gfrp (glass-fiber-reinforced- polymer) composite system for bridge superstructures 2010 advanced...

21
GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 “Advanced technology for bridge superstructuresCantat Associates Inc. Toronto, Ontario, Canada

Upload: alberto-bissell

Post on 29-Mar-2015

229 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

GFRP (Glass-Fiber-Reinforced-Polymer) Composite System for Bridge

Superstructures

2010

“Advanced technology for bridge

superstructures”

Cantat Associates Inc.

Toronto, Ontario, Canada

Page 2: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

1. How did it happen? As it is known, the actual lifespan for steel, reinforced concrete and

steel-reinforced concrete SS’s everywhere in the world is no longer than 35 to 50 years, which is much shorter than Canadian, American, or European Bridge Design Code requirements. The causes for such a dramatic mismatch, in our analysis, are:

1. Acid rains, occurring with increasing frequency over the last several decades.

2. De-icing salts widely used to prevent traffic sliding.3. Contaminating debris, increasingly being brought on deck wearing

surface by truck wheels.4. Damage to structural elements due to fatigue. The cause for such a short lifespan cannot be blamed on the growing

weight of heavy trucks. In our opinion during the last 60 years, the average weight of heavy trucks has increased by no more than 20%. Within the Bridge Design Codes, this problem is solved by using conditional live loads (i.e. conditional heavy trucks, much heavier than real trucks) and a significant magnitude of live load factor in calculations, as well as much better than theoretical live load redistribution in real superstructures. The precise space calculations of a superstructure’s cross-sections and test results are confirming this statement theoretically as well as practically.

To summarize: the unanticipated changes in environment and material properties over time are the primary causes for dramatic reduction in the service life of bridges. The secondary cause in the SS’s degradation is insufficient funding for proper maintenance.

Page 3: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

2. What to do? The obvious conclusion for the Engineers was to seek alternatives to the

materials conventionally used in bridge construction and rehabilitation. The solution would involve using materials that are not vulnerable to environmental damage and would increase service life, which means durability of bridge SS’s. On the other hand, the life cycle and maintenance costs would have to be competitive with traditional materials, because of the limited resources available for maintaining those bridges. Such alternative material was found. It is FRP (Fiber-Reinforced-Polymer)-composite product.

In the mid 1930s as a part of experiment FRP was used for a boat hulls. From that point on and during the following 50 years, FRP-composite was used in marine, chemical processing, aerospace, for military items and transportation. Now, the worldwide attention is focusing on the opportunities offered by structural composites and structural industry.

Composite FRP material is formed by using high strength artificial fibers (for example E-Glass, Carbon-Fibers, Basalt-Fibers and so on) and Resin (vinyl-ester, polyester and Epoxy) and offers many advantages:

• It is very strong and durable material, not sensitive to environment;• It is much lighter than concrete or steel.

Page 4: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

According to Canadian official information, reinforced concrete and steel-reinforced concrete structures during their lifetime of 35 to 45 years required an additional investment for their maintenance and rehabilitation of at least 40-50% of their initial construction costs. FRP-composite structures on the other hand do not require maintenance, or require minimal investment for painting of their open surfaces.

There are three main methods for production of composite structures: Molding (mostly for small structural elements); Pultrusion (mostly for extensive elements, relatively with conditionally small

cross-sections); Infusion (mostly for big structural elements).

Cantat Associates Inc. selected GFRP composite material using infusion method for production, high strength E-Glass Fiber and Epoxy Resin.

Page 5: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

3. How did we solve it?

GFRP-composite system for bridge superstructures

To meet time and situation challenges, Cantat Associates Inc. have developed a composite system for bridge SS’s in which steel, wood and GFRP are working together. Steel and wood are totally encapsulated by GFRP casing and are protected against corrosion and degradation.

In our R&D we tested thousands GFRP samples based mostly on American Standards ASTM:

Page 6: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Average Statistical test result

Taken in consideration for design

- Tensile strength and 1,000 MPa 800 MPa

corresponding Modulus of Elasticity 45,000 MPa 35,000 MPa

- Compression strength and 900 MPa 700 MPa

corresponding Modulus of Elasticity 42,000 MPa 35,000 MPa

- Flexural strength and 1,000 MPa 800 MPa

Modulus of Elasticity 46,000 MPa 35,000 MPa

- Shear strength 50 MPa 20 MPa

Shear Modulus 3,600 MPa 2,400 MPa

- Coefficient of linear Expansion 0.000011 / °C 0.000011 /°C

- Acceptable max value of the strain in GFRP (ULS – see § 13.11.2.3, CHBDS) - 0.005 < [0.006]

- Strains changes in GFRP equal strain changes in adjacent wood or steel (SLS – see § 16.11.2.2)

- -

- Durability test (UV-test with changing “t” from 130°C to -130°C) - 5600 cycles – lost 1 micron

~ 150 year ~ 150 year

- Mass density 2,050 kg/m3 2,050 kg/m3

Page 7: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

• Glue-nailed Laminated timber core shell conform to CAN/CSA-0122 (Spruce-Pine-Fir selected wood or #1)

• Plywood shall be CANPly Exterior Canadian Softwood Plywood (CSP) certified by CSA-0151 (thickness shall not be less than 25.5 mm, number of plies shall not be more than 9, not less than 7)

From year 2002 up until today we made a long way to get considerably adjusted GFRP material:

• To find the most efficient sections of our Hybrid GFRP composite structures;• To efficiently include GFRP composite deck in combine operation with steel

girders;• To elaborate efficient details for deck fixation, to steel girders, barriers, the

deck fixation to the steel frame;• To attach elements of the deck to each other

We already tested in full size GFRP-wooden composite beams 3m in length. We designed, tested and installed nine different superstructures from 11m simple span up to 90m one span, including a Hybrid – GFRP-composite deck and a Skew bridge. All those bridges had been designed and successfully used for the last 4-7 years under Truck Live Load 625 kN, one of those bridges is a pedestrian bridge over HWY 10, with continuous SS’s (scheme 24+36+24m). Another bridge was installed under a highway in Nova Scotia.

Page 8: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

The main advantages of our GFRP-composite SS’s are:

1. Extremely long expected durability: over 100 years2. Light weight: increases superstructure's capacity or reduces volume of

the material(s) (e.g. steel)3. Quick installation: usually installed and opened to public traffic in 2-3

hours4. Environment-friendly: prefabricated, eliminating scaffolding and

contaminating debris5. Maintenance free life cycle: not sensitive to the environment does not

corrode or deteriorate and only requires painting of deck (superstructure) open surfaces once in a decade

6. Year-round construction: suitable for construction in both cold- and warm-weather conditions

7. Final costs now is approximately 5-10% lower than steel or reinforced-concrete SS’s and no costs or minimal costs for their maintenance

The primary reason for using GFRP-composite SS’s is their unique long-term durability. There are no alternatives to this product anywhere in the world.

The Ministries of Transportation of both Ontario and Nova Scotia have already recognized and adopted this system.

Page 9: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

COMPARISON OF SUPERSTRUCTURES FOR DIFFERENT MATERIALS

CON

STEEL - R. CONCRETE AND REINFORCED

CONCTETE SUPERSTRUCTURES

STEEL GIRDERS AND GFRP

COMPOSITE DECK RESULTS

DYNAMIC LOAD ALLOWANCE

1.25 1.30

1.17 1.21

6.5% LESS 7.4% LESS

BENDING MOMENT

100% 88% 12% LESS

DECK mm THICKNESS REQUIRED

225 204 9.4% LESS

FATIGUE STRESSES IN DECK CASING

REQUIRE DESIGN

EVALUATION NOT REQUIRED -

BENEFITS

Environmental assessment simplified Lighter deck and girders + smaller dynamic load

allowance reduce project costs Superstructure height, reduces project costs Better navigable water fit, reduces project costs

BENEFIT

CHBDC does not require fatigue analysis when stresses in material are less than 30%, it means – less number of restrictions shall be used in design of GFRP composite superstructures RC – steel structures require fatigue analysis

Page 10: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Tests conducted

• Type of tests conducted

– coupons

– Beam sections,

– Deck sections,

– Results: MOE, Shear, etc.

• Testing conducted by– Cantat Associates Inc.– University of Western Ontario– Triodem– Integrity Testing Lab

• Results– Product in conformance

Page 11: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

CHBDC CL 625 Truck Loading

Page 12: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Testing and Theoretical Load-Deflection Relationshipof Bolton Bridge Span structure ( Support Deflection are Subtracted)

3.95

7.77

3.95

7.77

4.07

8.53

13.31

15.70

20.57

25.29

12.2

18.3

21.35

27.45

33.55

22.14

0.00

11.86

14.09

18.16

18.16

0.00

13.91

11.76

22.26

0.00

6.1

0

0

4

8

12

16

20

24

28

32

36

40

44

48

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35

LOADING BLOCKS

DISPLACEMENT (mm)

DIAL INDICATOR #5

DIAL INDICATOR #6

DIAL INDICATOR #7

THEORETICALDEFLECTION.

D #

1

D #

2

D #

3

D #

4

D #

5

D #

6

DI #1

DI #2

DI #5

DI #6

DI #7

DI #3

DI #4

Span Structure Testing. Scheme of Dial Indicators

D #

1

D #

2

D #

3

D #

4

D #

5

D #

6

3120 3120 3120

DI #1

DI #2

DI #5

DI #6

DI #7

DI #3

DI #4

SPAN = 15800

438

0

3120

A

CL

4380

DI #5DI #6

DI #7

600 600

A SE CT ION

19.5

mm

1/8

00L

Serv

ice S

tudy L

L x

(D

ynam

ic

Load A

llow

ance)

Serv

ice S

tudy L

L x

(D

ynam

ic

Load A

llow

ance)

x 1

.297

20 min

30 min

20 min

30 min

30 min

30 min

Note: The repeated results show n in brackets

(13.41)

(11.87)(

(15.70)

(20.60)

(14.09)

(18.17)

(13.91)

(18.17)

(25.30)

(22.28)

(22.15)

Page 13: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Test every bridge

Load at plant

Load at site

See page 194 CHBDC and provide test report to owner

Page 14: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

9.13m long x 8.7m wide

Page 15: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Typical Prefab bridge panel

Page 16: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Typical Deck to steel girder connection

Page 17: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Typical Diaphragm Connection

Page 18: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Typical Panel to Panel Connection Stage 1

Page 19: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Stage 2

Page 20: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Stage 3

Page 21: GFRP (Glass-Fiber-Reinforced- Polymer) Composite System for Bridge Superstructures 2010 Advanced technology for bridge superstructures Cantat Associates

Contact information:

Cantat Associates Inc.Toronto, Ontario, Canada

Alexander Zevin - +1 (416) 505-7139

Arie Prilik - +1 (647) 500-2441

Danny Golnik - +1 (416) 836-4455

Fax: 647-436-1844

E-mail: [email protected]

[email protected]