gnss an introduction - ulisboa · satellite's internal orbital model, and internal clock ......

11
1 Alexandre Gonçalves, DECivil/IST 1 GNSS an introduction “ Imagine, accurate positioning dropping right out of the sky at the touch of a button!” Jeff Hurn for Trimble Navigation, 1993 Alexandre Gonçalves, DECivil/IST 2 The use of out-of-Earth references was always a natural approach to the problem of positioning. The use of artificial satellites – the GPS is the most used of such systems – is in this evolution path: it allows to easily get the coordinates of a point with low-cost devices. Using it for topographic or geodetical purposes requires a distinct methodology and equipment from the simple navigation tasks most users perform. Alexandre Gonçalves, DECivil/IST 3 Spatial positioning Uraniborg Obs. McDonald Obs. –Texas Univ. Alexandre Gonçalves, DECivil/IST 4 Astronomical positioning Radar and distancemeter – WWII TRANSIT Navigation system (low precision) Doppler process allowing submetric precision 1970 VLBI Very Long Baseline Interferometry SLR Sattelite Laser Ranging Alexandre Gonçalves, DECivil/IST 5 VERY LONG BASELINE INTERFEROMETR Observations of a sender (object) that are made simultaneously by a set of receivers (telescopes) to be combined: emulates a large receiver Alexandre Gonçalves, DECivil/IST 6 Goddard Geophysical and Astronomical Observatory. LAGEOS SATELLITE LASER RANGING LUNAR LASER RANGING Laser Ranging Station at McDonald Observatory Satellites with retroreflectors and measurements of millimeter level precision, useful for geodynamic studies

Upload: phamdat

Post on 20-Jul-2019

225 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

1

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

1

GNSS

an introduction

“ Imagine, accurate positioning dropping right out of the sky at

the touch of a button!”

Jeff Hurn for Trimble Navigation, 1993

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

2

The use of out-of-Earth references was always a natural

approach to the problem of positioning. The use of artificial

satellites – the GPS is the most used of such systems – is in

this evolution path: it allows to easily get the coordinates of a

point with low-cost devices.

Using it for topographic or geodetical purposes requires a

distinct methodology and equipment from the simple

navigation tasks most users perform.

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

3

Spatial positioning

Uraniborg Obs.

McDonald Obs. –Texas Univ. Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

4

Astronomical positioning

Radar and distancemeter – WWII

TRANSIT

Navigation system (low precision)

Doppler process allowing submetric precision

1970

VLBI Very Long Baseline Interferometry

SLR Sattelite Laser Ranging

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

5

VERY LONG BASELINE INTERFEROMETRY

Observations of a sender (object) that are made simultaneously by a set of receivers (telescopes) to be combined: emulates a large receiver

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

6

Goddard Geophysical and Astronomical Observatory. LAGEOS

SATELLITE LASER RANGING

LUNAR LASER RANGING

Laser Ranging Station

at McDonald Observatory

Satellites with

retroreflectors and

measurements of

millimeter level

precision, useful for

geodynamic studies

Page 2: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

2

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

7

1978 – 1st satellite block I

1989 – 1st satellite block II

1985 – 10 satellite block I

1994 – Operational

2000 – S/A discontinued (selective availability) allowing users to receive a non-degraded signal

1973 Navigation System with Timing and Ranging Global Positioning System (DoD)

1981 – 1º receiver code/phase

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

8

GPS

Block II satellite

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

9

WHAT IS GNSS FOR? Get the position

Get the velocity

Get [precise] time

BASIC PRINCIPLE Measure the receiver-to-satellite distances

GNSS APPLICATIONS

Navigation (sea, earth, air)

Geodesy and geodynamics

Topography and cartography

GIS

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

10

SPACE SEGMENT

CONTROL SEGMENT

USER SEGMENT

GPS SYSTEM COMPONENTS

GPS is the most used GNSS

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

11

Constellation of 24 satellites:

8 per orbital plane

Altitude: 20200 km

Period: 11h58m

Constellation period: 23h56m

Inclination: 50o (tilt relative to equator)

SPACE SEGMENT

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

12

CONTROL SEGMENT

1 Control Station (Schriever Air Force Base - Colorado Springs) adjust the ephemeris of each

satellite's internal orbital model, and internal

clock

4 Monitoring Stations

(Hawaii and Kwajalein, Pacific; Diego Garcia, Indian and Ascension Island,

Atlantic) for information retrieval on each

satellite’s behavior, and communication with

Colorado Springs

Page 3: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

3

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

13

USER SEGMENT

“CIVIL” : SPS (10m)

“MILITARY – USA”: PPS (1m)

SA - SELECTIVE AVAILABILITY

(currently disabled)

AS – “Anti Spoofing”

(encrypted, preventing access to code P)

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

14

New satellites (Block IIR-M, IIF)

Change of signal: L1 and L2 (increased signal power)

New signal (L5)

New codes have been created

- L2C (Civilian L2)

- M (Military)

Next generation - GPS III: NASA has requested that Block III

satellites carry laser retro-reflectors: that makes tracking the orbits of the

satellites independent of the radio signals, which allows satellite clock

errors to be disentangled from errors of the ephemeris.

System evolution

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

15

Other GNSS

Galileo satellite (ESA)

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

16

GLONASS – Global Orbiting

Navigation Satellite System

Conceived by:

Russian Federation Dept. of Defense

Space segment: 21 satellites in 3 orbital planes, + 3 spare; orbit

19100 km, period 11h15m, system period 8 days

Completed constellation in 1995: completion, decay, modernization

Send both standard precision (SP) and an obfuscated high precision

(HP) signals

GPS and GLONASS use different coordinate systems

As of 2008, GLONASS availability: Russia 66.2% whole Earth 56.0%

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

17

EGNOS- European Geostationary Navigation Overlay

Service ( perspective: increase the positional precision from 20m to 2m)

•SPATIAL SEGMENT

•Three geostationary satellites (A geostationary orbit (GEO) is a

geosynchronous orbit directly above the Earth's equator)

•Inmarsat III Atlantic Ocean region – East (15.5ºW)

•ESA ARTEMIS (21.5ºE)

•Inmarsat III F5 (25ºE)

And:

Precise information on each GPS

satellite’s position;

Information from on board clocks;

Ionosphere parameters

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

18

CONTROL SEGMENT

34 additional stations Main control stations

USER SEGMENT

Page 4: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

4

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

19

WAAS – Wide Area Augmentation System

Federal Aviation Administration (FAA) and Department of Transportation

(DOT)

OPERATION:

25 stations in USA; 2 control stations

Receive GPS information, calculate and

broadcast corrections to apply to GPS data

(orbital drifts, clock errors, ionosphere and

troposphere delays)

USE IN: North America and West Europe

Operational Sept- 2002 : position precision: horizontal 1-2 m

vertical 2-3 m

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

20

Coverage areas for WAAS, EGNOS and

MSAS

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

21 Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

22

SPACE SEGMENT

30 satellites (orbit 24 000 km, ~ 4 000km more

than GPS) in 3 orbital planes, inclination 56º.

9+1 satellites per orbital plane.

CONTROL SEGMENT

2 main centers in Central Europe

GALILEO – European Satellite Navigation System

European Commission and ESA

In 2007 the 27 EU transportation

ministers anounced operationality by

2013

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

23

Four future different navigation services:

•Open Service (OS), free access. Accuracy of <4 m

(horiz.); <8 m (vert.) in simultaneous use both OS bands;

Single band <15 m (h.) / <35 m (v.)

•Commercial Service (CS), encrypted, available for a

fee. Accuracy < 1 m. If complemented by ground stations:

accuracy <10 cm.

•Public Regulated Service (PRS) and Safety of Life

Service (SoL), both encrypted, similar accuracy to OS.

Robustness against jamming and reliable detection of

problems within 10 seconds. Exclusive use by police,

military and safety-critical transport applications (air-traffic

control, automated aircraft landing, etc.), respectively.

GALILEO – European Satellite Navigation System

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

24

OPERATION

Page 5: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

5

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

25 Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

26

6 seconds

4 seconds

AB

In a perfect world

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

27

6 seconds4 seconds

5 seconds(wrong time)

7 seconds(wrong time)

AB

hypothetical 1s delay in receiver’s clock A

lexa

nd

re G

on

çalv

es,

– D

EC

ivil/

IST

28

6 seconds4 seconds

8 seconds

AB

C

again the perfect world

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

29

5 seconds(wrong time)

7 seconds(wrong time)

9 seconds(wrong time)

BA

C

hypothetical 1s delay in receiver’s clock

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

30

OPERATION

•The basis of GPS is triangulation from satellites: to

triangulate, a GPS receiver measures the distance

using the travel time of radio signals

•To measure travel time, GPS needs very accurate

timing which it achieves with some tricks

•Along with distance, the satellites’ position must be

known. High orbits and careful monitoring are critical

•The correction of any delays the signal experiences as

it travels through the atmosphere, must be accounted

for

Page 6: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

6

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

31

Fo=10,23 MHz

L1= 154xFo = 1575.42 MHz (19,0cm wavelength)*

L2= 120xFo = 1227.60 MHz (24.4cm)

C/A (Coarse/Acquisition) 1.023 MHz

P (Precise) 10.23 MHz

GPS SIGNAL

(oscillation of the carrier wave)

(Carrier Phase)

Code

* this makes the carrier signal act as a

much more accurate reference than

the pseudo random code by itself

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

32 BLOCK OF SIGNAL BY DENSE VEGETATION AND BUILDINGS

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

33

r r

r

r

1

2 3

4 t o

t 1 r 4 = t 1 t o v ( - )

PSEUDO-DISTANCE (Pseudo-Range)

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

34

.)()()(

,)()()(

,)()()(

,)()()(

2424244

2323233

2222222

2121211

kkkkk

kkkkk

kkkkk

kkkkk

cdtZZYYXX

cdtZZYYXX

cdtZZYYXX

cdtZZYYXX

(Xi,Yi,Zi) – Satellitei position (Xk,Yk,Zk) – Receiver position dtk – Receiver clock status

CALCULATION OF COORDINATES BASED ON PSEUDO-DISTANCES

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

35

D t

USE OF CODE

Receiver-generated signal

Received satellite signal

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

36

Complete and integer number of cycles from the

emission instant to the reception instant

USE OF CARRIER WAVE SIGNAL

Page 7: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

7

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

37

Epoch (0)

Ambiguity

Epoch (i)

Ambiguity

Counted cycles

Measured phase

It is necessary to measure the ambiguity of the

carrier wave phase, in order to use its information

as a distance measuring procedure along with time

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

38

METHODS FOR SOLVING THE

AMBIGUITIES

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

39

OPERATION A

lexa

nd

re G

on

çalv

es,

– D

EC

ivil/

IST

40

0,50 m 3-5 min 1 sec.

< 40 km

ABSOLUTE POSITIONING

DGPS

2,00 m 3-5 min 1 sec.

< 300 km

WADGPS 4 m

SPS 5 to 15 m

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

41

Single frequency Double frequency

C/A + L1 C/A + L1,L2

Static (Conventional)

Static (Rapid)

Kinematic

0,02 m 30 min to 10 km

+ 3 min/km 5 to 10 s < 20 km

0,01 m 20 min to 10 Km

+ 2 min/km 5 to 15 s < 20 km

0,005 m 20 min to 10 km

+ 2 min/km 5 to 30 s < 20 Km

0,01 m 10 min to 10 km

+ 1 min/km 5 to 10 s < 20 km

0,01 m (RTK) < 20 km -

RELATIVE POSITIONING

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

42

Navigation mode

SPS (C/A) : 10m

PPS (P) : 1m

post-processing

real time

ABSOLUTE POSITIONING

WADGPS: regional differential correction

DGPS: local differential correction

0,5m-2m

4m

Page 8: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

8

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

43

Reference station at Instituto Superior Técnico (http://websig.civil.ist.utl.pt/gps)

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

44

Rinex format

Receiver Independent Exchange Format Version

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

45

Differential correction broadcast

Coast stations (Beacon Stations)

Geostationary (Racal/OmniStar)

GSM antennas

Other (via radio)

RTCM – Radio Technical Commission for Maritime Services

(Standard for differential correction transmissions)

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

46

SPS receivers

Most future mass market receivers, such as these, will process

both the GPS C/A and the Galileo OS signals, for maximum

coverage.

automotive navigation systems recreational navigation systems

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

47

navigation system

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

48

DGPS receivers

(real time or post-processing)

Border demarcation in

Timor-Leste / Indonesia

Trimble Geo-Explorer 2005

Page 9: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

9

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

49 Mapping the Côa Valley Paleolithic Art sites, Portugal

DGPS receivers

(real time or post-processing)

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

50

AFTER DGPS CORRECTION

BEFORE DGPS CORRECTION

EXAMPLE

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

51

Static

RELATIVE POSITIONING

Conventional

Rapid Static

Kinematic

Real Time Kinematic

(RTK)

Post-processing

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

52

B A

RELATIVE

POSITIONING

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

53

RENEP

REDE NACIONAL DE ESTAÇÕES PERMANENTES

(INSTITUTO GEOGRÁFICO PORTUGUÊS)

Cascais

Ponta Delgada

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

54

Accuracy (m)

1.00

0.10

0.01

Conventional static 0 120

Rapid static

0 2 5

Time (min)

Unsolved ambiguities

Solved ambiguities

When the ambiguities (number of integer cycles) are

solved, accuracy will not increase significantly

COLLECTING TIME

Page 10: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

10

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

55

For large bases (>20 km), where the greatest possible precision is required Useful for implementing geodetical networks Useful for large areas

For bases up to 20 km Short occupying times Great productivity in most applications

Static mode

Static-rapid

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

56

For moving objects (simulation of continuous measurements of the position) Useful for road mapping and related applications

KINEMATIC POSITIONING

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

57

Post-processing is not needed Availability of results right on occasion Several applications in navigation

RTK – Real-Time Kinematic

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

58

Mono frequency receivers

Base measurement with accuracy up to 2 cm + 1 ppm

(rms) Use carrier wave L1

Topographical applications with base length up to 15 km Inexpensive solution, but difficult to achieve the above

mentioned precision

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

59

Base measurement with accuracy up to 3 mm + 0.5 ppm (rms) Use in geodesy and topography :

Geodetic networks, Geodynamics, Network densification, Photogrammetric control, Topographic detail

Double frequency receivers

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

60

MEASUREMENTS

With Selective Availability

on

2001

2006

http://www.mar-it.de/NavGen/navgen_r.htm

Page 11: GNSS an introduction - ULisboa · satellite's internal orbital model, and internal clock ... “MILITARY – USA”: PPS (1m) New satellites (Block IIR SA ... •Inmarsat III F5 (25ºE)

11

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

61

Multi-path

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

62

Ionospheric delay

Ale

xan

dre

Gon

çalv

es,

– D

EC

ivil/

IST

63

Re

ce

ive

r n

ois

e

Mu

lti-

pa

th

Sa

tel. c

locks

Tro

po

sp

he

re

Ep

he

me

ris

Ion

osp

he

re 0

10

20

30

40

m

Relative importance of error sources A

lexa

nd

re G

on

çalv

es,

– D

EC

ivil/

IST

64

Error propagation

PDOP – Position Dilution of Precision

HDOP – Horizontal Dilution of Precision

VDOP – Vertical Dilution of Precision