geostatistical representation of multiscale heterogeneity ... · geostatistical representation of...

18
Geostatistical representation of multiscale heterogeneity of porous media through a Generalized Sub-Gaussian model Alberto Guadagnini (1) , Monica Riva (1) , Shlomo P. Neuman (2) , Martina Siena (1) (1) Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, Milano, Italy (2) Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA Sharing Geoscience Online

Upload: others

Post on 03-Aug-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

  • Geostatistical representation of multiscale heterogeneity of porous media through a Generalized Sub-Gaussian model

    Alberto Guadagnini(1), Monica Riva(1), Shlomo P. Neuman(2), Martina Siena(1)

    (1) Dipartimento di Ingegneria Civile e Ambientale (DICA), Politecnico di Milano, Milano, Italy(2) Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA Sharing Geoscience Online

  • Key ObservationsMany earth, environmental, physical, bio / ecological, financial, & other variables show

    1. Power-law scaling in midrange of separation scales (lags). Breakdown in power-law scaling at small and large lags. Power-Law scaling extended to virtually all lags (ESS).

    2. Heavy-tailed frequency distributions of incrementsA variable Y can be Gaussian or non-GaussianPdfs of spatial increments ∆Y scale with lag Sharp peaks and heavy tails of pdf decaying with lags

    ( ) ( ) ( )Y s Y x s Y x∆ = + −

  • Observations

    Sharp Peaks and Heavy Tails of Increment Frequency Distributions

    Decaying with LagNeural network hydraulic property estimates of

    borehole samples at UA Maricopa Agricultural Station

    Log K

    Porosity

    van Genuchten

  • A. Guadagnini – October 2018

    Consider

    where is iid subordinator

    Model parameters and observation scale

    N = 3567 Neutron Porosity data along a deep borehole

    Mean= 14%; SD = 6.4%Sampling interval: 0.15 m

    data courtesy of Prof. Sahimi

    ( ) 0U x >

    ( ) ( ) ( ); , ; ,u l ulY' x U x G xλ λ λ λ=

    Several models for U (lognormal, Exponential, Gamma, ...)

    Subordinator U renders Y′ a scale mixture of Gaussian RFs

    The scale mixture is non-Gaussian (distribution depends on U)

    tfBmY′(x) = Y(x) − 〈Y〉

    GSG-Generalized Sub-Gaussian Model

  • GSG ModelConsider where is iid subordinator.It renders Y Subordinated to G Scale mixture of G with random variances

    To start, lognormal (LN) subordinator

    It renders Y’ normal-lognormal (NLN)

    VU e= ( ){ }20, 2 2V α α= −

    ( ) ( )( )

    22

    2 21 1 'ln2 2

    ' 20

    1 1'2 2

    G

    u yu

    Yf y e duuσα

    π α

    ∞ − +

    − =− ∫

    ( ) ( ) ( ); , ; ,u l ulY' x U x G xλ λ λ λ= Y′(x) = Y(x) − 〈Y〉

    ( )U x∝

  • Y increments are not NLN:

    ( )

    ( )( )22 21 2

    2 2 21 2 1 2

    1 1 ln ln2 22

    2 123/2 2 20 0 2 1 1 2 1 2

    1( )2 2 2 2

    G GG

    yu uu u u u

    Y

    G

    ef y du duu u u u u u

    α ρσ σ

    α ρπ

    ∆ − + + + − −∞ ∞

    ∆ ∆ =− + −

    ∫ ∫

    ( )G sρ

    ( ) ( )( )

    22

    2 21 1 ln2 2

    20

    1 12 2

    G

    u yu

    Yf y e duuσα

    π α

    ∞ − +

    − =− ∫

    Scales with lag through (coefficient of correlation of G)

    GSG Model

  • Variogram of Y

    Observed nugget effects, attributed in the literature to variability of Y at scales smaller than the sampling interval and/or to measurement errors, may in fact be (at least in part) a symptom of non-Gaussianity.

    Integral scale of Y (subordination dampens and does not destroy covariance structure)

    ( ) ( )( ) ( )2 2 22 2 22 1Y G Ge e eα α αγ σ γ− − −= − +

    ( )22Y GI e I

    α− −=

    GSG Model

  • Deep Borehole Neutron Porosity dataSample pdf of increments of neutron porosity dataSample pdf of neutron porosity data Y′

    Excess kurtosis of mean-removed porosity data (continuous curve) and of porosity increments

    (symbols) versus lag

    NP

    (%)

    0

    10

    20

    30

    40

    50

    2800 3000 3200 3400

    Well 1 Southwest Iran3,567 dataMinimum lag: 15 cmTotal depth: 543 m

    1 14%YM =

    Sample standard deviation = 6.4%Dashtian et al. [2011]

  • aα 1.78

    ˆaα 1.73 0.05±

    Mean of bα

    CV of bα

    1.75

    0.05

    aσ 6.1%

    ˆaσ 5.98 0.19±

    Mean of bσ

    CV of bσ

    6.15

    0.07

    Deep Borehole Neutron Porosity dataRiva et al. (2015) WRR

    1.78

    Mean of CV of

    1.75

    0.05

    6.1%

    Mean of

    CV of

    6.15

    0.07

    b

    a

    %

    a

    s

    %

    ˆ

    a

    s

    5.980.19

    ±

    b

    s

    %

    b

    s

    %

    a

    a

    %

    ˆ

    a

    a

    1.730.05

    ±

    a

    a

    %

    1.78

    ˆ

    a

    a

    1.730.05

    ±

    Mean of

    b

    a

    %

    CV of

    b

    a

    %

    1.75

    0.05

    a

    s

    %

    6.1%

    ˆ

    a

    s

    5.980.19

    ±

    Mean of

    b

    s

    %

    CV of

    b

    s

    %

    6

    .1

    5

    0.07

    a

    1.78

    ˆ

    a

    1.730.05

    Mean of

    b

    CV of

    b

    1.75

    0.05

    a

    6.1%

    ˆ

    a

    5.980.19

    Mean of

    b

    CV of

    b

    6.15

    0.07

  • Drilling operation, using a drill press: multiple subsamples are obtainedalong three lines parallel to the core axis (left, central and right).

    222 samples in total

  • One-dimensional variability

    96

    96.2

    96.4

    96.6

    96.8

    97

    97.2

    97.4

    97.6

    97.8

    98

    0 1E-13 2E-13 3E-13 4E-13 5E-13

    x [m]

    k gas Scheidegger TRUE [m2]

    Left Central

    Right

    N. of observations Mean Standard deviation Skewness Excess kurtosis220 -13.03 0.228 -0.208 -0.161

  • Dissolved Area

    Unaltered Area

    • Topography images of calcite crystalsSurface Roughness

    Application to geochemical data – assessment of calcite dissolutionJoint work with Philippe Ackerer and Damien Daval (Université de Strasbourg-CNRS ENGEES/EOST)

    Images from L. Stigliano (Msc Thesis, 2020)

  • 1. Data processing and analysis

    2. Distributions of P’ and ∆P

    4. GSG (with given U)

    3. Scaling?

    Yes

    No Classical

    geostatisticalmodels

    5. Fitting GSG model to statistical moments and/or frequency distributions of P’ and ∆P

    6. Parameter estimation

    7. GSG model verification: Do GSG

    distributions and parameters scale

    correctly?

    Yes 8. Generation

    of GSG functions

    No

    Vary U

    P’

    ProcessSimulation

    9. State variables

    WORKFLOW FOR ANALYSIS

  • 8 ×106 cells

    3D-flow/transport

    problems

  • Many variables with scalable statistics exhibit Heavy-tailed increment frequency distributions with sharp peaks at small lags Peak and tail decay with increasing lag

    These aspects are captured by a GSG model based on sub-Gaussian subordination Simple ways to estimate parameters

    We developed a methodology to generate unconditional and conditional realizations of such random fields Ready to be employed for Monte Carlo flow and transport simulations in randomly heterogeneous systems (see

    Libera, A., F. de Barros, M. Riva, and A. Guadagnini, JCH, 2018).

    Lead-order analytical solutions for a simple non-Gaussian case of flow and transport in an unbounded unimodal GSG log permeability field Y under mean uniform flow in two spatial dimensions

    What we have seen so far!

  • Summary GSG model can reconcile several aspects

    exhibited by many (environmental and other) variablesPower-law scaling of structure functions in midrange of lagsBreakdown in such scaling at small / large lagsHeavy-tailed increment frequency distributions with sharp peaks at small lagsPeak and tail decay with increasing lagExtended power-law scaling or ESSLinear / nonlinear scaling of power exponent

    Simple ways to estimate model parameters Lead-order analytical solutions for simple

    flow/transport settingsNumerical flow/transport solutions Conditional GSG

    Politecnico di Milano isInstitutional Member of

    Sharing Geoscience Online

    Slide Number 1Key ObservationsSlide Number 4Slide Number 5Slide Number 6Slide Number 7Slide Number 8Slide Number 9Slide Number 10Slide Number 11Slide Number 12Slide Number 13Slide Number 14Slide Number 15Slide Number 16Slide Number 17Slide Number 18Slide Number 19