geotechnical engineering study for · 2017. 11. 1. · yvonne garcia thomas, p.e. gabriel ornelas,...

63
GEOTECHNICAL ENGINEERING STUDY  FOR  TERRACES AT SCOFIELD RIDGE  INTERSECTION OF MOPAC EXPRESSWAY AND SCOFIELD RIDGE PKWY AUSTIN, TEXAS 

Upload: others

Post on 25-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

GEOTECHNICAL ENGINEERING STUDY  

FOR  

TERRACES AT SCOFIELD RIDGE  INTERSECTION OF MOPAC EXPRESSWAY AND SCOFIELD RIDGE PKWY 

AUSTIN, TEXAS 

Page 2: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

O:\Active Projects\Austin\2016 Active Projects\AAA16‐033‐00 Terraces of Scofield Ridge\Reporting\AAA16‐033‐00 Terraces at Scofield Ridge.docx  GEO100 04/09/2014

Project No. AAA16‐033‐00 June 30, 2016 

Mr. Sean Wolff Oden Hughes 901 South MoPac Expressway BOP III, Suite 220 Austin, Texas  78746 

RE:  Geotechnical Engineering Study Terraces at Scofield Ridge Intersection of MoPac Expressway and Scofield Ridge Pkwy Austin, Texas 

Dear Mr. Wolff: 

RABA KISTNER Consultants  Inc.  (RKCI)  is pleased to submit the report of our Geotechnical Engineering Study for the above‐referenced project.  This study was performed in accordance with RKCI Proposal No. PAA16‐043‐00, dated March 23, 2016. The purpose of this study was to drill borings within the footprint of the proposed buildings, parking garage, and pavement areas, to perform laboratory testing to classify and  characterize  subsurface  conditions,  and  to  prepare  an  engineering  report  presenting  foundation design and construction recommendations for the proposed Terraces at Scofield Ridge development, as well as to provide pavement design and construction guidelines. 

At the time this report was prepared finished floor elevations for apartment building structures, building design  tolerances,  and  structural  loads were  not  available.    Finished  floor  elevations  are  important  in evaluating foundation and pavement design recommendations.  Variations in elevations greater than one foot relative to existing grades may alter our design recommendations.  Once finished floor elevations and proposed site grading become available, we recommend that RKCI be retained to evaluate whether our foundation and pavement recommendations remain valid. 

We appreciate the opportunity to be of service to you on this project.   Should you have any questions about  the  information  presented  in  this  report,  or  if we may  be  of  additional  assistance with  value engineering or on the materials testing‐quality control program during construction, please call. 

Very truly yours, 

RABA KISTNER CONSULTANTS, INC. 

Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP  06/30/2016 Geotechnical Engineering Manager    Vice President 

GO/YGT: tlcAttachmentsCopies Submitted:  Above (1‐Electronic; 1‐Bound) 

San Antonio • Austin • Brownsville • Dallas • Houston • McAllen • Mexico • New Braunfels • Salt Lake City

Raba Kistner Consultants, Inc.

8100 Cameron Road, Suite B-150 Austin, TX 78754

www.rkci.com

P 512 :: 339 :: 1745F 512 :: 339 :: 6174

TBPE Firm F-3257

Page 3: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

GEOTECHNICAL ENGINEERING STUDY  

For  

TERRACES AT SCOFIELD RIDGE AUSTIN, TEXAS 

       

Prepared for  

ODEN HUGHES Austin, Texas 

          

Prepared by  

RABA KISTNER CONSULTANTS, INC. Austin, Texas 

            

PROJECT NO. AAA16‐033‐00  

June 30, 2016 

 

 

Page 4: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

TABLE OF CONTENTS  

i

INTRODUCTION .......................................................................................................................................... 1 

PROJECT DESCRIPTION ............................................................................................................................... 1 

LIMITATIONS .............................................................................................................................................. 1 

BORINGS AND LABORATORY TESTS ........................................................................................................... 2 

GENERAL SITE CONDITIONS ....................................................................................................................... 3 

SITE DESCRIPTION ......................................................................................................................................... 3 

GEOLOGY ....................................................................................................................................................... 3 

SEISMIC CONSIDERATIONS ........................................................................................................................... 4 

STRATIGRAPHY .............................................................................................................................................. 4 

GROUNDWATER ............................................................................................................................................ 5 

FOUNDATION ANALYSIS ............................................................................................................................. 5 

EXPANSIVE SOIL‐RELATED MOVEMENTS ..................................................................................................... 5 

OVEREXCAVATION AND SELECT FILL REPLACEMENT .................................................................................. 6 

DRAINAGE CONSIDERATIONS ....................................................................................................................... 7 

FOUNDATION RECOMMENDATIONS .......................................................................................................... 8 

FOUNDATION OPTIONS ................................................................................................................................ 8 

SITE GRADING ................................................................................................................................................ 8 

APARTMENT BUILDINGS & CLUBHOUSE FOUNDATION RECOMMENDATIONS .......................................... 8 

ENGINEERED BEAM AND SLAB FOUNDATION ............................................................................................. 8 Allowable Bearing Capacity .................................................................................................................... 8 PTI Design Parameters ........................................................................................................................... 9 

AREA FLATWORK ......................................................................................................................................... 11 

PARKING GARAGE FOUNDATON RECOMMENDATIONS ........................................................................... 11 

DRILLED, STRAIGHT‐SHAFT PIERS ............................................................................................................... 11 Maximum Potential Uplift (Existing Grade Conditions) ...................................................................... 12 Allowable Uplift Resistance .................................................................................................................. 12 

PIER SPACING .............................................................................................................................................. 12 

GRADE BEAMS ............................................................................................................................................. 13 

FLOOR SLABS ............................................................................................................................................... 13 

BELOW GRADE RETAINING STRUCTURES ................................................................................................. 14 

LATERAL EARTH PRESSURES ....................................................................................................................... 14 

BACKFILL COMPACTION .............................................................................................................................. 15 

DRAINAGE .................................................................................................................................................... 15 

RETAINING WALL FOOTINGS ...................................................................................................................... 16 

 

 

Page 5: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

TABLE OF CONTENTS  

ii

FOUNDATION CONSTRUCTION CONSIDERATIONS ................................................................................... 16 

SITE DRAINAGE ............................................................................................................................................ 16 

SITE PREPARATION ...................................................................................................................................... 16 

SELECT FILL .................................................................................................................................................. 17 

ON‐SITE ROCK FILL ....................................................................................................................................... 18 

SHALLOW FOUNDATION EXCAVATIONS .................................................................................................... 18 

DRILLED PIERS .............................................................................................................................................. 18 Reinforcement and Concrete Placement ............................................................................................ 19 Temporary Casing ................................................................................................................................. 19 

EXCAVATION SLOPING AND BENCHING ..................................................................................................... 19 

EXCAVATION EQUIPMENT .......................................................................................................................... 19 

CRAWL SPACE CONSIDERATIONS ............................................................................................................... 19 Ventilation ............................................................................................................................................ 19 Below Slab Utilities ............................................................................................................................... 20 Drainage ................................................................................................................................................ 20 

UTILITIES ...................................................................................................................................................... 20 

PAVEMENT RECOMMENDATIONS ............................................................................................................ 21 

SUBGRADE CONDITIONS ............................................................................................................................. 21 

DESIGN INFORMATION ............................................................................................................................... 22 

FLEXIBLE PAVEMENT ................................................................................................................................... 22 Garbage Dumpsters .............................................................................................................................. 22 

RIGID PAVEMENT ........................................................................................................................................ 22 

PAVEMENT CONSTRUCTION CONSIDERATIONS ....................................................................................... 23 

SUBGRADE PREPARATION .......................................................................................................................... 23 

DRAINAGE CONSIDERATIONS ..................................................................................................................... 24 

ON‐SITE CLAY FILL ........................................................................................................................................ 24 

LIME TREATMENT OF SUBGRADE ............................................................................................................... 24 

FLEXIBLE BASE COURSE ............................................................................................................................... 25 

ASPHALTIC CONCRETE SURFACE COURSE .................................................................................................. 25 

PORTLAND CEMENT CONCRETE ................................................................................................................. 25 

CONSTRUCTION RELATED SERVICES ......................................................................................................... 25 

CONSTRUCTION MATERIALS TESTING AND OBSERVATION SERVICES ...................................................... 25 

BUDGETING FOR CONSTRUCTION TESTING ............................................................................................... 26 

 

 

Page 6: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

ATTACHMENTS  

iii

The following figures are attached and complete this report:  Boring Location Map .......................................................................................................................... Figure 1 Logs of Borings ........................................................................................................................ Figures 2 to 18 Key to Terms and Symbols ............................................................................................................... Figure 19 Results of Soil Analyses .................................................................................................................... Figure 20 Grain Size Distribution Results ......................................................................................................... Figure 21 Important Information About Your Geotechnical Engineering Report   

 

 

Page 7: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

1

INTRODUCTION  

RABA  KISTNER  Consultants  Inc.  (RKCI)  has  completed  the  authorized  subsurface  exploration  and foundation  analysis  for  the proposed  Terraces  at  Scofield Ridge development  located  at  the  southeast intersection of North MoPac Expressway and Scofield Ridge Parkway  in Austin, Texas.   This report briefly describes  the  procedures  utilized  during  this  study  and  presents  our  findings  along  with  our recommendations for foundation design and construction considerations, as well as for pavement design and construction guidelines for the development of a multi‐family apartment complex community  

PROJECT DESCRIPTION  

The  facilities  being  considered  in  this  study  include  a  new  multi‐family  apartment  complex  and associated  parking  and  drive  pavements.  The  project  site  is  at  the  southeast  intersection  of  North MoPac Expressway and Scofield Ridge Parkway in Austin, Texas.  

We understand that the apartment community will consist of a total of nine building structures and a multi‐level parking garage. Based on our review of the Kelly Grossman Architects, LLC, site plan  layout provided  to  us,  seven,  4‐story  apartment  buildings  and  two,  single‐story maintenance  buildings  are planned. One  apartment  structure will  include  a  clubhouse  and  fitness  center on  the  first  floor.  The apartment  structures  and maintenance  buildings  are  anticipated  to  impose  relatively  light  structural loads to be carried by the foundation system. Floor systems consisting of slabs‐on‐ground or slabs‐on‐fill are  preferred,  provided  expansive  soil‐related  movements  will  not  cause  structural  performance problems.  

An L‐shaped 2‐  to 3‐story cast‐in‐place concrete parking garage  is also planned. Based on  the  sloping terrain,  particularly  at  the  northwest  corner  of  the  project  site,  we  understand  the  garage  will  be constructed with cuts into the existing hillside of up to about 17 ft. Heavier structural loads are expected to be carried by the foundation system of the garage. For the purpose of this report, we have assumed structural loads on the order of 200 to 400 kips.  If these loads are different than assumed, RKCI should be notified to reevaluate the recommendations provided and revise as required.  

It  is  our  understanding  that  at  the  time  of  this  study,  proposed  structural  loads  and  finished  floor elevations were not yet available. The  recommendations presented  in  this report were prepared with the assumption that final grade for the building structure will be within +1 ft of existing grades. Finished floor elevations are  important  in evaluating  foundation and pavement design. Variation  in elevations greater than 1 ft relative to existing grades may alter the recommendations presented.   Once finished floor  elevations  become  available,  we  recommend  that  RKCI  be  retained  to  evaluate  whether  our foundation and pavement recommendations remain valid.  

LIMITATIONS  

This  engineering  report  has  been  prepared  in  accordance  with  accepted  Geotechnical  Engineering practices in the region of central Texas and for the use of Oden Hughes (CLIENT) and its representatives for design purposes.  This report may not contain sufficient information for purposes of other parties or other uses.   This report  is not  intended for use  in determining construction means and methods.   The attachments and report text should not be used separately. 

 

 

Page 8: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

2

The recommendations submitted  in this report are based on the data obtained from 17 borings drilled at this site, our understanding of the project  information provided to us, and the assumption that site grading will  result  in  only minor  changes  in  the  existing  topography,  except  as  noted  above.  If  the project information described in this report is incorrect, is altered, or if new information is available, we should be retained to review and modify our recommendations.  

This  report may not  reflect  the actual variations of  the  subsurface  conditions across  the  site.   This  is particularly  true  of  this  site,  where  the  stratigraphy  is  highly  variable.  The  nature  and  extent  of variations  across  the  site may  not  become  evident  until  construction  commences.    The  construction process  itself  may  also  alter  subsurface  conditions.    If  variations  appear  evident  at  the  time  of construction,  it  may  be  necessary  to  reevaluate  our  recommendations  after  performing  on‐site observations and tests to establish the engineering impact of the variations.  

The scope of our Geotechnical Engineering Study does not include an environmental assessment of the air,  soil,  rock, or water  conditions  either on or  adjacent  to  the  site.   No  environmental opinions  are presented in this report.  

If final grade elevations are significantly different from existing grades by more than plus or minus 1 ft, our office should be informed about these changes.  If needed and/or if desired, we will reexamine our analyses and make supplemental recommendations.  

BORINGS AND LABORATORY TESTS  

Subsurface  conditions at  the  site were evaluated by 17 borings drilled at  the  locations  shown on  the Boring Location Map, Figure 1.  Boring locations were documented in the field utilizing a hand‐held GPS device.  The  borings were  drilled  to  approximate  depths  of  15,  20,  and  25  ft  for  the  apartment  and maintenance buildings, 50  ft  for  the parking garage, 10  ft  for  the water quality pond, and 5  ft  for  the parking  and  drive  areas,  using  a  truck‐mounted  drilling  rig.  During  drilling  operations,  the  following samples were collected:  

Type of Sample  Number Collected 

Split‐Spoon  (with Standard Penetration Test)  45 

Undisturbed Shelby Tube  48 

NX Rock Core  55 ft 

 

Each sample was visually classified in the laboratory by a member of our geotechnical engineering staff.  The geotechnical engineering properties of the strata were evaluated by the following tests:  

Type of Test  Number Conducted 

Natural Moisture Content  96 

Atterberg Limits  17 

Percent Passing a No. 200 Sieve  3 

Sieve Analysis with Hydrometer  2 

Unconfined Compression (soil)  1 

Unconfined Compression (rock)  5 

 

 

Page 9: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

3

The  results  of  all  laboratory  tests  are  presented  in  graphical  or  numerical  form  on  the  boring  logs illustrated  on  Figures  2  through  18.    A  key  to  classification  terms  and  symbols  used  on  the  logs  is presented on Figure 19.   The results of the  laboratory and field testing are also tabulated on Figure 20 for  ease  of  reference.    The  results  of  sieve  analyses  have  been  plotted  on  the  attached  Grain  Size Distribution Results, Figure 21.   Standard Penetration Test results are noted as “blows per ft” on the boring  logs and Figure 17, where “blows per ft” refers to the number of blows by a falling hammer required for 1 ft of penetration  into the  soil/weak  rock  (N‐value).    Where  hard  or  dense  materials  were  encountered,  the  tests  were terminated at 50 blows even  if one foot of penetration had not been achieved.   When all 50 blows fall within the first 6 in. (seating blows), refusal “ref” for 6 in. or less will be noted on the boring logs and on Figure 17.  The Recovery  (REC) presented on  the  logs  is  the  total  length of  the  recovered material divided by  the attempted run  length during coring activities, presented as a percentage.   The Rock Quality Designation (RQD)  is  the  sum of  the  length of all  the pieces  recovered measuring 4  inches or more divided by  the attempted run length during coring activities, presented as a percentage.   Samples  will  be  retained  in  our  laboratory  for  30  days  after  submittal  of  this  report.    Other arrangements may be provided at the request of the Client.  

GENERAL SITE CONDITIONS  SITE DESCRIPTION  The project site  is a 10.4‐acre  tract of undeveloped  land  located at  the southeast  intersection of North MoPac Expressway and Scofield Ridge Parkway  in Austin, Texas.  The site  is grass‐covered with stands of trees  throughout  the site. The majority of  the site slopes downward gently  toward  the southwest, with vertical  relief of about 18  ft  from  the northeast  corner  to  the  southwest  corner of  the  site. Within  the northwest quadrant of the site, however, the site slopes downward toward the northwest, with vertical relief of about 24 ft from the center of the site to the northwest corner. Natural surface drainage is visually estimated to be fair to poor at this site.   GEOLOGY  A review of the Geologic Atlas of Texas, Austin Sheet, indicates that this site is naturally underlain with the soils/rock  of  the  Eagle  Ford  and  Buda  Limestone  formations.  In  the  northwest  quadrant  of  the  site (Buildings  7  and  8,  the water  quality  pond,  and  the west  side  of  the  parking  garage),  the  site  is  also underlain by the Del Rio Clay formation.   The  Eagle  Ford  Formation  generally  consists  of  dark  gray  calcareous  clay  overlying  shale  or  silty limestone.  It contains sandy and silty flaggy limestone in the mid‐portion and a bentonite bed at the base. A key geotechnical engineering concern for development supported on this formation  is expansive, soil‐related movements.  

 

 

Page 10: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

4

The Buda Limestone can range from a relatively hard, thick, massive limestone to a thin “cap” of extremely weathered, soft, blocky  limestone, underlain by Del Rio Clay.  Del Rio Clay  is a  tan and gray, bentonitic, highly expansive claystone or shale that weathers to clay.    Key geotechnical engineering concerns for development supported on this formation are the thickness of the Buda Limestone, expansive, soil‐related movements  resulting  from  the underlying Del Rio Clay, and groundwater  issues.   Surface  water  generally  percolates  downward  through  fractures  in  the  Buda Limestone  formation and  through  the weathered zones of  the Del Rio clay until  relatively unweathered clay  is encountered, whereupon groundwater  is then diverted  laterally.  Where the contact between the Del Rio clay and the Buda Limestone intersects the ground surface, typically occurring on hillsides or hilly topographies, transient water seepage will often “daylight” at the ground surface.    SEISMIC CONSIDERATIONS  On  the  basis  of  the  soil  borings  conducted  for  this  investigation,  the  upper  100  feet  of  soil may  be characterized as very dense soil and soft rock.  Thus, a Class C Site Class Definition (Chapter 20 of ASCE 7) has been assigned for this site.  The following seismic considerations are associated with the Site Class C portions of the site:  

Ss = 0.063g 

S1 = 0.034g 

Sms = 0.076g 

Sm1 = 0.058g 

SDS = 0.051g 

SD1 = 0.039g  Based on the parameters  listed above as well as Tables 1613.3.5(1) and 1613.3.5(2) of the 2012 IBC, the Seismic Design Category  for both short period and 1 second response accelerations  is A.   As part of  the assumptions required to complete the calculations, a Risk Category of “I or II or III” was selected.  STRATIGRAPHY  The  subsurface conditions encountered at  the boring  locations are  shown on  the boring  logs, Figures 2 through 18.  These boring logs represent our interpretation of the subsurface conditions based on the field logs, visual examination of field samples by our personnel, and test results of selected field samples.  Each stratum  has  been  designated  by  grouping  soils  that  possess  similar  physical  and  engineering characteristics.  The  lines  designating  the  interfaces  between  strata  on  the  boring  logs  represent approximate boundaries.  Transitions between strata may be gradual.  Stratum  I  consists  of  stiff  to  hard,  dark  brown,  fat  clay  (CH) with  calcareous  nodules  and  limestone fragments.  These clays are classified as highly plastic based on measured plasticity indices ranging from 39 to 58. Measured moisture contents range from 11 to 37 percent.  Shear strength ranges from 0.8 to 2.3 tsf based on pocket penetrometer test data. Based on a single grain size analysis, the percentage of fines (percent passing a No. 200 sieve) was 92 percent.    

 

 

Page 11: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

5

Stratum  II consists of stiff  to hard, gray and brown,  fat clay  (CH) with  limestone  fragments and marly seams. These clays are classified as highly plastic based on measured plasticity  indices ranging from 40 to 61. Measured moisture contents range from 9 to 24 percent. Shear strength ranges from 0.3 to 2.3 tsf based on pocket penetrometer test data, and was determined to be 2.8 tsf based on a single unconfined compression test.  The dry unit weight for the unconfined compression test sample was 103 pcf. Based on two grain size analyses, the percentage of fines was determined to range from 88 to 94 percent.   Stratum  III  consists  of  hard,  fractured,  orange‐brown  to  tan  limestone,  with  clay  layers. Measured moisture contents range from 3 to 10 percent. Standard Penetration Test (SPT) N‐values range from 50 blows for 6 inches of penetration to refusal for 0 inches of penetration. Rock recovery values of 38 and 72  percent  were  determined.  Rock  Quality  Designation  (RQD)  values  of  0  and  10  percent  were determined.   Stratum IV consists of soft to moderately hard, gray clay shale. This stratum has been classified as highly plastic based on two measured plasticity indices of 38 and 54. Measured moisture contents range from 15 to 21 percent. SPT N‐values range from 41 blows per ft to refusal for 4 inches of penetration. Shear strength was  estimated  to be  2.3  tsf based on pocket  penetrometer  test data. Uniaxial  compressive strength ranges from 6 to 10 tsf based on unconfined compression test data. Rock recovery ranges from 17 to 98 percent. RQD ranges from 8 to 98 percent.   GROUNDWATER  Groundwater was not observed  in  the borings  either during or  immediately upon  completion of  the drilling operations.  All borings remained dry during the field exploration phase.  However, it is possible for  groundwater  to  exist beneath  this  site  at  shallow depths on  a  transient basis, particularly  at  the clay/limestone  interfaces, within weathered  limestone  seams,  and  following  periods of precipitation.  Fluctuations  in  groundwater  levels  occur  due  to  variation  in  rainfall  and  surface water  run‐off.    The construction process itself may also cause variations in the groundwater level.  

FOUNDATION ANALYSIS  EXPANSIVE SOIL‐RELATED MOVEMENTS  The anticipated ground movements due to swelling of the underlying soils at the site were estimated for slab‐on‐grade construction using the empirical procedure, Texas Department of Transportation (TxDOT) Tex‐124‐E, Method  for Determining  the  Potential Vertical Rise  (PVR).    The  estimated  PVR  values  are summarized in the table below. A surcharge load of 1 psi (concrete slab and sand layer), an active zone extending  to  the  lesser  of  15  ft  and  the  depth  to  the  clay/limestone  interface,  and  dry  moisture conditions were assumed in estimating the above PVR values.   

Building No.  Associated Boring  

Estimated PVR (in.) 

Bldg. Nos. 1 & 2  B‐1, B‐2, P‐1  2‐1/4 

Bldg. No. 3  B‐3  2‐3/4 

Bldg. Nos. 4 & 5  B‐4, B‐5  1‐3/4 

 

 

Page 12: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

6

Building No.  Associated Boring Estimated PVR 

(in.) 

Bldg. No. 9  B‐8, B‐9  1‐3/4 

Bldg. No. 6  B‐6,   1 

Bldg. Nos. 7, 8 and  Parking Garage  B‐7, B‐10, B‐11, PL‐1, PL‐2  6 

 The TxDOT method of estimating expansive soil‐related movements  is based on empirical correlations utilizing the measured plasticity indices and assuming typical seasonal fluctuations in moisture content.  If  desired,  other  methods  of  estimating  expansive  soil‐related  movements  are  available,  such  as estimations based on swell tests and/or soil‐suction analyses.  However, the performance of these tests and  the detailed analysis of expansive  soil‐related movements were beyond  the  scope of  the current study.    It  should  also be noted  that  actual movements  can  exceed  the  calculated PVR  values due  to isolated changes in moisture content or if water seeps into the soils to greater depths than the assumed active zone depth due to deep trenching or excavations.  OVEREXCAVATION AND SELECT FILL REPLACEMENT  To  reduce  expansive  soil‐related movements  in  at‐grade  construction,  a  portion  of  the  upper  highly expansive subgrade clays  in the project area can be removed by overexcavating and backfilling with a suitable  select  fill  material.    PVR  values  have  been  estimated  for  overexcavation  and  select  fill replacement  to  various  depths  below  the  existing  ground  surface  and  are  summarized  in  the  table below.  Recommendations for the selection and placement of select backfill materials are addressed in a subsequent section of this report.  

Depth of Overexcavation and Select Fill Replacement  

Building No. Associated Boring 

At Existing Grade Estimated 

PVR (in.) 

3 in. PVR Overexcavation 

Depth for Reduction  

(ft)  

2 in. PVR Overexcavation 

Depth for Reduction  

(ft) 

1 in. PVR Overexcavation 

Depth for Reduction  

(ft) 

Bldg. Nos. 1 & 2  B‐1, B‐2, P‐1  2‐1/4  ‐  1  2 

Bldg. No. 3  B‐3  2‐3/4  ‐  1  3 

Bldg. Nos. 4, 5, & 9 B‐4, B‐5, B‐8, 

B‐9  1‐3/4  ‐  ‐  1 

Bldg. No. 6  B‐6  1  ‐  ‐  ‐ 

Bldg. Nos. 7 & 8, Parking Garage 

B‐7, B‐10, B‐11, PL‐1, PL‐2  6  5  8  11 

 We recommend consideration be given to reducing expansive soil‐related movements at this site. This will  require overexcavation of  the expansive  clay  soils  and  replacement with  select  fill  to  a depth  as presented in the table above. To maintain the estimated PVR values above, subsequent fill placed in the building  areas  should  consist  of  select  fill material  in  accordance with  the  Select  Fill  section  of  this report. 

 

 

Page 13: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

7

DRAINAGE CONSIDERATIONS  When overexcavation and  select  fill  replacement  is  selected as a method  to  reduce  the potential  for expansive soil‐related movements at any site, considerations of surface and subsurface drainage may be crucial  to construction and adequate  foundation performance of  the soil‐supported structures.   Filling an excavation  in relatively  impervious plastic clays with relatively pervious select fill material creates a “bathtub” beneath  the  structure, which  can  result  in ponding or  trapped water within  the  fill unless good surface and subsurface drainage is provided.  Water entering the fill surface during construction or entering the fill exposed beyond the building lines after  construction may  create  problems with  fill moisture  control  during  compaction  and  increased access for moisture to the underlying expansive clays both during and after construction.  Several surface and subsurface drainage design  features and construction precautions can be used  to limit problems associated with  fill moisture.   These  features and precautions may  include but are not limited to the following:  

Installing berms or swales on the uphill side of  the construction area to divert surface runoff away from the excavation/fill area during construction; 

Sloping of the top of the subgrade with a minimum downward slope of 1.5 percent out to the base of a dewatering trench located beyond the building perimeter; 

Sloping  the  surface of  the  fill during  construction  to promote  runoff of  rain water  to drainage features until the final lift is placed; 

Sloping  of  a  final, well maintained,  impervious  clay  or  pavement  surface  (downward away from the building) over the select fill material and any perimeter drain extending beyond the building lines, with a minimum gradient of 6 in. in 5 ft; 

Constructing final surface drainage patterns to prevent ponding and limit surface water infiltration at and around  the building perimeter; 

Locating  the water‐bearing  utilities,  roof  drainage  outlets  and  irrigation  spray  heads outside of the select fill and perimeter drain boundaries; and 

Raising the elevation of the ground level floor slab. 

For the case where overexcavations and select‐fill replacement occurs in the limestone, such  as  at Buildings No.  7  and 8,  and where  exposure of  a  limestone  layer occurs,  a subsurface drain may be  required.   As discussed  in  the geology  section of  this  report, lateral  water  seepage  could  occur  at  the  contact  between  the  clay  and limestone interface.   If this occurs, water may infiltrate into the fill materials. 

 Details  relative  to  the  extent  and  implementation  of  these  considerations must  be  evaluated  on  a project‐specific  basis  by  all members  of  the  project  design  team.   Many  variables  that  influence  fill drainage  considerations may  depend  on  factors  that  are  not  fully  developed  in  the  early  stages  of design.  For this reason, drainage of the fill should be given consideration at the earliest possible stages of the project.   

 

 

Page 14: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

8

FOUNDATION RECOMMENDATIONS  

FOUNDATION OPTIONS  

The following recommendations are based on the data obtained from our field and  laboratory studies, our past experience with geotechnical conditions similar to those at this site, and our engineering design analyses.    The  following  alternatives  are  available  to  support  the  apartment  buildings  and  parking garage:  

Engineered beam and slab foundation; 

Post tension slab‐on‐grade; 

Drilled, straight‐shaft piers.  

The owner may select either one of  these  foundation systems depending on  the performance criteria established for the structures.   Cost analyses have not been conducted for any foundation system and are beyond the scope of this study.  

SITE GRADING  

Site grading plans can result in changes in almost all aspects of foundation recommendations.  We have prepared all  foundation  recommendations based on  the existing ground surface and  the stratigraphic conditions encountered at the time of our study.  

When site grading plans are finalized, RKCI should be retained to review the site grading plans prior to bidding  the  project  for  construction.    This will  enable  RKCI  to  provide  input  for  any  changes  in  our original  recommendations  that  may  be  required  as  a  result  of  site  grading  operations  or  other considerations.  

APARTMENT BUILDINGS & CLUBHOUSE FOUNDATION RECOMMENDATIONS  

ENGINEERED BEAM AND SLAB FOUNDATION  

The  apartment  complex  building  structures  may  be  founded  on  shallow  engineered  beam  and  slab foundations  provided  the  selected  foundation  type  can  be  designed  to withstand  the  anticipated  soil‐related movements (see Expansive Soil‐Related Movements) without impairing either the structural or the operational performance of the structures.  Prior to fill placement within the building footprint areas, we recommend overexcavation and select fill replacement, as discussed in the Overexcavation and Select Fill Replacement section of this report.  

Allowable Bearing Capacity  

Shallow  foundations  founded on a minimum of 12  inches compacted, select  fill should be proportioned using the design parameters presented in the following table.  

Minimum depth below final grade  12 in. 

Minimum beam width  10 in. 

Minimum widened beam width  12 in. 

Maximum allowable bearing pressure for grade beams constructed on select fill  2,600 psf 

Maximum allowable bearing pressure for widened beams constructed on select fill  3,300 psf 

 

 

 

Page 15: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

9

The above presented maximum allowable bearing pressures  include a design factor of safety of about 3 with respect to the measured shear strength, provided that the subgrade is prepared and the fill is placed as recommended  in the Site Preparation and Select Fill sections of this report.   Please note that shallow foundations  constructed  at  this  site will  be  subject  to movements  caused  by  changes  in  soil moisture content, as described  in  the Expansive Soil‐Related Movements  section of  this  report.   We  recommend that a vapor barrier be placed between the supporting soils and the concrete floor slab.  

PTI Design Parameters  

Post Tensioning Institute (PTI) design parameters were estimated for existing stratigraphic conditions using the procedures and  criteria discussed  in  the Post‐Tensioning  Institute Manual entitled  “Design of Post‐Tensioned Slabs‐on‐Ground, Third Edition” dated 2004 with the 2008 supplement.  

Differential vertical swell has been estimated  for center  lift and edge  lift conditions  for use  in designing foundation slabs for the stratigraphy encountered in our borings.  These values were determined using a computer  program  entitled  VOLFLO Win  1.5,  as  recommended  by  the  Post  Tensioning  Institute.    As recommended by PTI, we have evaluated differential swell for both 1) conditions varying from equilibrium and  2)  conditions  varying  between  extremes  (wet/dry).    The  values  for  both  of  these  conditions  are presented in the table below.  Because soil moisture conditions are likely to vary from wet to dry and vice versa over many cycles during the  lifetime of the structure, we recommend that the  latter conditions be assumed  in  design.  These  PTI  recommendations  have  not  taken  into  account  expansive  soil‐related reduction schemes or cut/fill scenarios that are likely to be required for mass site grading.  It is possible that regrading the site will alter our design recommendations and RKCI must be retained to evaluate whether our foundation recommendations remain valid.  

Without PVR Reduction Implementation and No Vertical Moisture Barrier (Exterior Grade Beam)  

  Differential Swell (in.) 

Design Condition 

Estimated PVR (in.)  Building No. 

From Equilibrium to 

Wet 

From Equilibrium to 

Dry From Dry to Wet  From Wet to Dry 

A  2‐3/4   Buildings 1, 2, 3  1 (EL)  ‐1 (CL)  2‐1/2 (EL)  ‐1‐1/2 (CL) 

B  1‐3/4  Buildings 4, 5, 9  3/4 (EL)  ‐1/2 (CL)  1‐1/2 (EL)  ‐1 (CL) 

C  1  Building 6  1/4 (EL)  ‐1/4 (CL)  1/4 (EL)  ‐1/4 (CL) 

D  6  Buildings 7, 8  *  *  *  * 

*  PVR reduction warranted.  Refer to design parameter presented for Design Condition D (without vertical moisture barrier) 

(EL)  ‐  Edge Lift Condition (CL)  ‐ Center Lift Condition 

 In estimating the differential swell values presented above, “percent fine clay” and “depth to constant soil suction” were the variable design parameters.   The “percent fine clay” was taken to be 62 and 46 percent for the Stratum I and Stratum II clays, respectively. The depth to constant soil suction was taken to be the lesser of 15 ft and the depth to the limestone interface.   The  remaining  soil and environmental parameters used  to arrive at  the differential  swell values were assumed to be constant.  These values are summarized in the following table:  

 

 

Page 16: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

10

  Condition A  Condition B  Condition C 

Thornthwaite Index, IM  ‐13 

Constant Soil Suction  3.6 pF 

Edge Moisture Variation Distance (center lift)  7.0 ft  7.0 ft  9.0 ft 

Edge Moisture Variation Distance (edge lift)  3.7 ft  3.7 ft  6.8 ft 

 With PVR Reduction for Design Condition D and No Vertical moisture barrier (Exterior Grade Beam)  This  scenario  is only applicable  for design condition D, Buildings No. 7 and 8, where PVR values on  the order  of  5  to  6 inches  are  expected.    If  the  recommended  overexcavation  and  select  fill  replacement option is implemented so that a minimum 5 ft thick select fill building pad is constructed to reduce the PVR value to 3 inches, the following PTI design parameters may be utilized.  

  Differential Swell (in.) 

Design Condition 

Estimated PVR (in.)  Building No. 

From Equilibrium to 

Wet 

From Equilibrium to 

Dry From Dry to Wet  From Wet to Dry 

D  3  Buildings 7, 8  1 (EL)  ‐1 (CL)  2‐3/4 (EL)  ‐1‐3/4 (CL)  

Edge Moisture Variation Distance (center lift)  8.3 ft 

Edge Moisture Variation Distance (edge lift)  4.2 ft 

 If overexcavation and select fill replacement is utilized to reduce expansive soil related movements to on the order of 2  inches or  less  for Buildings 1  through 6, RKCI  should be  consulted  to determine  the PTI design scenarios for these conditions.   With 30 in. Vertical Moisture Barrier and PVR Reduction for Design Condition D (Exterior Grade Beam)  The above design conditions were analyzed with a 30 inch (minimum) vertical moisture barrier (exterior grade beam).   

  Differential Swell (in.) 

Design Condition 

Estimated PVR (in.)  Building No. 

From Equilibrium to 

Wet 

From Equilibrium to 

Dry From Dry to Wet  From Wet to Dry 

A  2‐3/4   Buildings 1, 2, 3  1/4 (EL)  ‐1/4 (CL)  1/2 (EL)  ‐1/2 (CL) 

B  1‐3/4  Buildings 4, 5, 9  1/4 (EL)  ‐1/4 (CL)  1/4 (EL)  ‐1/4 (CL) 

C  1  Building 6  1/4 (EL)  ‐1/4 (CL)  1/4 (EL)  ‐1/4 (CL) 

D  3  Buildings 7, 8  1/4 (EL)  ‐1/4 (CL)  2 (EL)  ‐1/4 (CL) 

   

 

 

Page 17: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

11

Additional design parameters are summarized in the following table:  

  Condition A  Condition B  Condition C  Condition D 

Thornthwaite Index, IM  ‐13 

Constant Soil Suction  3.6 pF 

Edge Moisture Variation Distance (center lift)  7.0 ft  7.0 ft  9.0 ft  6.7 ft 

Edge Moisture Variation Distance (edge lift)  3.7 ft  3.7 ft  6.8 ft  3.5 ft 

 AREA FLATWORK  It  should  be  noted  that  ground‐supported  flatwork  such  as  walkways  will  be  subject  to  the  same magnitude  of  potential  soil‐related  movements  as  discussed  previously  (see  Expansive  Soil‐Related Movement  section).  Thus,  where  these  types  of  elements  abut  rigid  building  foundations  or isolated/suspended structures, differential movements should be anticipated.    Based  on  the  anticipated  ground  movements  due  to  swelling  of  the  underlying  soils  beneath  the sidewalk/flatwork  it  is  our  opinion  that  the  design  team  should  consider  methods  of  reducing  the anticipated movements  through methods  discussed  in  the Overexcavation  and  Select  Fill  Replacement section or to consider structurally suspending critical areas to match the adjacent building performance.  As  a minimum, we  recommend  that  flexible  joints  be  provided where  such  elements  abut  the main structure  to  allow  for  differential  movement  at  these  locations  where  flatwork  abuts  the  exterior perimeter grade beam of the new building care must be taken to provide a smooth, vertical construction joint between  the edge of  the  flatwork and  the perimeter grade beam. The  flatwork  should preferably abut  the  grade  beam  at  least  4  inches,  preferably more,  below  the  bottom  of  the  brick  lug  (or  other exterior  veneer material)  to  avoid damage  to  the  veneer when movements occur  in  the  flatwork. The construction joint should be wide enough to assure that vertical movement in the flatwork will not bind on and subsequently damage the exterior veneer material.   The  construction  joint  should  be  completed  using  an  appropriate  elastomeric  expansion  joint  filler  to reduce  the amount of water passing  through  the construction  joint. Proper and  regular maintenance of the expansion joint will help reduce the water seepage at the flatwork/foundation interface.   A  better  option,  if  feasible,  is  to  separate  the  flatwork  away  from  the  building  foundation  so  that movements incurred by the flatwork are totally independent of the building foundation.  

PARKING GARAGE FOUNDATON RECOMMENDATIONS  

DRILLED, STRAIGHT‐SHAFT PIERS  

Drilled, straight‐shaft piers may be utilized to support the proposed parking garage structure. Straight‐shaft piers should be designed as friction units using an allowable side shear resistance of 1.1 ksf for the portion of  the  shaft penetrating below elevation 755  ft  into  the Stratum  IV clay‐shale. This allowable 

 

 

Page 18: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

12

side shear resistance was evaluated using a calculated factor of safety of at  least 3. Based on the 50‐ft maximum depth of exploration, piers should not extend below an elevation of 725 ft.   

To proportion the drilled piers for axial compression, the side shear resistance should also be neglected along the portion of the shaft located one shaft diameter from the bottom of the pier.  Drilled, straight‐shaft piers bearing  in clay‐shale may also be proportioned using a maximum allowable end bearing pressure of 18 ksf bearing a minimum of 2 ft into the Stratum IV shale.   

Final shaft depths will be based on interpretation of conditions in the field at the time of construction.  Due to the variable conditions at this site, RKCI must be present at the time of pier construction to verify the field  conditions  are  similar  to  those  assumed  in  the  preparation  of  our  recommendations.  For  bid purposes,  the owner should anticipate  that deeper piers will be required  in some areas.   Consequently, contractors bidding on the job should include unit costs for various depths of additional pier embedment.  Unit costs should include those for both greater and lesser depth in both soil and rock.  Maximum Potential Uplift (Existing Grade Conditions)  The pier  shafts will be  subject  to potential uplift  forces  if  the  surrounding expansive  soils within  the active  zone  are  subjected  to  alternate drying  and wetting  conditions.   The maximum potential uplift force acting on the shaft may be estimated by:  

Fu = 120*D where:  

Fu = uplift force in kips; and D = diameter of the shaft in feet. 

 

Allowable Uplift Resistance  

Resistance to uplift forces exerted on the drilled, straight‐shaft piers will be provided by the sustained compressive  axial  force  (dead  load)  plus  the  allowable  uplift  resistance  provided  by  the  soil.    The resistance provided by the soil depends on the shear strength of the soils adjacent to the pier shaft and below the depth of the active zone.  The allowable uplift resistance provided by the soils at this site may be  estimated  using  an  axial  compressive  side  shear  resistance  0.7  ksf  for  the  portion  of  the  shaft extending a depth of 15  ft below  finished  floor elevation.   This value was evaluated using a  factor of safety of 2.  

Reinforcing  steel will be  required  in each pier  shaft  to withstand a net  force equal  to  the uplift  force minus the sustained compressive load carried by that pier.  We recommend that each pier be reinforced to withstand  this net  force or an amount equal  to 1 percent of  the  cross‐sectional area of  the  shaft, whichever is greater.  

PIER SPACING  

Where possible, we recommend that the piers be spaced at a center to center distance of at least three shaft diameters on‐center.  Such spacing will not require a reduction in the load carrying capacity of the individual piers. 

 

 

Page 19: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

13

If design and/or construction restraints require that piers be spaced closer than the recommended three shaft  diameters,  RKCI  must  re‐evaluate  the  allowable  bearing  capacities  presented  above  for  the individual  piers.    Reductions  in  load  carrying  capacities may  be  required  depending  upon  individual loading and spacing conditions.  

GRADE BEAMS  

Perimeter grade beams interconnecting the piers may be ground supported provided they are designed to  withstand  anticipated  soil‐related  movements  without  impairing  either  the  structural  or  the operational performance of the building. Grade beams should bear a minimum of 12  inches below the final subgrade elevation and have a minimum width of 12 inches.   

If expansive,  soil‐related movement mitigation options are not  implemented  to  reduce  the PVR,  then the  grade  beams  interconnecting  the  piers  should  be  structurally  suspended  due  to  the  anticipated ground movements.   A positive void  space of at  least 18  inches preferably more,  should be provided between the soffits of grade beams and the underlying soils.  

FLOOR SLABS  

Two alternatives are available to construct the parking garage ground floor slab system.  The Owner may select the alternative best satisfying the required performance criteria.  

Alternative  No.  1:    Floor  slabs  which  have  high  performance  criteria  or  which  are movement  sensitive  in  nature  should  be  structurally  suspended  because  of  the anticipated ground movements.   A positive void space of at  least 18  inches, preferably more,  should be  provided between  the  slab  and  the underlying  soils  (see  also  Crawl Space Considerations).  Areas containing critical entry/exit points to the structure should consider using a suspended system  to relieve those areas of heave stresses caused by expansive soils.  

Alternative  No.  2:    Floor  slabs within  the  superstructure may  be  ground  supported provided  the  anticipated  movements  discussed  under  the  Expansive  Soil‐Related Movements section of this report will not impair the performance of the floor, frame, or roof systems.  

If differential movements between  the  slab  and  the  structure  are objectionable,  soil‐supported floor slabs could be dowelled to the perimeter grade beams.  Dowelled slabs that are subjected to heaving will typically crack and develop a plastic hinge along a line which will be approximately 5 to 10 ft inside and parallel to the grade beams.  Slabs cast independent  of  the  grade  beams,  interior  columns  and  partitions  should  experience minimum cracking, but may create difficulties at critical entry points such as doors and may impact interior partitions that are secured to exterior walls. 

 

A modulus of subgrade reaction of 150 psi/in may be used for concrete slabs supported on a minimum of 1 ft of select fill, provided the structural fill materials are selected and placed in accordance with the Select Fill section of this report. We recommend that a vapor barrier be placed between the supporting select fill and the concrete floor slab.  

 

 

Page 20: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

14

Although no groundwater was noted, we recommend that the design team consider the installation of a drainage  system  beneath  and/or  along  the  perimeter  of  the  floor  slab  to  capture  and  transport  any accumulation of  transient groundwater  seepage  from beneath  the  floor  slab due  to  the  relatively deep cuts anticipated.  This can be accomplished by the installation of subsurface drains or sump pumps.  

BELOW GRADE RETAINING STRUCTURES  

We understand cuts into the existing hillside on the order of 17 ft are expected for construction of the parking garage.   Based on the results of our subsurface study, we do not believe the soils/rock will be capable of near vertical cuts without mechanical stabilization or the construction of a retaining wall. The below‐grade walls will act as  retaining  structures and  should be designed  for  lateral earth pressures. Drainage  conditions  will  also  need  to  be  considered  in  design.  The  following  sections  provide information for evaluating lateral earth pressures, drainage issues, and parameters for footing design.   

LATERAL EARTH PRESSURES  

Equivalent  fluid density values  for computation of  lateral soil pressures acting on retaining walls were evaluated for various types of backfill materials that may be placed behind the retaining walls.   These values,  as well  as  corresponding  lateral  earth  pressure  coefficients  and  estimated  unit weights,  are presented below in preferential order for use as backfill materials.  

 

 

Back Fill Type 

Estimated Total Unit Weight (pcf) 

Active Condition  At Rest Condition 

Earth Pressure Coefficient, ka 

Equivalent Fluid Density (pcf) 

Earth Pressure Coefficient, ko 

Equivalent Fluid Density (pcf) 

Washed Gravel  135  0.29  40  0.45  60 

Crushed Limestone  145  0.24  35  0.38  55 

Clean Sand  120  0.33  40  0.5  60 

Pit Run Clayey Gravels or Sands 

135  0.32  45  0.48  65 

Clays  120  0.59  70  0.74  90 

 The  values  tabulated  above  under  “Active  Conditions”  pertain  to  flexible  retaining walls  free  to  tilt outward as a  result of  lateral earth pressures.   For  rigid, non‐yielding walls  the values under “At‐Rest Conditions” should be used.  The values presented above assume the surface of the backfill materials to be level.  Sloping the surface of the backfill materials will increase the surcharge load acting on the structures.  The above values also do not include the effect of surcharge  loads such as construction equipment, vehicular loads, or future storage near the structures.  Nor do the values account for possible hydrostatic pressures resulting from groundwater seepage entering and ponding within  the  retained backfill materials.   As discussed  later, the walls should be provided with a drain system to allow for the dissipation of water.  Surcharge loads and  groundwater  pressures  should  be  considered  in  designing  any  structures  subjected  to  lateral pressures.  

 

 

Page 21: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

15

The on‐site Stratum I clays exhibit significant shrink/swell characteristics.  The use of clay soils as backfill against  the proposed  retaining  structures  is not  recommended.   These  soils  generally provide higher design  active  earthen  pressures,  as  indicated  above,  but may  also  exert  additional  active  pressures associated with swelling.  Controlling the moisture and density of these materials during placement will help  reduce  the  likelihood  and magnitude  of  future  active  pressures  due  to  swelling,  but  this  is  no guarantee.  BACKFILL COMPACTION   Placement and compaction of backfill behind the retaining walls will be critical, particularly at locations where  backfill  will  support  adjacent  near‐grade  foundations  and/or  flatwork.  If  the  backfill  is  not properly compacted in these areas, the adjacent foundations/flatwork can be subject to settlement.  To reduce potential settlement of adjacent foundations/flatwork, the backfill materials should be placed and compacted as recommended in the Select Fill section of this report.  Each lift or layer of the backfill should be  tested during  the backfilling operations  to document  the degree of compaction.   Within at least a 5‐ft  zone of  the wall backside, we  recommend  that  compaction be accomplished using hand‐guided compaction equipment capable of achieving the maximum density in a series of 3 to 5 passes.  DRAINAGE  The  use  of  drainage  systems  is  a  positive  design  step  toward  reducing  the  possibility  of  hydrostatic pressure acting against the retaining structures.  Drainage may be provided by the use of a drain trench and pipe.    The drain pipe  should  consist of  a  slotted, heavy duty,  corrugated polyethylene pipe  and should be  installed and bedded according  to  the manufacturer’s  recommendations.   The drain  trench should be  filled with gravel  (meeting the requirements of ASTM D 448 coarse concrete aggregate Size No. 57 or 67) and extend from the base of the structure to within 2 ft of the top of the structure.  The bottom  of  the  drain  trench  will  provide  an  envelope  of  gravel  around  the  pipe  with  minimum dimensions consistent with the pipe manufacturer’s recommendations.   The gravel should be wrapped with a suitable geotextile  fabric  (such as Mirafi 140N or equivalent)  to help minimize  the  intrusion of fine‐grained soil particles into the drain system.  The pipe should be sloped and equipped with clean‐out access fittings consistent with state‐of‐the‐practice plumbing procedures.  As  an  alternative  to  a  full‐height  gravel  drain  trench  behind  the  proposed  retaining  structures, consideration may  be  given  to  utilizing  a manufactured  geosynthetic material  for wall  drainage.    A number of products are available to control hydrostatic pressures acting on earth retaining structures, including Amerdrain (manufactured by American Wick Drain Corp.), Miradrain (manufactured by Mirafi, Inc.),  Enkadrain  (manufactured  by  American  Enka  Company),  and  Geotech  Insulated  Drainage  Panel (manufactured by Geotech Systems Corp.).   The geosynthetics are placed directly against the retaining structures and are hydraulically connected to the gravel envelope located at the base of the structures.  Weepholes may be provided along the length of the proposed retaining structures, if desired, in addition to  one  of  the  two  alternative  drainage  measures  presented  above.    Based  on  our  experience, weepholes,  as  the  only  drainage measure,  often  become  clogged with  time  and  do  not  provide  the required level of drainage from behind retaining structures.  We recommend that RKCI review the final retaining structure drainage design before construction. 

 

 

Page 22: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

16

RETAINING WALL FOOTINGS  Retaining wall footings may be designed using the following parameters.  

Bearing Material Allowable Bearing Capacity (psf) 

Coefficient of Sliding Friction 

Stratum I or II Clay  2,300  0.35 

Select Fill or Clayshale  3,000  0.55 

Stratum III Limestone  4,500  0.75 

 FOUNDATION CONSTRUCTION CONSIDERATIONS 

 SITE DRAINAGE  Drainage  is an  important key to the successful performance of any foundation.   Good surface drainage should be established prior  to and maintained after construction  to help prevent water  from ponding within or adjacent  to  the building  foundation and  to  facilitate  rapid drainage away  from  the building foundation.    Failure  to  provide  positive  drainage  away  from  the  structure  can  result  in  localized differential vertical movements in soil supported foundations and floor slabs (which can in turn result in cracking in the sheetrock partition walls, as well as improper operation of windows and doors).    Current ordinances, in compliance with the Americans with Disabilities Act (ADA), may dictate maximum slopes  for walks  and  drives  around  and  into  new  buildings.    These  slope  requirements  can  result  in drainage  problems  for  buildings  supported  on  expansive  soils.   We  recommend  that  the maximum permissible slope be provided away from the building on all sides.  Also  to  help  control  drainage  in  the  vicinity  of  the  structure,  we  recommend  that  roof/gutter downspouts  and  landscaping  irrigation  systems  not  be  located  adjacent  to  the  building  foundation.  Where  a  select  fill  overbuild  is  provided  outside  of  the  floor  slab/foundation  footprint,  the  surface should  be  sealed  with  an  impermeable  layer  (pavement  or  clay  cap)  to  reduce  infiltration  of  both irrigation  and  surface waters.    Careful  consideration  should  also  be  given  to  the  location  of water bearing utilities, as well as to provisions for drainage in the event of leaks in water bearing utilities.  All leaks should be immediately repaired.  Other drainage and subsurface drainage  issues are discussed  in the Expansive Soil‐Related Movements section of this report and under Pavement Construction Considerations.  SITE PREPARATION  Building areas and all areas  to  support  select  fill  should be  stripped of all vegetation,  loose  topsoil and large  rocks.    Tree  roots  greater  than  1  inch  in  diameter  should  be  grubbed  and  removed.   Any  voids resulting from removal of limestone boulders or tree roots should be backfilled with a suitable, compacted fill material,  free of organics, degradable material, and particles exceeding 4  inches  in  size.    In a highly expansive  clay  environment,  on‐site  clays  should  be  utilized.    Furthermore,  as  discussed  in  the Overexcavation and Select Fill Replacement section of this report, we recommend reducing expansive soil‐

 

 

Page 23: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

17

related movements  to  tolerable  limits. The building pad should extend at  least 5  ft beyond  the building footprint.  

Exposed  subgrades  should  be  thoroughly  proofrolled  in  order  to  locate weak,  compressible  zones.    A minimum  of  5  passes  of  a  fully‐loaded  dump  truck  or  a  similar  heavily‐loaded  piece  of  construction equipment  should  be  used  for  planning  purposes.    Proofrolling  operations  should  be  observed  by  the Geotechnical Engineer or their representative to document subgrade condition and preparation.  Weak or soft areas identified during proofrolling should be removed and replaced with suitable, compacted on‐site clays, free of organics, oversized materials, and degradable or deleterious materials.    

In areas where clays remain after stripping, the exposed subgrade should be moisture conditioned.   This should be done  after  completion of  the proofrolling operations  and  just prior  to  fill placement  and/or slab/foundation  construction.   Moisture  condition  is  performed  by  scarifying  to  a minimum  depth  of 6 inches and recompacting to a minimum of 95 percent of the maximum density determined from TxDOT, Tex‐114‐E, Compaction Test.  The moisture content of the subgrade should be maintained within the range of optimum moisture content to 3 percentage points above optimum moisture content until permanently covered.  

In areas of exposed competent and  intact  limestone rock subgrade, the subgrade shall be proofrolled  in order to locate and densify any weak compressible zones.  Scarification and moisture conditioning will not be required on competent and intact limestone rock.  

SELECT FILL  Materials used as select fill for final site grading preferably should be crushed stone or gravel aggregate.  We recommend that materials specified for use as select fill meet the gradation requirements of TxDOT 2004 Standard Specifications  for Construction and Maintenance of Highways, Streets and Bridges,  Item 247, Flexible Base, Type A, B, or C, Grades 1 through 3, and have a plasticity index between 7 and 20.  

Select  fill  should be placed  in  loose  lifts not exceeding 8  in.  in  thickness and  compacted  to at  least 95 percent of maximum density as determined by TxDOT, Tex‐113‐E, Compaction Test.  The moisture content of  the  fill  should be maintained within  the  range of 2 percentage points below  to 2 percentage points above the optimum moisture content until final compaction.   In areas where the select fill building pad  is  limited to 5 ft or  less an alternate select fill material may be considered.  Materials classified as GC, SC or other combination soils as classified according to the Unified Soil Classification System (USCS), may be considered satisfactory for use as select fill materials at this site.  Alternative  select  fill materials  shall  have  a maximum  liquid  limit  not  exceeding  40,  a  plasticity  index between 7 and 20, and a maximum particle size not exceeding 4  in. or one‐half  the  loose  lift  thickness, whichever  is smaller.    In addition,  if these materials are utilized, grain size analyses and Atterberg Limits must be performed during placement at a rate of one test each per 5,000 cubic yards of material due to the high degree of variability associated with pit‐run materials.   

If the above listed alternative materials are being considered for bidding purposes, the materials should be submitted to the Geotechnical Engineer for pre‐approval at a minimum of 10 working days or more prior to the bid date.   Failure to do so will be the responsibility of the contractor.   The contractor will also be responsible  for ensuring  that  the properties of all delivered alternate  select  fill materials are  similar  to 

 

 

Page 24: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

18

those of  the pre‐approved submittal.    It should also be noted  that when using alternative  fill materials, difficulties may be experienced with respect to moisture control during and subsequent to fill placement, as well as with erosion, particularly when exposed to inclement weather.  This may result in sloughing of beam trenches and/or pumping of the fill materials.  

Soils classified as CH, CL, MH, ML, SM, GM, OH, OL and Pt under the USCS are not considered suitable for use as select fill materials at this site.   The native soils at this site are not considered suitable for use as select fill materials.  

ON‐SITE ROCK FILL  

Consideration can be given to utilizing the excavated  limestone  for select  fill.   However, processing of the  excavated material will  be  required  to  reduce  the maximum  particle  size  to  4  in.    Furthermore, special care will be required during excavation activities to separate organics and any plastic clay seams encountered.    In  addition,  the  processed  material  must  meet  the  specifications  given  above  for alternative select fill materials.    If on‐site materials cannot be processed to meet the required criteria, imported select  fill materials should be utilized. The Stratum  IV clayshale  formation  is not considered suitable for use as select fill.   

SHALLOW FOUNDATION EXCAVATIONS  

Shallow  foundation  excavations  should  be  observed  by  the  Geotechnical  Engineer  or  their representative prior to placement of reinforcing steel and concrete.   This  is necessary to observe that the bearing soils at the bottom of the excavations are similar to those encountered  in our borings and that excessive  loose materials and water are not present  in the excavations.   If soft pockets of soil are encountered  in  the  foundation excavations,  they  should be  removed and  replaced with a  compacted non‐expansive fill material or lean concrete up to the design foundation bearing elevations.  

DRILLED PIERS  Each  drilled  pier  excavation must  be  examined  by  an  RKCI  representative  who  is  familiar with  the geotechnical aspects of the soil stratigraphy, the structural configuration, foundation design details and assumptions, prior to placing concrete.  This is to observe that:  

The  shaft  has  been  excavated  to  the  specified  dimensions  at  the  correct  depth established by the previously mentioned criteria; 

The shaft has been drilled plumb within specified tolerances along its total length; and 

Excessive cuttings, buildup and  soft, compressible materials have been  removed  from the bottom of the excavation. 

 Due to the presence of limestone, high‐powered, high‐torque drilling equipment should be anticipated for drilled pier construction at  this site.    It may be beneficial  for  the bidder  to perform  trial holes  to better anticipate the equipment utilized for construction.      

 

 

Page 25: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

19

Reinforcement and Concrete Placement  Reinforcing steel should be checked for size and placement prior to concrete placement.  Placement of concrete should be accomplished as soon as possible after excavation to reduce changes in the moisture content or the state of stress of the foundation materials.  No foundation element should be left open overnight without concreting.  Temporary Casing  Groundwater seepage was not observed  in the test borings at the time of our subsurface exploration.  However,  groundwater  seepage  and/or  side  sloughing  is  likely  to  be  encountered  at  the  time  of construction, depending on  climatic  conditions prevalent  at  the  time of  construction.   Therefore, we recommend that the bid documents require the foundation contractor to specify unit costs for different lengths of casing that may be required.  EXCAVATION SLOPING AND BENCHING  If utility trenches or other excavations extend to or below a depth of 5 ft below construction grade, the contractor or others shall be required to develop a trench safety plan to protect personnel entering the trench or  trench vicinity.   The collection of specific geotechnical data and  the development of such a plan, which could  include designs  for sloping and benching or various types of temporary shoring, are beyond  the  scope  of  the  current  study.    Any  such  designs  and  safety  plans  shall  be  developed  in accordance with current OSHA guidelines and other applicable industry standards.  EXCAVATION EQUIPMENT  Due  to  the  shallow nature of  the  surficial  soils  in part of  the  site, excavations at  this  site will  require removal of the underlying rock  formation, particularly  in the vicinity of the parking garage.   Rock may also  be  encountered  at  the  surface  in  some  areas  of  this  site.    Thus,  the  need  of  rock  excavation equipment should be anticipated for construction at this site.  Our boring logs are not intended for use in  determining  construction means  and methods  and may  therefore  be misleading  if  used  for  that purpose.   We  recommend  that  earth‐work  and  utility  contractors  interested  in  bidding  on  the work perform their own tests in the form of test pits to determine the quantities of the different materials to be excavated, as well as the preferred excavation methods and equipment for this site.   CRAWL SPACE CONSIDERATIONS  If the structurally suspended floor system described as Alternative No. 1 under the Floor Slab section of this report  is selected, several special design  issues should be considered for the resulting subfloor crawl space.  These issues are discussed below.  Ventilation  Observations by members of our firm of open crawl spaces have  indicated a need for adequate subfloor ventilation  for  suspended  floor  systems.    Such  ventilation  helps  promote  evaporation  of  subgrade moisture  which may  accumulate  in  spite  of  special  surface  and  subsurface  drainage  features.    As  a 

 

 

Page 26: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

20

minimum, free flowing passive vents may need to be installed along the perimeter beam to provide cross ventilation.    If  structural  configurations will  limit  the  free  flow of  air  through passive  vents,  forced  air, power vents should be installed.  All vents should be designed such that they will not allow the drainage of surface water into the crawl space.  Below Slab Utilities  A minimum clearance of 18 in. has been recommended between both the grade beams and floor slab and the  underlying  finished  subgrade  should  a  suspended  floor  system  be  employed.    Such  a minimum clearance is also recommended between the subgrade and any utilities which may be suspended from the underside of the floor.  This clearance will allow swell‐related subgrade movements without damaging the utilities.  It is recommended that the utility clearance not be provided by the addition of narrow trenches running  parallel  to  and  immediately  below  the  utilities,  unless  proper  slopes  and  drainage  outlets  are provided to prevent ponding of water in the trenches.  Drainage  As discussed throughout this report, positive drainage is a key factor in the long term performance of any foundation.  This is not only critical around the perimeter of the structure, but also in any subfloor crawl spaces.    In crawl areas, surface drainage should be established that will direct water away from and will prevent water from ponding adjacent to piers.  This positive drainage should be maintained both prior to and after construction.    Compaction control of  the backfill around  the perimeter of  the building  following  the placement of soil retainer blocks is critical to the drainage away from the building following construction. Materials for the backfill  around  the  perimeter  of  the  building  should  be  the  on‐site  clays.  These materials  should  be compacted in uniformly thin lifts (8‐inch maximum loose thickness) to at least 90 percent of the maximum dry density as determined by TxDOT Test Method TEX‐114‐E.  These clays should be placed and compacted at  optimum  to  plus  3  percent  above  optimum  moisture  content.  Compaction  by  hand  operated mechanical tampers will help to avoid damage to the soil retainer blocks. Following backfilling operations the soil retainer blocks should be checked to see that they have not been broken or collapsed during the compaction  operations.  Any  soil  retainer  blocks  that  are  broken  or  collapsed  should  be  repaired  or replaced.  UTILITIES  Utilities which project through slab‐on‐grade, slab‐on‐fill, or any other rigid unit should be designed with either  some  degree  of  flexibility  or with  sleeves.    Such  design  features will  help  reduce  the  risk  of damage to the utility lines as vertical movements occur.  Our experience  indicates  that  significant  settlement of backfill  can occur  in utility  trenches, particularly when trenches are deep, when backfill materials are placed in thick lifts with insufficient compaction, and when water can access and  infiltrate the trench backfill materials.   The potential for water to access the backfill  is  increased where water can  infiltrate  flexible base materials due  to  insufficient penetration of curbs, and at sites where geological features can  influence water migration  into utility trenches  (such as fractures within a rock mass or at contacts between rock and clay formations).  It is our belief that another 

 

 

Page 27: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

21

factor which can significantly impact settlement is the migration of fines within the backfill into the open voids in the underlying free‐draining bedding material.  To reduce the potential for settlement  in utility trenches, we recommend that consideration be given to the following:  

All backfill materials  should be placed and compacted  in controlled  lifts appropriate  for the type of backfill and the type of compaction equipment being utilized and all backfilling procedures should be tested and documented.  Trench backfill materials should be placed in loose lifts not exceeding 8 inches in thickness and compacted to at least 95 percent of maximum  density  as  determined  by  TxDOT,  Tex‐113‐E  or  Tex‐114‐E,  Compaction  Test.  The moisture content of  the  fill should be maintained within  the range of 2 percentage points  below  to  2  percentage  points  above  the  optimum  moisture  content  for  non‐cohesive soils and maintained within the range of optimum to 3 percentage points above optimum moisture content for cohesive soils until final compaction.  

Curbs should completely penetrate base materials and be installed to a sufficient depth to reduce water infiltration beneath the curbs into the pavement base materials. 

Consideration should be given to wrapping free‐draining bedding gravels with a geotextile fabric  (similar  to Mirafi  140N)  to  reduce  the  infiltration  and  loss  of  fines  from  backfill material into the interstitial voids in bedding materials. 

 PAVEMENT RECOMMENDATIONS 

 Recommendations for both flexible and rigid pavements are presented in this report.  The Owner and/or design team may select either pavement type depending on the performance criteria established for the project.    In general,  flexible pavement  systems have a  lower  initial  construction  cost as  compared  to rigid pavements.  However, maintenance requirements over the life of the pavement are typically much greater  for  flexible pavements.   This  typically  requires  regularly  scheduled observation and  repair, as well as overlays and/or other pavement  rehabilitation at approximately one‐half  to  two‐thirds of  the design life.  Rigid pavements are generally more "forgiving", and therefore tend to be more durable and require less maintenance after construction.  For either pavement type, drainage conditions will have a significant impact on long term performance, particularly  where  permeable  base  materials  are  utilized  in  the  pavement  section.  Drainage considerations are discussed in more detail in a subsequent section of this report.  SUBGRADE CONDITIONS  We  have  assumed  the  subgrade  in  pavement  areas will  consist  of  either  the  Stratum  I  or  II  clays, recompacted on‐site clays, placed and compacted as  recommended  in  the On‐Site Clay Fill  section of this  report,  or  Stratum  III  limestone.   Based  on  our  experience with  similar  subgrade  soils, we  have assigned a California Bearing Ratio  (CBR) value of 3  for use  in pavement  thickness design analyses  for native Stratum I and II clays and recompacted clay soils, and 7 for native limestone bedrock.      

 

 

Page 28: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

22

DESIGN INFORMATION  The following recommendations were prepared using the DARWin 3.1 software program which utilizes a procedure  based  on  the  1993  “Guide  for  the  Design  of  Pavement  Structures”  by  the  American Association of State Highway and Transportation Officials  (AASHTO).   The  following  recommendations were prepared assuming a 20‐yr design life and Equivalent Single Axle Loads (ESAL’s) of 20,000 for light duty  pavements  and  80,000  for  medium  duty  pavements.  This  traffic  frequency  is  approximately equivalent to 1 and 3 tractor‐trailer trucks per day  for a design period of 20 years  for  light and heavy duty pavements, respectively.  The Project Civil Engineer should review anticipated traffic loading and frequencies to verify that the assumed traffic  loading and frequency  is appropriate for the  intended use of the facility.  FLEXIBLE PAVEMENT  Flexible pavement sections recommended for this site are as listed in the table below:  

 

Layer Description 

Layer Thickness 

Light Duty Traffic  20,000 ESALs (parking areas) 

Heavy Duty Traffic   80,000 ESALs 

(entrances, driveways, and channelized traffic areas) 

  Type “D” Surface Course   2.0 in.   2.0 in. 

Clay Subgrade 

Flexible Base  10.0 in.   13.0 in. 

(CBR = 3)  Lime‐Treated Subgrade  8.0 in.   8.0 in. 

  Combined Total  20.0 in.  23.0 in. 

  Type “D” Surface Course    2.0 in.    2.0 in. 

Limestone Subgrade 

Flexible Base    7.0 in.     9.0 in.  

(CBR = 7)  Combined Total   9.0 in.  11.0 in. 

 Garbage Dumpsters  Where flexible pavements are constructed at any site, we recommend that reinforced concrete pads be provided  in front of and beneath trash receptacles.   The dumpster trucks,  if any, should be parked on the rigid pavement when the receptacles are lifted.  It  is suggested  that such pads also be provided  in drives where  the dumpster  trucks make  turns with small radii to access the receptacles.  The concrete pads at this site should be a minimum of 6 in. thick and reinforced with conventional steel reinforcing bars or welded wire mats.  RIGID PAVEMENT  We recommend that rigid pavements be considered in areas of channelized traffic, particularly in areas where truck or bus traffic is planned, and particularly where such traffic will make frequent turns, such 

 

 

Page 29: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

23

as described above  for garbage dumpster areas.   We recommend that rigid pavement sections at this site consist of the following:  

Traffic Type  Portland Cement Concrete 

Light Duty Traffic  5 in. 

Heavy Duty Traffic  6 in. 

 We recommend that the concrete pavements be reinforced with bar mats.  As a minimum, the bar mats should be No. 3  reinforcing bars spaced 18  in. on center  in both directions.   The concrete  reinforcing should be placed approximately 1/3 the slab thickness below the surface of the slab, but not less than 2 in.  The reinforcing should not extend across expansion joints.  Joints in concrete pavements aid in the construction and control the location and magnitude of cracks.  Where practical,  lay out  the construction, expansion, control and sawed  joints  to  form square panels, but not  to  exceed ACI  302.69 Code  recommendations.    The  ratio of  slab  length‐to‐width  should not exceed 1.25.  Maximum recommended joint spacings are 15 ft longitudinal and 15 ft transverse.  All control joints should be formed or sawed to a depth of at least 1/4 the thickness of the concrete slab.  Sawing of  control  joints  should begin  as  soon  as  the  concrete will not  ravel,  generally  the day  after placement.  Control joints may be hand formed or formed by using a premolded filler.  We recommend that all longitudinal and transverse construction joints be dowelled to promote load transfer.  Expansion joints are needed to separate the concrete slab  from  fixed objects such as drop  inlets,  light standards and buildings.   Expansion  joint  spacings are not  to exceed a maximum of 75  ft and no expansion or construction joints should be located in a swale or drainage collection locations.  If possible,  the pavement should develop a minimum slope of 0.015  ft/ft  to provide surface drainage.  Reinforced concrete pavement should cure a minimum of 3 and 7 days before allowing automobile and truck traffic, respectively.  

PAVEMENT CONSTRUCTION CONSIDERATIONS  SUBGRADE PREPARATION  Areas  to support pavements should be stripped of all vegetation and organic  topsoil and  the exposed subgrade should be proofrolled in accordance with the recommendations in the Site Preparation section under Foundation Construction Considerations.  After completion of the proofrolling operations and  just prior to  flexible base placement, the exposed subgrade should be moisture conditioned by scarifying to a minimum depth of 6 in. and recompacting to a  minimum  of  95  percent  of  the  maximum  density  determined  from  the  Texas  Department  of Transportation Compaction Test (TxDOT, Tex‐114‐E).   The moisture content of the subgrade should be maintained within the range of optimum moisture content to 3 percentage points above optimum until permanently covered.    

 

 

Page 30: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

24

DRAINAGE CONSIDERATIONS  As with any soil‐supported structure, the satisfactory performance of a pavement system  is contingent on  the  provision  of  adequate  surface  and  subsurface  drainage.    Insufficient  drainage  which  allows saturation of  the pavement  subgrade and/or  the  supporting granular pavement materials will greatly reduce the performance and service life of the pavement systems.  Surface  and  subsurface drainage  considerations  crucial  to  the performance of pavements  at  this  site include (but are not limited to) the following:  

1) Any  known natural or man‐made  subsurface  seepage  at  the  site which may occur  at sufficiently shallow depths as to influence moisture contents within the subgrade should be intercepted by drainage ditches or below grade French drains. 

2) Final  site  grading  should  eliminate  isolated  depressions  adjacent  to  curbs which may allow  surface  water  to  pond  and  infiltrate  into  the  underlying  soils.    Curbs  should completely  penetrate  base materials  and  should  be  installed  to  sufficient  depth  to reduce infiltration of water beneath the curbs. 

3) Pavement  surfaces  should  be  maintained  to  help  minimize  surface  ponding  and  to provide  rapid  sealing  of  any  developing  cracks.    These  measures  will  help  reduce infiltration of surface water downward through the pavement section. 

 ON‐SITE CLAY FILL  The pavement recommendations presented in this report were prepared assuming that on‐site soils will be used for fill grading in proposed pavement areas.  If used, we recommend that on‐site soils be placed in loose lifts not exceeding 8 inches in thickness and compacted to at least 95 percent of the maximum density  as  determined  by  TxDOT,  Tex‐114‐E.    The moisture  content  of  the  fill  should  be maintained within the range of optimum water content to 3 percentage points above the optimum water content until permanently  covered.   We  recommend  that  fill materials be  free of  roots  and other organic or degradable material.   We also recommend that the maximum particle size not exceed 4 in. or one half the lift thickness, whichever is smaller.  LIME TREATMENT OF SUBGRADE  Lime treatment of the subgrade soils, where utilized, should be in accordance with the TxDOT Standard Specifications, Item 260.  A sufficient quantity of hydrated lime should be mixed with the subgrade soils to reduce the soil‐lime mixture plasticity  index to 15 or  less.   For estimating purposes, we recommend that 6 percent  lime by weight be assumed  for  treatment.   For construction purposes, we recommend that the optimum lime content of the subgrade soils be determined by laboratory testing.  Lime‐treated subgrade soils should be compacted to a minimum of 95 percent of the maximum density at a moisture content within  the  range  of  optimum moisture  content  to  3 percentage  points  above  the  optimum moisture content as determined by Tex‐113‐E.  We recommend that lime treatment extend at least 3 ft beyond the curb.  If  lime  treatment  is  considered  as  a  method  to  improve  pavement  subgrade  conditions,  it  is  also recommended to perform additional laboratory testing to determine the concentration of soluble sulfates 

 

 

Page 31: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

25

in the subgrade soils, in order to investigate the potential for a recently reported adverse reaction to lime in certain sulfate‐containing soils.   The adverse reaction, referred  to as sulfate‐induced heave, has been known to cause cohesive subgrade soils to swell  in short periods of time, resulting  in pavement heaving and possible failure.  FLEXIBLE BASE COURSE  The  flexible  base  course  should  be  crushed  limestone  conforming  to  TxDOT  Standard  Specifications, Item 247, Type A, Grades 1 or 2.  Base course should be placed in lifts with a maximum thickness of 8 in. and compacted to a minimum of 100 percent of the maximum density at a moisture content within the range of 2 percentage points below  to 2 percentage points above  the optimum moisture  content as determined by Tex‐113‐E.  ASPHALTIC CONCRETE SURFACE COURSE  The asphaltic concrete surface course should conform to TxDOT Standard Specifications, Item 340, Type D.  The asphaltic  concrete  should be  compacted  to a minimum of 92 percent of  the maximum  theoretical specific  gravity  (Rice)  of  the  mixture  determined  according  to  Test  Method  Tex‐227‐F.  Pavement specimens, which shall be either cores or sections of asphaltic pavement, will be tested according to Test Method Tex‐207‐F.  The nuclear‐density gauge or other methods which correlate satisfactorily with results obtained  from  project  roadway  specimens  may  be  used  when  approved  by  the  Engineer.    Unless otherwise  shown on  the plans,  the Contractor  shall be  responsible  for obtaining  the  required  roadway specimens at their expense and in a manner and at locations selected by the Engineer.  PORTLAND CEMENT CONCRETE  The Portland cement concrete should be air entrained to result in a 4 percent plus/minus 1 percent air, should have a maximum slump of 5 inches, and should have a minimum 28‐day compressive strength of 4,000 psi.   A  liquid membrane‐forming curing compound  should be applied as  soon as practical after broom finishing the concrete surface.  The curing compound will help reduce the loss of water from the concrete.  The reduction in the rapid loss in water will help reduce shrinkage cracking of the concrete.  

CONSTRUCTION RELATED SERVICES   CONSTRUCTION MATERIALS TESTING AND OBSERVATION SERVICES  As presented in the attachment to this report, Important Information About Your Geotechnical Engineering Report, subsurface conditions can vary across a project site.   The conditions described  in this report are based on  interpolations derived  from a  limited number of data points.   Variations will be encountered during  construction,  and  only  the  geotechnical  design  engineer  will  be  able  to  determine  if  these conditions are different than those assumed for design.    Construction  problems  resulting  from  variations  or  anomalies  in  subsurface  conditions  are  among  the most prevalent on construction projects and often  lead  to delays, changes, cost overruns, and disputes.  These  variations  and  anomalies  can  best  be  addressed  if  the  geotechnical  engineer  of  record,  RKCI  is 

 

 

Page 32: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Project No. AAA16‐033‐00 June 30, 2016   

26

retained to perform construction observation and testing services during the construction of the project.  This is because:    

RKCI has an intimate understanding of the geotechnical engineering report’s findings and recommendations.    RKCI  understands  how  the  report  should  be  interpreted  and  can provide such interpretations on site, on the client’s behalf. 

RKCI knows what subsurface conditions are anticipated at the site. 

RKCI  is  familiar with  the  goals  of  the  owner  and  project  design  professionals,  having worked with them in the development of the geotechnical workscope.  This enables RKCI to  suggest  remedial measures  (when  needed)  which  help meet  the  owner’s  and  the design teams’ requirements. 

RKCI  has  a  vested  interest  in  client  satisfaction,  and  thus  assigns  qualified  personnel whose principal concern is client satisfaction.  This concern is exhibited by the manner in which contractors’ work is tested, evaluated and reported, and in selection of alternative approaches when such may become necessary. 

RKCI cannot be held accountable  for problems which  result due  to misinterpretation of our findings or recommendations when we are not on hand to provide the interpretation which is required. 

 BUDGETING FOR CONSTRUCTION TESTING  Appropriate budgets need to be developed for the required construction testing and observation activities.  At  the  appropriate  time before  construction, we  advise  that RKCI  and  the project designers meet  and jointly develop the testing budgets, as well as review the testing specifications as it pertains to this project.  Once  the construction  testing budget and  scope of work are  finalized, we encourage a preconstruction meeting with the selected contractor to review the scope of work to make sure  it  is consistent with the construction means and methods proposed by the contractor.   RKCI  looks forward to the opportunity to provide continued support on this project, and would welcome the opportunity to meet with the Project Team to develop both a scope and budget for these services.    

*    *    *    *    *    *    *    *    *    *    *    *    *    *    *    *    *    *  

 

 

Page 33: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

ATTACHMENTS 

 

 

Page 34: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

!?

!?

!?

!?

!?

!?

!? !?

!?

!?

!?

!?

!?

!?!?

!?

!?

Scofield Ridge Pkwy

Mopac

Servi

ce Ro

adN M

opac

Expy (T

oll roa

d)

BUILDING 1

BUILDING 2BUILDING 9BUILDING 8

BUILDING 6

BUILDING 5

BUILDING 4 BUILDING 3

BUILDING 7

B-9B-8

B-7

B-6

B-5

B-4

B-3

B-2B-1

P-3

P-2

P-1B-11

B-10

WQ-1

PL-2

PL-1

BORING LOCATION MAPTERRACES AT SCOFIELD RIDGE

AUSTIN, TEXAS

PROJECT No.:AAA16-033-00DRAWN BY:ISSUE DATE:

REVIEWED BY:CHECKED BY:

KRB06/21/2016

YGTRTS

NOTE: This Drawing is Provided for Illustration Only, May Not be to Scale and is Not Suitable for Design or Construction Purposes

µ

Austin §̈¦35

§̈¦35

£¤183

UV1

UV360

UV275

UV1325

Travis

Williamson

SITE LOCATION MAP

S I T E

FIGURE1TRAVIS

COUNTY

TBPE Firm Number 3257

8100 Cameron Road, Suite B-150Austin, Texas 78754(512)339-1745 TEL(512)339-6174 FAX

www.rkci.com

LEGEND!? BORING

PROPOSED STRUCTUREPROPOSED PAVEMENTPROPOSED STORMWATER AREAPROPOSED MULTI-LEVEL PARKING

0 10050FEET

1 INCH = 150 FEET

Page 35: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Stiff to Hard, Dark Brown,with calcareous nodules

- with sand and gravel below 2 ft

LIMESTONE, Hard to Moderately Hard,Fractured, Orange-Brown, with clay layers

LIMESTONE, Hard, Tan, with clay seams

Boring Terminated

45

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-1

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 787.5 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42937; W 97.69917

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/2/2016

DEP

TH, F

T

15.0 ft4/2/2016

AAA16-033-002

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

ref/1"

50/3"

ref/1"

ref/0"

Page 36: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Stiff, Dark Brown, withcalcareous nodules

LIMESTONE, Hard, Moderately Fractured,Orange-Brown, with chert seams and clayseams

Boring Terminated

49

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-2

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 789 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42937; W 97.69858

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/2/2016

DEP

TH, F

T

15.0 ft4/2/2016

AAA16-033-003

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

ref/0"

ref/3.5"

ref/2"

ref/2"

ref/2.5"

Page 37: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Stiff, Dark Brown

LIMESTONE, Hard, Moderately Fractured,Orange-Brown, with clay layers and seams

- decomposed above 5 ft

Boring Terminated

57

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

92

LOG OF BORING NO. B-3

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 785.5 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42870; W 97.69875

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/2/2016

DEP

TH, F

T

15.0 ft4/2/2016

AAA16-033-004

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

50/5"

ref/0"

ref/1"

ref/1"

Page 38: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Very Stiff, Dark Brown, withlimestone fragments

LIMESTONE, Hard, Highly Fractured, Tan toLight Brown, with clay seams

- stiff clay layer, 4 to 6 ft

Boring Terminated

49

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-4

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 785 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42907; W 97.69939

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/2/2016

DEP

TH, F

T

15.0 ft4/2/2016

AAA16-033-005

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

50/6"

ref/3"

ref/1"

ref/1"

Page 39: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Hard, Dark Brown, withlimestone fragments

LIMESTONE, Hard, Highly Fractured,Orange-Brown, with clay layers

- decomposed above 5 ft

LIMESTONE, Hard, Fractured, Tan

Boring Terminated

55

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-5

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 782 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42884; W 97.69999

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/2/2016

DEP

TH, F

T

15.0 ft4/2/2016

AAA16-033-006

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

50/3"

50/1"

ref/3"

ref/1"

ref/0"

Page 40: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

LIMESTONE, Hard, Highly Fractured, Tan,with clay layers and seams

- decomposed above 4 ft

Boring Terminated

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-6

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 778 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42858; W 97.70050

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/2/2016

DEP

TH, F

T

15.0 ft4/2/2016

AAA16-033-007

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

50/3"

50/2"

ref/1"

ref/0"

ref/3"

ref/1"

Page 41: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Hard, Dark Brown, withlimestone fragments

LIMESTONE, Hard, Fractured, with clay

CLAY (CH), Fat, Firm to Very Stiff, Brown,with calcareous nodules and ferrousstaining

- blocky, with gypsum deposits below 8 ft

Boring Terminated

40

54

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

88

LOG OF BORING NO. B-7

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 774 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.43001; W 97.69978

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/1/2016

DEP

TH, F

T

15.0 ft4/1/2016

AAA16-033-008

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

ref/6"

Page 42: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Very Stiff, Dark Brown

LIMESTONE, Hard, Highly Fractured, Tan,with clay layers and seams

- decomposed, 4 to 7 ft

Boring Terminated

58

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-8

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 790 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42983; W 97.69911

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/2/2016

DEP

TH, F

T

15.0 ft4/2/2016

AAA16-033-009

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

ref/0"

50/6"

50/1"

ref/2"

ref/1"

Page 43: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Hard, Dark Brown, withroots

LIMESTONE, Hard, Highly Weathered,Light Tan, with clay layers

- moderately hard above 3 ft

CLAY (CH), Fat, Hard, Light Brown toGray-Brown

Boring Terminated

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-9

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 789 ft

Straight Flight Auger

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42994; W 97.69936

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry6/10/2016

DEP

TH, F

T

20.0 ft6/10/2016

AAA16-033-0010

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

ref/6"

ref/0"

ref/0"

ref/0"

Page 44: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Very Stiff to Stiff, DarkBrown to Light Brown

CLAY (CH), Fat, Blocky, Hard, Gray-Brown

CLAYSHALE, Soft to Moderately Hard, Gray

Boring Terminated

55

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

94

LOG OF BORING NO. B-10

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 773 ft

Straight Flight Auger

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.43011; W 97.69977

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry6/10/2016

DEP

TH, F

T

25.0 ft6/10/2016

AAA16-033-0011

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

8

Page 45: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Very Stiff, Dark Brown, withlimestone fragments

LIMESTONE, Hard, Tan, Highly Weathered

CLAY (CH), Fat, Very Stiff to Hard,Gray-Brown

- orange-brown, soft, calcareous clay above4 ft

- gravel layers, 4 to 6 ft- with gypsum, 6 to 8 ft

- blocky below 12 ft

Boring Terminated

61

41

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. B-11

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 772 ft

Straight Flight Auger

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42978; W 97.69993

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry6/10/2016

DEP

TH, F

T

20.0 ft6/10/2016

AAA16-033-0012

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

Page 46: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

103103

108

115

CLAY (CH), Fat, Stiff, Brown, with traces ofgravel

LIMESTONE, Hard

CLAY (CH), Fat, Hard, Blocky, Marly, Grayand Brown, with calcareous nodules

CLAYSHALE, Soft to Moderately Hard, Gray

REC: 73%RQD: 57%

REC: 98%RQD: 28%UC = 6.3 tsf

REC: 98%RQD: 98%

UC = 10 tsf

56

49

54

LOG OF BORING NO. PL-1

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 773 ft

Mud Rotary & NX Core

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42928; W 97.70023

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry3/31/2016

DEP

TH, F

T

50.0 ft3/31/2016

AAA16-033-0013a

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

ref/0"

Page 47: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAYSHALE, Soft to Moderately Hard, Gray(continued)

DRILLERS NOTE: no core due to highlyweathered, highly fractured, soft shale

Boring Terminated

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. PL-1

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 773 ft

Mud Rotary & NX Core

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42928; W 97.70023

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

45

50

55

60

65

70

75

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry3/31/2016

DEP

TH, F

T

50.0 ft3/31/2016

AAA16-033-0013b

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

ref/6"

ref/4"

Page 48: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

109

109

TOPSOIL (6-inches)LIMESTONE, Hard, Highly Fractured, Light

Tan to Brown, with clay seams- decomposed above 2 ft

REC: 72%RQD: 0%

REC: 38%RQD: 10%CLAYSHALE, Soft to Moderately Hard, Gray

- very soft above 15 ft

- hard, 15 to 30 ftREC: 17%RQD: 8%

REC: 75%RQD: 75%UC = 8.0 tsf

REC: 57%RQD: 33%

REC: 85%RQD: 72%

UC = 6.6 tsf

38

LOG OF BORING NO. PL-2

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 785 ft

Mud Rotary & NX Core

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42949; W 97.69964

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry3/31/2016

DEP

TH, F

T

50.0 ft3/31/2016

AAA16-033-0014a

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

50/4"

ref/4"

ref/1"

41

Page 49: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

118

CLAYSHALE, Soft to Moderately Hard, Gray(continued)

REC: 92%RQD: 62%

REC: 88%RQD: 43%UC = 6.7 tsf

Boring Terminated

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. PL-2

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 785 ft

Mud Rotary & NX Core

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42949; W 97.69964

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

45

50

55

60

65

70

75

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry3/31/2016

DEP

TH, F

T

50.0 ft3/31/2016

AAA16-033-0014b

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

Page 50: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Hard, Dark Brown, withcalcareous deposits

LIMESTONE, Hard, Moderately Fractured,Tan

Boring Terminated

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. P-1

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 793 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42962; W 97.69828

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/2/2016

DEP

TH, F

T

5.0 ft4/2/2016

AAA16-033-0015

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

ref/1"

Page 51: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Stiff, Dark Brown, withcalcareous nodules

LIMESTONE, Moderately Hard, HighlyFractured, Orange-Brown, with clay layers

Boring Terminated

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. P-2

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 782.5 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42859; W 97.69947

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/1/2016

DEP

TH, F

T

6.0 ft4/1/2016

AAA16-033-0016

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

50/3.5"

ref/2.5"

Page 52: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Hard, Dark BrownLIMESTONE, Soft to Moderately Hard,

Highly Fractured, Brown to Gray, with claylayers

CLAY (CH), Hard, Brown and Light Gray,with brown clayey sand seams

Boring Terminated

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. P-3

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 773 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42956; W 97.70000

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/1/2016

DEP

TH, F

T

5.0 ft4/1/2016

AAA16-033-0017

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

50/9"

50/2.5"

Page 53: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

CLAY (CH), Fat, Stiff, Dark Brown, withcalcareous nodules

CLAY (CH), Fat, Very Stiff to Hard, Brown toGray, with limestone fragments

- sandy, with ferrous deposits and marlyseams below 6 ft

Boring Terminated

39

48

NOTES:1. Groundwater not encountered during

drilling operations.2. Borehole was backfilled with auger

cuttings.

LOG OF BORING NO. WQ-1

PLA

STIC

ITY

IND

EX

SURFACE ELEVATION: 765 ft

Air Rotary

% -2

00

DRILLINGMETHOD: LOCATION:

PLASTICLIMIT

LIQUIDLIMIT

WATERCONTENT

BLO

WS

PER

FT

10 20 30 40 50 60 70 80

DESCRIPTION OF MATERIAL0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

SHEAR STRENGTH, TONS/FT2

UN

IT D

RYW

EIG

HT,

pcf

N 30.42986; W 97.70015

NO

TE: T

HES

E LO

GS

SHO

ULD

NO

T BE

USE

D S

EPAR

ATEL

Y FR

OM

TH

E PR

OJE

CT R

EPO

RT

DEPTH DRILLED:DATE DRILLED:

DEPTH TO WATER:DATE MEASURED:

5

10

15

20

25

30

35

SYM

BOL

SAM

PLES

Terraces at Scofield RidgeAustin, Texas

Dry4/2/2016

DEP

TH, F

T

10.0 ft4/2/2016

AAA16-033-0018

PROJ. No.:FIGURE:

TBPE Firm Registration No. F-3257

Page 54: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

PROJECT NO. AAA16-033-00

CLAY-SHALE

SAMPLE TYPES

NO INFORMATION

BLANK PIPE

ASPHALT

IGNEOUS

LIMESTONE

FILL

GEOPROBESAMPLER

TEXAS CONEPENETROMETER

DISTURBED

METAMORPHIC

MARL

MUDROTARY

NORECOVERY SPLIT BARREL

SPLIT SPOONNX CORE

SHELBY TUBE

CALCAREOUS

CLAY

CLAYEY

GRAVEL

GRAVELLY

WELL CONSTRUCTION AND PLUGGING MATERIALS

SILTSTONE

CALICHE

CONGLOMERATE

AIRROTARY

GRABSAMPLE

DOLOMITE

BENTONITE

CORE

SOIL TERMS OTHER

NOTE: VALUES SYMBOLIZED ON BORING LOGS REPRESENT SHEARSTRENGTHS UNLESS OTHERWISE NOTED

BASE

KEY TO TERMS AND SYMBOLS

CUTTINGS

SAND

SANDY

SILT

SILTY

CHALK

STRENGTH TEST TYPES

CEMENT GROUT GRAVEL

SAND

POCKET PENETROMETER

TORVANE

UNCONFINED COMPRESSION

TRIAXIAL COMPRESSIONUNCONSOLIDATED-UNDRAINED

TRIAXIAL COMPRESSIONCONSOLIDATED-UNDRAINED

BRICKS /PAVERS

SCREEN

MATERIAL TYPES

VOLCLAY

SANDSTONE

SHALE

ROCK TERMS

WASTE

CONCRETE/CEMENT

PEAT

BENTONITE &CUTTINGS

CONCRETE/CEMENT

CLAYSTONE

ROTOSONIC-DAMAGED

ROTOSONIC-INTACT

PITCHER

FIGURE 19aREVISED 04/2012

Page 55: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

PROJECT NO. AAA16-033-00

KEY TO TERMS AND SYMBOLS (CONT'D)

TERMINOLOGY

RELATIVE DENSITY PLASTICITYCOHESIVE STRENGTH

PenetrationResistance

Blows per ftDegree ofPlasticity

PlasticityIndex

RelativeDensity

ResistanceBlows per ft

0

4

10

30

-

-

-

-

>

4

10

30

50

50

Very Loose

Loose

Medium Dense

Dense

Very Dense

ConsistencyCohesion

TSF

-

-

-

-

>

-

-

-

-

-

>

Benzene

Toluene

Ethylbenzene

Total Xylenes

Total BTEX

Total Petroleum Hydrocarbons

Not Detected

Not Analyzed

Not Recorded/No Recovery

Organic Vapor Analyzer

Parts Per Million

2

4

8

15

30

30

Very Soft

Soft

Firm

Stiff

Very Stiff

Hard

0

2

4

8

15

0

0.125

0.25

0.5

1.0

-

-

-

-

-

>

0.125

0.25

0.5

1.0

2.0

2.0

0

5

10

20

5

10

20

40

40

None

Low

Moderate

Plastic

Highly Plastic

=

=

=

=

=

=

=

=

=

=

=

ABBREVIATIONS

Qam, Qas, Qal

Qat

Qbc

Qt

Qao

Qle

Q-Tu

Ewi

Emi

Mc

EI

Kknm

Kpg

Kau

=

=

=

=

=

=

=

=

=

=

=

=

=

=

Kef

Kbu

Kdr

Kft

Kgt

Kep

Kek

Kes

Kew

Kgr

Kgru

Kgrl

Kh

Quaternary Alluvium

Low Terrace Deposits

Beaumont Formation

Fluviatile Terrace Deposits

Seymour Formation

Leona Formation

Uvalde Gravel

Wilcox Formation

Midway Group

Catahoula Formation

Laredo Formation

Navarro Group and MarlbrookMarl

Pecan Gap Chalk

Austin Chalk

=

=

=

=

=

=

=

=

=

=

=

=

=

Eagle Ford Shale

Buda Limestone

Del Rio Clay

Fort Terrett Member

Georgetown Formation

Person Formation

Kainer Formation

Escondido Formation

Walnut Formation

Glen Rose Formation

Upper Glen Rose Formation

Lower Glen Rose Formation

Hensell Sand

B

T

E

X

BTEX

TPH

ND

NA

NR

OVA

ppm

Terms used in this report to describe soils with regard to their consistency or conditions are in general accordance with thediscussion presented in Article 45 of SOILS MECHANICS IN ENGINEERING PRACTICE, Terzaghi and Peck, John Wiley & Sons, Inc.,1967, using the most reliable information available from the field and laboratory investigations. Terms used for describing soilsaccording to their texture or grain size distribution are in accordance with the UNIFIED SOIL CLASSIFICATION SYSTEM, as describedin American Society for Testing and Materials D2487-06 and D2488-00, Volume 04.08, Soil and Rock; Dimension Stone;Geosynthetics; 2005.

The depths shown on the boring logs are not exact, and have been estimated to the nearest half-foot. Depth measurements maybe presented in a manner that implies greater precision in depth measurement, i.e 6.71 meters. The reader should understandand interpret this information only within the stated half-foot tolerance on depth measurements.

FIGURE 19bREVISED 04/2012

Page 56: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

PROJECT NO. AAA16-033-00

KEY TO TERMS AND SYMBOLS (CONT'D)

TERMINOLOGY

SOIL STRUCTURE

SAMPLING METHODS

Having planes of weakness that appear slick and glossy.Containing shrinkage or relief cracks, often filled with fine sand or silt; usually more or less vertical.Inclusion of material of different texture that is smaller than the diameter of the sample.Inclusion less than 1/8 inch thick extending through the sample.Inclusion 1/8 inch to 3 inches thick extending through the sample.Inclusion greater than 3 inches thick extending through the sample.Soil sample composed of alternating partings or seams of different soil type.Soil sample composed of alternating layers of different soil type.Soil sample composed of pockets of different soil type and layered or laminated structure is not evident.Having appreciable quantities of carbonate.Having more than 50% carbonate content.

SlickensidedFissuredPocketPartingSeamLayerLaminatedInterlayeredIntermixedCalcareousCarbonate

RELATIVELY UNDISTURBED SAMPLING

NOTE: To avoid damage to sampling tools, driving is limited to 50 blows during or after seating interval.

STANDARD PENETRATION TEST (SPT)

Cohesive soil samples are to be collected using three-inch thin-walled tubes in general accordance with the Standard Practicefor Thin-Walled Tube Sampling of Soils (ASTM D1587) and granular soil samples are to be collected using two-inch split-barrelsamplers in general accordance with the Standard Method for Penetration Test and Split-Barrel Sampling of Soils (ASTMD1586). Cohesive soil samples may be extruded on-site when appropriate handling and storage techniques maintain sampleintegrity and moisture content.

Description

25 blows drove sampler 12 inches, after initial 6 inches of seating.50 blows drove sampler 7 inches, after initial 6 inches of seating.50 blows drove sampler 3 inches during initial 6-inch seating interval.

Blows Per Foot

2550/7"Ref/3"

FIGURE 19c

A 2-in.-OD, 1-3/8-in.-ID split spoon sampler is driven 1.5 ft into undisturbed soil with a 140-pound hammer free falling 30 in.After the sampler is seated 6 in. into undisturbed soil, the number of blows required to drive the sampler the last 12 in. is theStandard Penetration Resistance or "N" value, which is recorded as blows per foot as described below.

REVISED 04/2012

SPLIT-BARREL SAMPLER DRIVING RECORD

Page 57: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

B-1 0.0 to 2.0 30 1.00 PP

2.0 to 4.0 13 64 19 45 CH 2.25 PP

4.5 to 4.6 ref/1" 7

6.5 to 7.3 50/3" 7

8.5 to 8.6 ref/1" 4

13.5 to 13.5 ref/0" 5

B-2 0.0 to 2.0 34 68 19 49 CH 1.00 PP

2.5 to 2.6 ref/0" 3

4.5 to 4.8 ref/3.5" 5

6.5 to 6.7 ref/2" 6

8.5 to 8.7 ref/2" 4

13.5 to 13.7 ref/2.5" 5

B-3 0.0 to 2.0 37 1.00 PP

2.0 to 4.0 36 80 23 57 CH 92 1.00 PP

4.5 to 5.4 50/5" 7

6.5 to 6.6 ref/0" 7

8.5 to 8.6 ref/1" 7

13.5 to 13.6 ref/1" 8

B-4 0.0 to 2.0 29 70 21 49 CH 1.15 PP

2.5 to 3.1 50/6" 3

4.0 to 6.0 11 1.00 PP

6.5 to 6.8 ref/3" 8

8.5 to 8.6 ref/1" 4

13.5 to 13.6 ref/1" 4

B-5 0.0 to 2.0 29 72 17 55 CH 2.25 PP

2.5 to 3.3 50/3" 6

4.5 to 5.1 50/1" 9

6.5 to 6.8 ref/3" 7

8.5 to 8.6 ref/1" 4

13.5 to 13.5 ref/0" 4

B-6 0.5 to 1.3 50/3" 4

2.5 to 3.2 50/2" 4

4.5 to 4.6 ref/1" 6

6.5 to 6.5 ref/0" 5

8.5 to 8.8 ref/3" 5

13.5 to 13.6 ref/1" 5

B-7 0.0 to 2.0 23 2.25 PP

2.5 to 3.0 ref/6" 11

4.0 to 6.0 18 0.50 PP

PlasticityIndex

LiquidLimit

PP = Pocket Penetrometer TV = Torvane UC = Unconfined Compression FV = Field Vane

PlasticLimit

WaterContent

(%)

Dry UnitWeight

(pcf)

PROJECT NAME:

FILE NAME: AAA16-033-00.GPJ

USCS % -200Sieve

ShearStrength

(tsf)

StrengthTest

BoringNo.

6/30/2016

UU = Unconsolidated Undrained Triaxial

SampleDepth

(ft)

CU = Consolidated Undrained Triaxial

Terraces at Scofield RidgeAustin, Texas

RESULTS OF SOIL SAMPLE ANALYSES

Blowsper ft

FIGURE 20a

PROJECT NO. AAA16-033-00

Page 58: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

B-7 6.0 to 8.0 19 53 13 40 CH 88 1.75 PP

8.0 to 10.0 24 1.00 PP

13.0 to 15.0 18 76 22 54 CH 2.25 PP

B-8 0.0 to 2.0 26 81 23 58 CH 2.00 PP

2.5 to 2.5 ref/0" 7

4.5 to 5.5 50/6" 10

6.5 to 7.1 50/1" 6

8.5 to 8.7 ref/2" 5

13.5 to 13.6 ref/1" 5

B-9 0.0 to 2.0 36 2.25 PP

2.5 to 3.0 ref/6" 7

4.5 to 4.6 ref/0" 7

6.5 to 6.6 ref/0" 4

8.5 to 8.6 ref/0" 3

13.0 to 15.0 9 2.25 PP

18.0 to 20.0 16 2.25 PP

B-10 0.0 to 2.0 19 1.50 PP

2.5 to 4.0 8 23

4.0 to 6.0 21 74 19 55 CH 2.00 PP

6.0 to 8.0 19 94 2.25 PP

8.0 to 10.0 16 2.25 PP

13.0 to 15.0 19 2.25 PP

18.0 to 20.0 19 2.25 PP

23.0 to 25.0 15 2.25 PP

B-11 0.0 to 2.0 32 1.40 PP

2.0 20

3.0 to 4.0 0.25 PP

4.0 to 6.0 18 1.15 PP

6.0 to 8.0 16 81 20 61 CH 2.00 PP

8.0 to 10.0 18 2.00 PP

13.0 to 15.0 16 58 17 41 CH 2.25 PP

18.0 to 20.0 20 2.25 PP

PL-1 0.0 to 2.0 25 1.75 PP

2.5 to 2.6 ref/0"

4.0 to 6.0 12 2.25 PP

6.0 to 8.0 21 76 20 56 CH 103 2.84 UC

8.0 to 10.0 14 2.25 PP

13.0 to 15.0 18 2.25 PP

18.0 to 20.0 13 67 18 49 CH 2.25 PP

PlasticityIndex

LiquidLimit

PP = Pocket Penetrometer TV = Torvane UC = Unconfined Compression FV = Field Vane

PlasticLimit

WaterContent

(%)

Dry UnitWeight

(pcf)

PROJECT NAME:

FILE NAME: AAA16-033-00.GPJ

USCS % -200Sieve

ShearStrength

(tsf)

StrengthTest

BoringNo.

6/30/2016

UU = Unconsolidated Undrained Triaxial

SampleDepth

(ft)

CU = Consolidated Undrained Triaxial

Terraces at Scofield RidgeAustin, Texas

RESULTS OF SOIL SAMPLE ANALYSES

Blowsper ft

FIGURE 20b

PROJECT NO. AAA16-033-00

Page 59: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

PL-1 23.0 to 25.0 18 74 20 54 CH 2.25 PP

25.0 to 30.0

30.0 to 35.0 108

35.0 to 40.0 115

45.0 to 45.5 ref/6"

49.7 to 50.0 ref/4"

PL-2 0.5 to 1.3 50/4" 3

2.5 to 2.8 ref/4" 5

4.5 to 4.6 ref/1" 4

5.0 to 10.0

10.0 to 15.0

15.0 to 20.0

20.0 to 21.5 41 21 53 15 38 CH

25.0 to 30.0 109

30.0 to 35.0

35.0 to 40.0 109

40.0 to 45.0

45.0 to 50.0 118

P-1 0.0 to 2.0 15 2.25 PP

2.0 to 3.0 23 2.25 PP

3.5 to 3.6 ref/1" 6

P-2 0.0 to 2.0 32 1.00 PP

2.5 to 3.3 50/3.5" 5

4.5 to 4.7 ref/2.5" 6

P-3 0.0 to 0.5 26 2.25 PP

0.5 to 1.8 50/9" 5

2.5 to 3.2 50/2.5" 4

4.0 to 5.0 11 2.25 PP

WQ-1 0.0 to 2.0 30 58 19 39 CH 0.75 PP

2.0 to 4.0 18 1.25 PP

4.0 to 6.0 18 63 15 48 CH 2.25 PP

6.0 to 8.0 18 2.25 PP

8.0 to 10.0 20 2.25 PP

PlasticityIndex

LiquidLimit

PP = Pocket Penetrometer TV = Torvane UC = Unconfined Compression FV = Field Vane

PlasticLimit

WaterContent

(%)

Dry UnitWeight

(pcf)

PROJECT NAME:

FILE NAME: AAA16-033-00.GPJ

USCS % -200Sieve

ShearStrength

(tsf)

StrengthTest

BoringNo.

6/30/2016

UU = Unconsolidated Undrained Triaxial

SampleDepth

(ft)

CU = Consolidated Undrained Triaxial

Terraces at Scofield RidgeAustin, Texas

RESULTS OF SOIL SAMPLE ANALYSES

Blowsper ft

FIGURE 20c

PROJECT NO. AAA16-033-00

Page 60: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

0.0010.010.1110100

57

fine

HYDROMETERU.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS

30 40 501.5

GRAIN SIZE IN MILLIMETERS

41 3/4

   

   

   

   

   

80

%Sand

2006 810 141/23/8 3

PER

CEN

T FINER

 BY WEIGHT

coarse fine coarse medium

6

   

   

   

6.2

6.9

40.5

15.0

   

   

CuPI CcLL PL

60

%Gravel

16 20 1001403 2

COBBLESGRAVEL SAND

SILT OR CLAY

4

53.3

76.8

%Silt %Clay

B‐10

B‐3

B‐10

B‐3

GRAIN SIZE DISTRIBUTION

23

Specimen Identification

Specimen Identification

Classification

D10D30

6.0

2.0

D60D100

0.0

1.3

0.01

0.002

4.75

9.5

6.0

2.0 FAT CLAY(CH)

TBPE Firm Registration No. F‐3257Terraces at Scofield Ridge

Austin, Texas

8100 Cameron RoadSuite B‐150

Austin, Texas 78754(512) 339‐1745

(512) 339‐6174 faxwww.rkci.com

R-K

GR

AIN

SIZ

E

AA

A16

-033

-00.

GP

J R

KC

I.G

DT

6/

29/1

6

FIGURE 21

Page 61: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Geotechnical-Engineering Report

Geotechnical Services Are Performed for Specific Purposes, Persons, and ProjectsGeotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical-engineering study conducted for a civil engineer may not fulfill the needs of a constructor — a construction contractor — or even another civil engineer. Because each geotechnical- engineering study is unique, each geotechnical-engineering report is unique, prepared solely for the client. No one except you should rely on this geotechnical-engineering report without first conferring with the geotechnical engineer who prepared it. And no one — not even you — should apply this report for any purpose or project except the one originally contemplated.

Read the Full ReportSerious problems have occurred because those relying on a geotechnical-engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

Geotechnical Engineers Base Each Report on a Unique Set of Project-Specific FactorsGeotechnical engineers consider many unique, project-specific factors when establishing the scope of a study. Typical factors include: the client’s goals, objectives, and risk-management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical-engineering report that was:• not prepared for you;• not prepared for your project;• not prepared for the specific site explored; or• completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical-engineering report include those that affect: • the function of the proposed structure, as when it’s changed

from a parking garage to an office building, or from a light-industrial plant to a refrigerated warehouse;

• the elevation, configuration, location, orientation, or weight of the proposed structure;

• the composition of the design team; or• project ownership.

As a general rule, always inform your geotechnical engineer of project changes—even minor ones—and request an

assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

Subsurface Conditions Can ChangeA geotechnical-engineering report is based on conditions that existed at the time the geotechnical engineer performed the study. Do not rely on a geotechnical-engineering report whose adequacy may have been affected by: the passage of time; man-made events, such as construction on or adjacent to the site; or natural events, such as floods, droughts, earthquakes, or groundwater fluctuations. Contact the geotechnical engineer before applying this report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

Most Geotechnical Findings Are Professional OpinionsSite exploration identifies subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ — sometimes significantly — from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide geotechnical-construction observation is the most effective method of managing the risks associated with unanticipated conditions.

A Report’s Recommendations Are Not FinalDo not overrely on the confirmation-dependent recommendations included in your report. Confirmation-dependent recommendations are not final, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual subsurface conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report’s confirmation-dependent recommendations if that engineer does not perform the geotechnical-construction observation required to confirm the recommendations’ applicability.

A Geotechnical-Engineering Report Is Subject to MisinterpretationOther design-team members’ misinterpretation of geotechnical-engineering reports has resulted in costly

Important Information about This

Subsurface problems are a principal cause of construction delays, cost overruns, claims, and disputes.

While you cannot eliminate all such risks, you can manage them. The following information is provided to help.

Page 62: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

problems. Confront that risk by having your geo technical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team’s plans and specifications. Constructors can also misinterpret a geotechnical-engineering report. Confront that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing geotechnical construction observation.

Do Not Redraw the Engineer’s LogsGeotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical-engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognize that separating logs from the report can elevate risk.

Give Constructors a Complete Report and GuidanceSome owners and design professionals mistakenly believe they can make constructors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give constructors the complete geotechnical-engineering report, but preface it with a clearly written letter of transmittal. In that letter, advise constructors that the report was not prepared for purposes of bid development and that the report’s accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure constructors have sufficient time to perform additional study. Only then might you be in a position to give constructors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

Read Responsibility Provisions CloselySome clients, design professionals, and constructors fail to recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their reports. Sometimes labeled “limitations,” many of these provisions indicate where geotechnical engineers’ responsibilities begin and end, to help

others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

Environmental Concerns Are Not Covered The equipment, techniques, and personnel used to perform an environmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical-engineering report does not usually relate any environmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own environmental information, ask your geotechnical consultant for risk-management guidance. Do not rely on an environmental report prepared for someone else.

Obtain Professional Assistance To Deal with MoldDiverse strategies can be applied during building design, construction, operation, and maintenance to prevent significant amounts of mold from growing on indoor surfaces. To be effective, all such strategies should be devised for the express purpose of mold prevention, integrated into a comprehensive plan, and executed with diligent oversight by a professional mold-prevention consultant. Because just a small amount of water or moisture can lead to the development of severe mold infestations, many mold- prevention strategies focus on keeping building surfaces dry. While groundwater, water infiltration, and similar issues may have been addressed as part of the geotechnical- engineering study whose findings are conveyed in this report, the geotechnical engineer in charge of this project is not a mold prevention consultant; none of the services performed in connection with the geotechnical engineer’s study were designed or conducted for the purpose of mold prevention. Proper implementation of the recommendations conveyed in this report will not of itself be sufficient to prevent mold from growing in or on the structure involved.

Rely, on Your GBC-Member Geotechnical Engineer for Additional AssistanceMembership in the Geotechnical Business Council of the Geoprofessional Business Association exposes geotechnical engineers to a wide array of risk-confrontation techniques that can be of genuine benefit for everyone involved with a construction project. Confer with you GBC-Member geotechnical engineer for more information.

8811 Colesville Road/Suite G106, Silver Spring, MD 20910Telephone: 301/565-2733 Facsimile: 301/589-2017

e-mail: [email protected] www.geoprofessional.org

Copyright 2015 by Geoprofessional Business Association (GBA). Duplication, reproduction, or copying of this document, or its contents, in whole or in part, by any means whatsoever, is strictly prohibited, except with GBA’s specific written permission. Excerpting, quoting, or otherwise extracting wording from this document

is permitted only with the express written permission of GBA, and only for purposes of scholarly research or book review. Only members of GBA may use this document as a complement to or as an element of a geotechnical-engineering report. Any other firm, individual, or other entity that so uses this document without

being a GBA member could be commiting negligent or intentional (fraudulent) misrepresentation.

Page 63: GEOTECHNICAL ENGINEERING STUDY FOR · 2017. 11. 1. · Yvonne Garcia Thomas, P.E. Gabriel Ornelas, Jr., P.E., PMP 06/30/2016 Geotechnical Engineering Manager Vice President GO/YGT:

Austin, TX

Brownsville, TX

Corpus Christi , TX

Dallas , TX

El Paso, TX

Houston, TX

McAllen, TX

Mexico

Salt Lake City, UT

San Antonio, TX

CONSULTANTS • ENVIRONMENTAL • FACILITIES • INFRASTRUCTURE

R A B A K I S T N E R