ghost imaging of space objects - nasa · ghost imaging of space objects dmitry strekalov, baris...

16
Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu March 28, 2012 Pasadena, CA

Upload: others

Post on 04-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Ghost Imaging of Space Objects

Dmitry Strekalov, Baris Erkmen, Nan Yu

March 28, 2012 Pasadena, CA

Page 2: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Challenges of Astronomy and Astrophysics

Time (hrs)

Francois et al., Nature 482, 195-198 (2012)

Earth-like planets finding

290 pc away

Gravitational lens detections

Page 3: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

The UMBC Ghost Imaging experiment

(x,y)

f

a1

a2

b

Photon pairs source

• Background suppression • Imaging of difficult to access objects • Dual-band imaging • Relaxed requirements on imaging optics

Page 4: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Spontaneous Parametric Down Conversion

JPL 2001

Pump

Signal

Idler

Phase matching conditions:

321 ωωω =+

321

→→→

=+ kkk

(photon energy conservation)

(photon momentum conservation)

Wavelength

Ang

le

Page 5: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Using thermal light Theory: Experiment:

x'

Object 50/50 beam splitter

Image

x2

x1

),(),()(),( 222111212121 xxhxxhxxxdxdxxG ′′′−′Γ′′= ∫∫

).,()(),(),( 1111111 objbobjobjaobj xxhxTxxhdxxxh ′=′ ∫

Transverse mode (speckle) size:

Mathematics of Ghost Imaging:

a

zx

πλ

2≈∆

Page 6: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics
Page 7: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Can an object replace the beam splitter?

x

Object Image

x2

x1

),(),()(),( 222111212121 xxhxxhxxxdxdxxG ′′′−′Γ′′= ∫∫),()(),(),( 1111111 objbobjobjaobj xxhxRxxhdxxxh ′=′ ∫

),()(),(),( 2222222 objbobjobjaobj xxhxTxxhdxxxh ′=′ ∫

Object

k2

k1

Source

Shadow size:

star

star

d

L

πλ

2

obj

obj

d

L

πλ

2

Speckle size:

Page 8: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Our model and approach

),(),()(),( 222111212121 xxhxxhxxxdxdxxG ′′′−′Γ′′= ∫∫),()(),(),( 1111111 objbobjobjaobj xxhxTxxhdxxxh ′=′ ∫

),()(),(),( 2222222 objbobjobjaobj xxhxTxxhdxxxh ′=′ ∫

Page 9: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Gaussian absorber:

−=2

2

2exp1)(

obj

objobj R

xxT

50 cm 50 cm ρ ρ

Rs = 1 cm

Ro = 1, 2, 3 mm

3 mm

1 mm

3 mm 1 mm

No object

Page 10: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Gaussian absorber

50 cm 50 cm

Rs = 1 cm Ro = 3 mm

∆R = 0, 3, 5, 10, 30 mm

10 30

0

(going off axis)

∆R (cm)

Spec

kle

wid

th (µ

m)

Page 11: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Kepler 20e example

Time (hrs)

Francois et al., Nature 482, 195-198 (2012)

Planet displacement (star radia)

Flux

0.9998

1

2.55169 km Speckle size when occluded

Speckle size when not occluded 2.55198 km 0.999885

Dips to

0.9999

Page 12: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

In different regimes, the correlation measurement SNR can be below or above the direct intensity measurement SNR

Intensity measurement

0.1 photons/coincidence window

0.5 photons/coincidence window

1 photon/coincidence window

observation time = 100*coherence time

Page 13: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Thin lens 50 cm 50 cm ρ ρ

Rs = 1 cm f, Ro

R0 = 20 cm

R0 = 5 mm

R0 = 2 mm

f = 1 m

f = -1 m

R0 = 20 cm

R0 = 5 mm

R0 = 2 mm

Page 14: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

50 cm 50 cm

Rs = 1 cm Ro = 3 mm f = 1 m

∆R

Thin lens (going off axis)

∆R (cm) Sp

eckl

e w

idth

(µm

) ∆R (cm)

Inte

nsity

Page 15: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Application to gravity lenses and gas clouds

Gravity lenses are not thin lenses!

Lens Axicon Scwarzchild’s lens

= + +

R

Rs2≈α

2

4

12 sR

kRf ≈

Speckle size variation:

+

−≈∆

s

s

LL

LL

fd

d 11

α

R

Page 16: Ghost Imaging of Space Objects - NASA · Ghost Imaging of Space Objects Dmitry Strekalov, Baris Erkmen, Nan Yu . March 28, 2012 . Pasadena, CA . Challenges of Astronomy and Astrophysics

Summary and conclusions

Ghost Imaging - a “spooky” relative of the intensity interferometry – is a technique that works

Steps towards astronomy applications: • from quantum to natural light sources • from bucket to remote “fair sampling” detection • now, from beam splitter to sub-mode detection

What could be the objects? • Exoplanets • Gas or dust clouds • Gravitational lenses due to black holes Wavelength-specific, suitable for spectrally resolved imaging A possibility of distributing the “instrumental burden” between the space- and ground-based detectors. More resources to explore: higher-order correlations, information compression, computational imaging…