TRX in band 1, and TRX inband 2. Only one BCCH carrier is configured for the sector.

    3.8 Speech Call Traffic RatesThere are no compatibility limitations between BTS and TC generations.The following table shows the hardware transmission compatibility.

    Yes =a A9125 TC ( MT120) G2 TC(DT16/MT120)Evolium, M4M, M5M a a

    G2 + DRFU a a

    G1 MKII + DRFU a a

    Table 15: Hardware Transmission Compatibility

    The following table shows the different rates available over different generationsof equipment.

    BTS Traffic Rate

    Evolium, M4M, M5M

    G2 + DRFU

    G1 MKII + DRFU

    FR,DR,EFR,AMR

    Table 16: Speech Call Traffic Rates

    Dua