gluon and ghost propagators from schwinger-dyson equation ... · d. binosi and j.p. , phys. rev. d...

27
Gluon and Ghost Propagators from Schwinger-Dyson Equation and Lattice Simulations Joannis Papavassiliou Departament of Theoretical Physics and IFIC, University of Valencia – CSIC, Spain Approaches to QCD, Oberwölz, Austria, 7-13th September 2008

Upload: others

Post on 14-Aug-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Gluon and Ghost Propagators fromSchwinger-Dyson Equation

and Lattice Simulations

Joannis Papavassiliou

Departament of Theoretical Physics and IFIC,

University of Valencia – CSIC, Spain

Approaches to QCD,Oberwölz, Austria, 7-13th September 2008

Page 2: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Outline of the talk

Gauge-invariant gluon self-energy in perturbation theoryField theoretic framework: Pinch Technique

Beyond perturbation theory: gauge-invariant truncation ofSchwinger-Dyson equations

Dynamical mass generation

IR finite gluon propagator from SDE and comparison withthe lattice simulations

Obtaining physically meaningful quantities

Conclusions

Page 3: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Vacuum polarization in QED (prototype)

Πµν(q) =qq

e

e���(q) is independent of the gauge-fixing parameter to allorders �(q2) = 1

q2[1 +�(q2)℄e = Z�1

e e0 and 1+�(q2) = ZA[1+�0(q2)℄From QED Ward identity follows Z1 = Z2 and Ze = Z

�1=2A

RG-invariant combination

e20�0(q2) = e2�(q2) =) �(q2) = �

1+�(q2)

Page 4: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Gluon self-energy in perturbation theory

���(q ; �) depends on the gauge-fixing parameter alreadyat one-loop

���(q) = 12 � (a) �k + qkq q + � �k + q

kq q(b)

Ward identities replaced by Slavnov-Taylor identitiesinvolving ghost Green’s functions. (Z1 6= Z2 in general)

Page 5: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Difficulty with conventional SD series

q����(q) = 0

The most fundamental statement at the level of Green’sfunctions that one can obtain from the BRST symmetry .

It affirms the transversality of the gluon self-energy and isvalid both perturbatively (to all orders) as well asnon-perturbatively .

Any good truncation scheme ought to respect this property

Naive truncation violates it

Page 6: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

(a)

(b)

(d) (e)

+12

+16 +1

2

+12

−1

+

(c)

∆ (q)µν

−1==

−1

νµ

q����(q)j(a)+(b) 6= 0

q����(q)j(a)+(b)+(c) 6= 0

Main reason : Full vertices satisfy complicatedSlavnov-Taylor identities.

Page 7: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Pinch Technique

Diagrammatic rearrangement of perturbative

expansion (to all orders) gives rise to effective

Green’s functions with special properties .

J. M. Cornwall , Phys. Rev. D 26, 1453 (1982)J. M. Cornwall and J.P. , Phys. Rev. D 40, 3474 (1989)D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002).

In covariant gauges: �! i�(0)�� (k ) = "g�� � (1� �)k�k�

k2

#1

k2

In light cone gauges: �! i�(0)�� (k ) = "g�� � n�k� + n�k�

nk

#1

k2

k� � = (k=+ p=�m)� (p=�m)= S�10 (k + p)� S

�10 (p) ;

Page 8: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Pinch Technique rearrangement

pinch-

pinch

-

pinch

-

Page 9: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Gauge-independent self-energy

+ ++ + = b���(q)b�(q2) = 1

q2

h1 + bg2 ln

�q2�2

�ib = 11CA=48�2 first coefficient of the QCD �-function(� = �bg3) in the absence of quark loops.

Page 10: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Simple, QED-like Ward Identities , instead ofSlavnov-Taylor Identities, to all orders

q�eI��(p1; p2) = g

�S�1(p2)� S

�1(p1)�q�1eI�abc���(q1; q2; q3) = gf

abc���1��(q2)���1��(q3)�

Profound connection with

Background Field Method =) easy to calculate

D. Binosi and J.P. , Phys. Rev. D 77, 061702 (2008); arXiv:0805.3994 [hep-ph]

Πµν(q) =qq

+

qq

Can move consistently from one gauge to another(Landau to Feynman, etc) A. Pilaftsis , Nucl. Phys. B 487, 467 (1997)

Page 11: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Restoration of:

Abelian Ward identities bZ1 = bZ2; Zg = bZ�1=2A=) RG invariant combination g2

0b�0(q2) = g2b�(q2)

For large momenta q2, define the RG-invariant effectivecharge of QCD,�(q2) = g2(�)=4�

1 + bg2(�) ln (q2=�2) = 1

4�b ln (q2=�2)

Page 12: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Beyond perturbation theory ...

q2

d(q2)

Non-perturbative effectsLattice, Schwinger-Dyson equations

2

Asymptotic Freedom

^

Page 13: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

New SD series

The new Schwinger-Dyson series based on the pinch technique

(a1)

(a2)

(b2)

(c1) (c2)(b1)

(d1) (d2) (d3) (d4)

∆ (q) +12

+ + +16 +1

2

+ + + +

+12

=µ ν

µν

−1 −1

Transversality is enforced separately for gluon- andghost-loops, and order-by-order in the “dressed-loop”expansion!A. C. Aguilar and J. P. , JHEP 0612, 012 (2006)

D. Binosi and J. P. , Phys. Rev. D 77, 061702 (2008); arXiv:0805.3994 [hep-ph].

Page 14: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Transversality enforced loop-wise in SD equations

µ, a ν, b

α, c ρ, d

β, x σ, e

q

(a1)

k+q→

q

k←

12

q

µ, a

q

ν, b

ρ, c σ, d

k→

(a2)

IΓ 12

The gluonic contribution

q����(q)j(a1)+(a2) = 0

The ghost contribution

q����(q)j(b1)+(b2) = 0

µ, a ν, b

q

(b1)

q

c c′

x′

k+q→

x

k←

q →

q

k→

µ, a ν, b

c d

(b2)

Page 15: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Dynamical mass generation: Schwinger mechanism in 4-d�(q2) = 1

q2[1 +�(q2)℄If �(q2) has a pole at q2 = 0 the vector meson is massive ,even though it is massless in the absence of interactions.J. S. Schwinger, Phys. Rev. 125, 397 (1962); Phys. Rev. 128, 2425 (1962).

Requires massless, longitudinally coupled , Goldstone-likepoles � 1=q2

Such poles can occur dynamically , even in the absence ofcanonical scalar fields. Composite excitations in astrongly-coupled gauge theory.

R. Jackiw and K. Johnson, Phys. Rev. D 8, 2386 (1973)J. M. Cornwall and R. E. Norton, Phys. Rev. D 8 (1973) 3338E. Eichten and F. Feinberg, Phys. Rev. D 10, 3254 (1974)

Page 16: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Ansatz for the vertex

= + + . . . +1/q2 pole

Gauge-technique Ansatz for the full vertex:eI���� = ���� + iq�q2

����(k + q)����(k )� ;Satisfies the correct Ward identity

q�1eI�abc���(q1; q2; q3) = gf

abc���1��(q2)���1��(q3)�

Contains longitudinally coupled massless bound-statepoles � 1=q2 , instrumental for ��1(0) 6= 0

Page 17: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

System of coupled SD equations��1(q2) = q2 + c1

Zk

�(k )�(k + q)f1(q ; k ) + c2

Zk

�(k )f2(q ; k )D�1(p2) = p2 + c3

Zk

�p2 � (p � k )2

k 2

��(k )D(p + k ) ;Infrared finite ��1(0) 6= 0

Renormalize

Solve numerically

A. C. Aguilar, D. Binosi and J. P. , Phys. Rev. D 78, 025010 (2008).

Page 18: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Numerical results and comparison with lattice

Use lattice to calibrate the SDE solution.

1E-3 0,01 0,1 1 10 100 10000

2

4

6

8

=5.7 L=64 =5.7 L=72 =5.7 L=80 SDE solution

= 4.5 GeV

(q2 )

q2 [GeV2]

I. L. Bogolubsky, et al , PoS LAT2007, 290 (2007)

Page 19: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Ghost propagator

0,01 0,1 1 100,8

1,0

1,2

1,4

1,6

1,8

2,0

2,2

2,4

2,6

2,8

3,0

Ghost dressing function lattice =5.7

=mb

p2 D(p

2 )

p2[GeV2]

0,01 0,1 1 10 100 10000,8

0,9

1,0

1,1

1,2

1,3

p2 D(p

2 )

p2[GeV2]

Ghost dressing function SDE solution

=mb

In the deep IR p2D(p2)! constant ) No power-law enhancement

Page 20: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Making contact with physical quantities

The conventional �(q2) and the PT-BFM b�(q2) arerelated by �(q2) = �

1+G(q2)�2 b�(q2)Formal relation derived within Batalin Vilkoviskyformalism D. Binosi and J. P., Phys. Rev. D 66, 025024 (2002) .

G(q) =

D

Auxiliary Green’s function related

to the full gluon-ghost vertex

G(q2) = �CAg2

3

Zk

�2+ (k � q)2

k 2q2

��(k )D(k + q) :

Page 21: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Enforces � function coefficient in front of UV logarithm.

1+G(q2) = 1+ 9

4

CAg2

48�2ln(q2=�2)��1(q2) = q2

�1+ 13

2

CAg2

48�2ln(q2=�2)�+b��1(q2) = q2

�1+ 11

CAg2

48�2ln(q2=�2)�

Page 22: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Numerical Results

1E-3 0,01 0,1 1 10 100 10000,8

0,9

1,0

1,1

1,2

1+G

(q2 )

q2[GeV2]

Page 23: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Numerical Results

1E-3 0,01 0,1 1 10 100 10000

4

8

12

16

20

24

28

d(q2 )

q2[GeV2]

d(q2)= g2 (q2) = MZ

= Mb

^^ ^

Page 24: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Physically motivated fit: Cornwall’s massive propagator

The RG invariant quantity, bd(q2) = g2 b�(q2), has the form:bd(q2) = g2(q2)q2 +m2(q2)

where the running charge is

g2(q2) = 1

b ln�

q2+4m2(q2)�2

�and the running mass

m2(q2) = m

20

"ln

�q2 + 4m2

0�2

�.ln

�4m2

0�2

�#�12=11J. M. Cornwall , Phys. Rev. D 26, 1453 (1982)

Page 25: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Phenomenological studies

A. A. Natale , Braz. J. Phys. 37, 306 (2007).E. G. S. Luna and A. A. Natale , Phys. Rev. D 73, 074019 (2006).A. C. Aguilar, A. Mihara and A. A. Natale , Int. J. Mod. Phys. A 19, 249 (2004).S. Bar-Shalom, G. Eilam and Y. D. Yang , Phys. Rev. D 67, 014007 (2003).A.C.Aguilar, A.Mihara and A.A.Natale, Phys. Rev. D 65, 054011 (2002).

F.Halzen, G.I.Krein and A.A.Natale, Phys. Rev. D 47, 295 (1993).

m(0) = 500� 200 MeV�(0) = 1

4�b ln�

4m2(0)�2

�Freezes at a finite value in the deep IR�(0) = 0:7� 0:3

Page 26: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

1E-3 0,01 0,1 1 10 100 10000,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

Running Charge m(0)=500 MeV m(0)=478 MeV

(q2 )

q2[GeV2]

1E-3 0,01 0,1 1 10 100 10000,20

0,25

0,30

0,35

0,40

0,45

0,50

m(q

2 )

q2[GeV2]

Running Mass m(0)= 500 MeV m(0)= 478 MeV

1E-3 0,01 0,1 1 10 100 1000

0

5

10

15

20

25

30

d(q2 )

q2[GeV2]

Numerical Solution Cornwall's propagator

with m(0) = 478 MeV

^

1E-3 0,01 0,1 1 10 100 10000

2

4

6

8

10

12

14

16

18

20

22

24

26

d(q2 )

q2[GeV2]

Numerical solution Cornwall's propagator

with m(0)=500 MeV

^

Page 27: Gluon and Ghost Propagators from Schwinger-Dyson Equation ... · D. Binosi and J.P. , Phys. Rev. D 66, 111901 (2002). In covariant gauges:! i (0) (k) = " g 1 k k k2 # 1 k2 In light

Conclusions

Self-consistent description of the non-perturbative QCDdynamics in terms of an IR finite gluon propagator appearsto be within our reach.

Gauge invariant truncation of SD equations furnishesreliable non-perturbative information and strengthens thesynergy with the lattice community.

Meaningful contact with phenomenological studies