geostatistics for modeling of soil spatial variability in ...bakerjw/publications/baker_(2006... ·...

12
1 Eidgenossische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich Institute of Structural Engineering Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability in Adapazari, Turkey Jack W. Baker Michael H. Faber Institute of Structural Engineering (IBK) Group Risk and Safety ETH - Zürich Eidgenossische Technische Hochschule Zürich Swiss Federal Institute of Technology Zürich Institute of Structural Engineering Group Risk and Safety 2 Practical evaluation of liquefaction occurrence Obtained from empirical observations Useful for practical evaluations Applied only at single locations (from Seed et al.) An approach is proposed here for incorporating spatial dependence of soil properties to evaluate the potential spatial extent of liquefaction

Upload: others

Post on 13-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

1

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

1

Geostatistics for modeling of soil spatial variability in Adapazari, Turkey

Jack W. BakerMichael H. Faber

Institute of Structural Engineering (IBK)Group Risk and Safety

ETH - Zürich

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

2

Practical evaluation of liquefaction occurrence

• Obtained from empirical observations

• Useful for practical evaluations

• Applied only at single locations

(from Seed et al.)

An approach is proposed here for incorporating spatial dependence of soil properties to evaluate the potential spatial extent of liquefaction

Page 2: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

2

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

3

Proposed procedure for evaluating liquefaction extent

Note that soil property values may be available for a few locations

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

4

A demonstration site in Adapazari, Turkey

Page 3: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

3

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

5

Sampled N1,60 values near the demonstration site in Adapazari, Turkey

Test site Sampled soil values

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

6

Sampled N1,60 values near the demonstration site in Adapazari, Turkey

( )( ) 0.85 1 exp 5000hhρ ⎡ ⎤= −⎢ ⎥⎣ ⎦

Page 4: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

4

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

7

Simulation of N1,60 values, conditional on observations (Sequential Gaussian Simulation)

1. Transform data so that it is normally distributed: ( )1 ( )z F y−=Φ

Empirical CDF of N1,60 values Standard normal CDF

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

8

Simulation of N1,60 values, conditional on observations (Sequential Gaussian Simulation)

2. Estimate spatial dependence of soil properties

( )( ) 0.85 1 exp 5000hhρ ⎡ ⎤= −⎢ ⎥⎣ ⎦

Page 5: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

5

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

9

Simulation of N1,60 values, conditional on observations (Sequential Gaussian Simulation)

2. Estimate spatial dependence of soil properties

3. Simulate one additional point (Z1), conditional upon observed values

1 12

21 22

0 1,

orig

ZN⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

ΣZ 0 Σ Σ∼ ( ) ( )1 1

1 12 22 12 22 21| , 1origZ N − −= ⋅ ⋅ − ⋅ ⋅Z z Σ Σ z Σ Σ Σ∼

( )( ) 0.85 1 exp 5000hhρ ⎡ ⎤= −⎢ ⎥⎣ ⎦

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

10

Simulation of N1,60 values, conditional on observations (Sequential Gaussian Simulation)

2. Estimate spatial dependence of soil properties

3. Simulate one additional point (Z1), conditional upon observed values

4. Repeat step 3 for each location, treating previously simulated points as fixed

1 12

21 22

0 1,

orig

ZN⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

ΣZ 0 Σ Σ∼ ( ) ( )1 1

1 12 22 12 22 21| , 1origZ N − −= ⋅ ⋅ − ⋅ ⋅Z z Σ Σ z Σ Σ Σ∼

( )( ) 0.85 1 exp 5000hhρ ⎡ ⎤= −⎢ ⎥⎣ ⎦

Page 6: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

6

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

11

Simulation of N1,60 values, conditional on observations (Sequential Gaussian Simulation)

2. Estimate spatial dependence of soil properties

3. Simulate one additional point (Z1), conditional upon observed values

4. Repeat step 3 for each location, treating previously simulated points as fixed

5. Transform the simulated Gaussian variables back to the original distribution

1 12

21 22

0 1,

orig

ZN⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

ΣZ 0 Σ Σ∼ ( ) ( )1 1

1 12 22 12 22 21| , 1origZ N − −= ⋅ ⋅ − ⋅ ⋅Z z Σ Σ z Σ Σ Σ∼

( )( ) 0.85 1 exp 5000hhρ ⎡ ⎤= −⎢ ⎥⎣ ⎦

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

12

Conditional simulations of N1,60

Page 7: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

7

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

13

Mean and coefficient of variation of conditional N1,60simulations

Mean CoV

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

14

Comments on Sequential Gaussian Simulation

• Common in petroleum engineering and mining

• Requires jointly Gaussian random variables– Partially achieved using the normal score transform– This numerical transform is applicable for any probability distribution

• Can also be used for vectors of dependent parameters (e.g., SPT blow count and fines content)

• It is not necessary to condition on all previous points when simulating

Page 8: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

8

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

15

Procedure for evaluating liquefaction extent

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

16

0.85

0.85

0.0198 if 12m

12 0.0198 if >12mrd

d d

dεσ

⎧ ⋅ ≤⎪=⎨⋅⎪⎩

'0.65 veq d

v

PGACSR rg

σσ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

*,12m

*,12m

*max ,12m

0.341( 0.0785 7.586)

*max ,12m

0.341(0.0785 7.586)

23.013 2.949 0.999 0.05251

16.258 0.20123.013 2.949 0.999 0.0525

116.258 0.201

s

d

s

w sd V

d rw sV

a M V

era M V

e

ε− + +

+

⎡ ⎤− + + ++⎢ ⎥

⎢ ⎥+⎣ ⎦= +⎡ ⎤− + + ++⎢ ⎥

⎢ ⎥+⎣ ⎦

'

1,60( , ) (1 0.004 ) 13.32ln 29.53ln 3.70ln 0.05 44.97veq L

ag N FC CSR M FC

ε= + − − − + + +X u

A probabilistic liquefaction criterion (Cetin et al., 2004)

Page 9: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

9

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

17

A probabilistic liquefaction criterion (Cetin et al., 2004)

0.85

0.85

0.0198 if 12m

12 0.0198 if >12mrd

d d

dεσ

⎧ ⋅ ≤⎪=⎨⋅⎪⎩

'

1,60( , ) (1 0.004 ) 13.32ln 29.53ln 3.70ln 0.05 44.97veq L

ag N FC CSR M FC

ε= + − − − + + +X u

'0.65 veq d

v

PGACSR rg

σσ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

*,12m

*,12m

*max ,12m

0.341( 0.0785 7.586)

*max ,12m

0.341(0.0785 7.586)

23.013 2.949 0.999 0.05251

16.258 0.20123.013 2.949 0.999 0.0525

116.258 0.201

s

d

s

w sd V

d rw sV

a M V

era M V

e

ε− + +

+

⎡ ⎤− + + ++⎢ ⎥

⎢ ⎥+⎣ ⎦= +⎡ ⎤− + + ++⎢ ⎥

⎢ ⎥+⎣ ⎦

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

18

A probabilistic liquefaction criterion (Cetin et al., 2004)

0.85

0.85

0.0198 if 12m

12 0.0198 if >12mrd

d d

dεσ

⎧ ⋅ ≤⎪=⎨⋅⎪⎩

'

1,60( , ) (1 0.004 ) 13.32ln 29.53ln 3.70ln 0.05 44.97veq L

ag N FC CSR M FC

ε= + − − − + + +X u

'0.65 veq d

v

PGACSR rg

σσ⎛ ⎞⎛ ⎞

= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

*,12m

*,12m

*max ,12m

0.341( 0.0785 7.586)

*max ,12m

0.341(0.0785 7.586)

23.013 2.949 0.999 0.05251

16.258 0.20123.013 2.949 0.999 0.0525

116.258 0.201

s

d

s

w sd V

d rw sV

a M V

era M V

e

ε− + +

+

⎡ ⎤− + + ++⎢ ⎥

⎢ ⎥+⎣ ⎦= +⎡ ⎤− + + ++⎢ ⎥

⎢ ⎥+⎣ ⎦

Page 10: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

10

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

19

Realizations of liquefaction extent

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

20

Probabilistic evaluation of consequences, given a M=7 earthquake causing a PGA of 0.3g

( )( )( | , ) ( | , ) ( )P Y y pga m I h pga m y f d> = >∫ ηη

g η e e

Page 11: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

11

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

21

Probability of liquefaction at the study site, given a M=7.4 earthquake causing a PGA of 0.3g

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

22

The previously computed result for a deterministic loading case can be combined with stochastic loading obtained from

probabilistic seismic hazard analysis (PSHA)

(see Baker and Faber, 2006)

Page 12: Geostatistics for modeling of soil spatial variability in ...bakerjw/Publications/Baker_(2006... · Group Risk and Safety 1 Geostatistics for modeling of soil spatial variability

12

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

23

Comments

• The procedure is useful for organizing the many pieces of relevant engineering data, but the inputs need careful consideration

• Soil random field models are challenging to characterize– Soil layering?– Unidentified local soil lenses?– Homogeneity/Ergodicity assumptions?

• Modeling post-liquefaction behavior is a challenge

• Geotechnical data often comes from several sources of varying quality

Eidgenossische Technische Hochschule ZürichSwiss Federal Institute of Technology Zürich

Institute of Structural EngineeringGroup Risk and Safety

24

Conclusions

• A framework has been proposed for modeling the spatial extent of liquefaction– Accounts for spatial dependence of soil properties– Incorporates known values of soil properties at sampled locations– Complex functions of the spatial extent of liquefaction can be

evaluated

• Probabilistic seismic hazard analysis can be used to incorporate all possible ground motion intensities– Avoids the use of a scenario load intensity with unknown recurrence

rate– Provides an explicit estimate of annual occurrence probabilities

• This approach potentially allows for the design of projects with uniform levels of reliability