georg raffelt, max-planck-institut für physik, münchen, germany neutrino physics &...

60
Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen Materie Geheimnis der dunklen Materie Georg Raffelt, Max-Planck-Institut für Georg Raffelt, Max-Planck-Institut für Physik, München Physik, München ical Seminar Neutrino Physics & Astrophys 1721 Sept 2008, Beijing, China he Dark Universe, Neutrinos he Dark Universe, Neutrinos and Cosmological Mass Bounds and Cosmological Mass Bounds

Upload: jayden-tobin

Post on 26-Mar-2015

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Geheimnis der dunklen MaterieGeheimnis der dunklen Materie

Georg Raffelt, Max-Planck-Institut für Physik, Georg Raffelt, Max-Planck-Institut für Physik, MünchenMünchen

Topical Seminar Neutrino Physics & Astrophysics1721 Sept 2008, Beijing, China

Topical Seminar Neutrino Physics & Astrophysics1721 Sept 2008, Beijing, China

The Dark Universe, Neutrinos,The Dark Universe, Neutrinos,and Cosmological Mass Boundsand Cosmological Mass Bounds

Page 2: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

ThomasThomas WrightWright (1750),(1750), AnAn OriginalOriginal TheoryTheory ofof

thethe UniverseUniverse

Page 3: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

TitleTitle

Dark Energy 73%Dark Energy 73%(Cosmological Constant)(Cosmological Constant)

NeutrinosNeutrinos 0.10.12%2%

Dark MatterDark Matter23%23%

Ordinary Matter 4%Ordinary Matter 4%(of this only about(of this only about 10% luminous)10% luminous)

Page 4: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Coma ClusterComa Cluster

Dark Matter in Galaxy ClustersDark Matter in Galaxy Clusters

A gravitationally boundA gravitationally boundsystem of many particlessystem of many particlesobeys the virial theoremobeys the virial theorem

gravkin EE2 gravkin EE2

rmMG

2mv

2 rN2

r

mMG2

mv2 rN

2

1rN

2 rMGv 1rN

2 rMGv

Velocity dispersionVelocity dispersionfrom Doppler shiftsfrom Doppler shiftsand geometric sizeand geometric size

Total MassTotal Mass

Page 5: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Dark Matter in Galaxy ClustersDark Matter in Galaxy Clusters

Fritz Zwicky:Fritz Zwicky:Die Rotverschiebung von Die Rotverschiebung von Extragalaktischen NebelnExtragalaktischen Nebeln(The redshift of extragalactic(The redshift of extragalactic nebulae)nebulae)Helv. Phys. Acta 6 (1933) 110Helv. Phys. Acta 6 (1933) 110

In order to obtain the observed average Doppler effect ofIn order to obtain the observed average Doppler effect of1000 km/s or more, the average density of the Coma cluster1000 km/s or more, the average density of the Coma clusterwould have to be at least 400 times larger than what is foundwould have to be at least 400 times larger than what is foundfrom observations of the luminous matter.from observations of the luminous matter.Should this be confirmed one would find the surprising resultShould this be confirmed one would find the surprising resultthat that dark matter dark matter is far more abundant than luminous matter.is far more abundant than luminous matter.

Page 6: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Structure of Spiral GalaxiesStructure of Spiral Galaxies

Spiral Galaxy NGC 2997 Spiral Galaxy NGC 891891

Page 7: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Rotation curve of the galaxy NGC 6503Rotation curve of the galaxy NGC 6503from radio observations of hydrogen motionfrom radio observations of hydrogen motion[MNRAS 249 (1991) 523][MNRAS 249 (1991) 523]

Galactic Rotation Curve from Radio ObservationsGalactic Rotation Curve from Radio Observations

Expected from Expected from luminous matter in luminous matter in the diskthe disk

Observed Observed flat rotation flat rotation curvecurve

Spiral galaxy NGC 3198 overlaidSpiral galaxy NGC 3198 overlaidwith hydrogen column densitywith hydrogen column density[ApJ 295 (1985) 305][ApJ 295 (1985) 305]

Page 8: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Structure of a Spiral GalaxyStructure of a Spiral Galaxy

Dark HaloDark Halo

Page 9: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Expanding Universe and the Big BangExpanding Universe and the Big Bang

Hubble’s lawHubble’s law

vvexpansionexpansion = H = H00

distancedistance Hubble’s constantHubble’s constant

HH00 = h 100 km s = h 100 km s-1-1 Mpc Mpc-1-1

Measured valueMeasured value

h = 0.72 h = 0.72 0.04 0.04

Expansion age of the universeExpansion age of the universe

tt00 H H0011 14 14 10 1099 years years

1 Mpc = 3.26 1 Mpc = 3.26 10 1066 lyrlyr

= 3.08 = 3.08 10 102424 cmcm

• PhotonsPhotons• NeutrinosNeutrinos• Charged LeptonsCharged Leptons• QuarksQuarks• GluonsGluons• W- and Z-Bosons W- and Z-Bosons • Higgs ParticlesHiggs Particles• GravitonsGravitons• Dark-Matter ParticlesDark-Matter Particles• Topological defectsTopological defects• … …

Page 10: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Big BangBig Bang

Page 11: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Cosmic ExpansionCosmic Expansion

• Space between galaxies growsSpace between galaxies grows• GalaxiesGalaxies (stars,(stars, people)people) stay the same stay the same (dominated by local gravity(dominated by local gravity or by electromagnetic forces)or by electromagnetic forces)• Cosmic scale factor today: Cosmic scale factor today: a = 1a = 1

Cosmic Scale FactorCosmic Scale Factor Cosmic RedshiftCosmic Redshift

• Wavelength of light gets “stretched”Wavelength of light gets “stretched”

• Suffers redshiftSuffers redshift

• Redshift today: Redshift today: z = 0z = 0

then

today1z

then

today1z

then

today

then

today

a

a1z

then

today

then

today

a

a1z

Page 12: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Friedman Equation & Einstein’s “Greatest Friedman Equation & Einstein’s “Greatest Blunder”Blunder”

Friedmann equation forFriedmann equation for Hubble’s expansion rateHubble’s expansion rate 3a

k3

NG8

aa

H2

22

3a

k3

NG8

aa

H2

22

YakovYakovBorisovichBorisovichZeldovichZeldovich1914-19871914-1987

• Quantum field theory of elementary particlesQuantum field theory of elementary particles inevitably implies vacuum fluctuations becauseinevitably implies vacuum fluctuations because of Heisenberg’s uncertainty relation,of Heisenberg’s uncertainty relation, e.g. E and B fields can not simultaneously vanish e.g. E and B fields can not simultaneously vanish • Ground state (vacuum) provides gravitating energyGround state (vacuum) provides gravitating energy

• Vacuum energy Vacuum energy vacvac is equivalent to is equivalent to

Cosmological constant (new constant of nature)allows for a static universeby “global anti-gravitation”

Newton’s constantNewton’s constant

Density of gravitating mass & energyDensity of gravitating mass & energy Curvature termCurvature termis very small or zerois very small or zero(Euclidean spatial geometry)(Euclidean spatial geometry)

Page 13: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Generic Solutions of Friedmann EquationGeneric Solutions of Friedmann Equation

RadiationRadiation p = p = /3/3 aa44 a(t) a(t) tt1/21/2 Dilution of radiationDilution of radiationand redshift of energyand redshift of energy

MatterMatter p = 0p = 0 aa33 a(t) a(t) tt2/32/3Dilution of matterDilution of matter

VacuumVacuumenergyenergy p = p = = const= const Vacuum energy notVacuum energy not

diluted by expansiondiluted by expansion

t3exp)t(a t3exp)t(a

vacNG8 vacNG8

EquationEquationof stateof state

Behavior of energy-density underBehavior of energy-density undercosmic expansioncosmic expansion

Evolution ofEvolution ofcosmic scale factorcosmic scale factor

Energy-momentum tensor of perfect fluid with density Energy-momentum tensor of perfect fluid with density and pressure p and pressure p

p

p

pT

p

p

pT

gTvac

gTvac

Page 14: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Hubble DiagramHubble Diagram

Supernova IaSupernova Ia as cosmologicalas cosmological standard candlesstandard candles

RedshiftRedshift

Ap

pare

nt

Bri

gh

tness

Ap

pare

nt

Bri

gh

tness

Hubble’s orginal data (1929)Hubble’s orginal data (1929)

zz == 0.0030.003

Page 15: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Hubble DiagramHubble Diagram

Accelerated expansionAccelerated expansion((MM == 0.3, 0.3, == 0.7)0.7)

Decelerated expansionDecelerated expansion((MM == 1)1)

Supernova IaSupernova Ia as cosmologicalas cosmological standard candlesstandard candles

Page 16: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Latest Supernova DataLatest Supernova Data

Kowalski et al.,Kowalski et al.,Improved cosmological constraints from new, old andImproved cosmological constraints from new, old andcombined supernova datasets, arXiv:0804.4142combined supernova datasets, arXiv:0804.4142

Page 17: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Expansion of Different Cosmological ModelsExpansion of Different Cosmological Models

Time (billion years)Time (billion years)

Adapted from Bruno Leibundgut

Cosmic scale Cosmic scale factor afactor a

todaytoday1414

MM = 0 = 0

99

MM = 1 = 1

77

MM > 1 > 1

MM = 0.3 = 0.3

= 0.7= 0.7

Page 18: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

TitleTitle

Dark Energy 73%Dark Energy 73%(Cosmological Constant)(Cosmological Constant)

NeutrinosNeutrinos 0.10.12%2%

Dark MatterDark Matter23%23%

Ordinary Matter 4%Ordinary Matter 4%(of this only about(of this only about 10% luminous)10% luminous)

Page 19: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Neutrino Thermal EquilibriumNeutrino Thermal Equilibrium

Cosmic expansion rateCosmic expansion rate

Friedmann equationFriedmann equation

2Plm

238

H 2

Plm2

38

H

4T~ 4T~

Pl

2

mT~HPl

2

mT~H

Radiation dominatesRadiation dominates

Expansion rateExpansion rate

Condition for thermal equilibrium: Condition for thermal equilibrium: > H > H

MeV1])GeV10(GeV10[~)Gm(T 3122519312FPl MeV1])GeV10(GeV10[~)Gm(T 3122519312FPl

Neutrinos are in thermal equilibrium for T Neutrinos are in thermal equilibrium for T ≳ 1 MeV≳ 1 MeVcorresponding to t ≲ 1 seccorresponding to t ≲ 1 sec

ee ee

Neutrino reactionsNeutrino reactions

Dimensional analysis of reaction rateDimensional analysis of reaction rateif T if T ≪≪ m mW,ZW,Z

52FTG~ 52FTG~

Examples for neutrino processesExamples for neutrino processes

ee ee

GGFF

Page 20: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Present-Day Neutrino DensityPresent-Day Neutrino Density

Neutrino decouplingNeutrino decoupling(freeze out)(freeze out)

H ~ H ~ T T 2.4 MeV 2.4 MeV (electron flavor) (electron flavor) T T 3.7 MeV 3.7 MeV (other flavors) (other flavors)

Redshift of Fermi-DiracRedshift of Fermi-Diracdistribution (“nothingdistribution (“nothingchanges at freeze-out”)changes at freeze-out”)

1e

E1dE

dNT/E

2

2

1e

E1dE

dNT/E

2

2

TemperatureTemperaturescales with redshiftscales with redshiftTT = T = T (z+1) (z+1)

Electron-positronElectron-positronannihilation beginning annihilation beginning

at T at T m mee = 0.511 MeV = 0.511 MeV

• QED plasma is “strongly” coupledQED plasma is “strongly” coupled• Stays in thermal equilibrium (adiabatic process)Stays in thermal equilibrium (adiabatic process)• Entropy of eEntropy of e++ee transfered to photons transfered to photons

after3

before3 TgTg

after3

before3 TgTg

42 8

742 8

722 before

3114

after3 TT

before3

114

after3 TT

Redshift ofRedshift ofneutrino and photonneutrino and photonthermal distributionsthermal distributionsso that today we haveso that today we have

3113

43

114 cm112nn)flavor1(n

3113

43

114 cm112nn)flavor1(n

K95.1T114

T31

K95.1T114

T31

for massless neutrinosfor massless neutrinos

Page 21: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Cosmological Limit on Neutrino MassesCosmological Limit on Neutrino Masses

A classic paper:A classic paper: Gershtein & ZeldovichGershtein & Zeldovich JETP Lett. 4 (1966) 120JETP Lett. 4 (1966) 120

4.0eV5.92

mh2

4.0eV5.92

mh2

Cosmic neutrino “sea”Cosmic neutrino “sea” ~ 112 cm~ 112 cm-3-3 neutrinos + anti-neutrinos per neutrinos + anti-neutrinos per flavorflavor

mm ≲≲ 40 eV 40 eV For allFor allstable flavorsstable flavors

Page 22: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Weakly Interacting Particles as Dark MatterWeakly Interacting Particles as Dark Matter

However, the idea ofHowever, the idea of weakly interacting massiveweakly interacting massive particles as dark matterparticles as dark matter is now standardis now standard

• More than 30 years ago,More than 30 years ago, beginnings of the idea ofbeginnings of the idea of weakly interacting particlesweakly interacting particles (neutrinos) as dark matter(neutrinos) as dark matter

• Massive neutrinos are noMassive neutrinos are no longer a good candidatelonger a good candidate (hot dark matter)(hot dark matter)

Page 23: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

What is wrong with neutrino dark matter?What is wrong with neutrino dark matter?

Galactic Phase Space (“Tremaine-Gunn-Limit”)Galactic Phase Space (“Tremaine-Gunn-Limit”)

mm >> 20 20 40 eV 40 eV

2

3escape

n

2

3max

max3

)vm(m

3

pm

max

2

3escape

n

2

3max

max3

)vm(m

3

pm

max

Maximum mass density of a degenerateMaximum mass density of a degenerateFermi gasFermi gas

mm >> 100 100 200 eV 200 eV

SpiralSpiral galaxiesgalaxies

DwarfDwarf galaxiesgalaxies

• Nus are “Hot Dark Matter”Nus are “Hot Dark Matter”• Ruled out Ruled out by structure formationby structure formation

Neutrino Free Streaming (Collisionless Phase Mixing)Neutrino Free Streaming (Collisionless Phase Mixing)

• AtAt TT << 11 MeVMeV neutrinoneutrino scatteringscattering inin earlyearly universeuniverse ineffectiveineffective• Stream freely until non-relativisticStream freely until non-relativistic• Wash out density contrasts on small scales Wash out density contrasts on small scales

NeutrinosNeutrinosNeutrinosNeutrinos

Over-densityOver-density

Page 24: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Sky Distribution of Galaxies (XMASS XSC)Sky Distribution of Galaxies (XMASS XSC)

http://spider.ipac.caltech.edu/staff/jarrett/2mass/XSC/jarrett_allsky.html

Page 25: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

A Slice of the UniverseA Slice of the Universe

Galaxy distribution from the CfA redshift surveyGalaxy distribution from the CfA redshift survey[ApJ 302 (1986) L1][ApJ 302 (1986) L1]

Cosmic Cosmic ““Stick Man”Stick Man”

~ 185 Mpc

~ 185 Mpc

Page 26: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

2dF Galaxy Redshift Survey (2002)2dF Galaxy Redshift Survey (2002)

~ 1300 M

pc

~ 1300 M

pc

Page 27: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

SDSS SurveySDSS Survey

Page 28: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Generating the Primordial Density FluctuationsGenerating the Primordial Density Fluctuations

Zero-point fluctuations of quantumZero-point fluctuations of quantumfields are stretched and frozenfields are stretched and frozen

Early phase of exponential expansionEarly phase of exponential expansion(Inflationary epoch)(Inflationary epoch)

Cosmic density fluctuations areCosmic density fluctuations arefrozen quantum fluctuationsfrozen quantum fluctuations

Page 29: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Gravitational Growth of Density PerturbationsGravitational Growth of Density Perturbations

The dynamical evolutionThe dynamical evolutionof small perturbationsof small perturbations

1)x(

)x(

1

)x()x(

is independent for eachis independent for eachFourier mode Fourier mode kk

• For pressureless,For pressureless, nonrelativistic matternonrelativistic matter (cold dark matter)(cold dark matter) naively expectnaively expect exponential growthexponential growth

• Only power-lawOnly power-law growth in expandinggrowth in expanding universeuniverse

Matter dominatesMatter dominates a a tt2/32/3

Sub-horizonSub-horizon ≪≪ HH11

Super-horizonSuper-horizon ≫≫ HH11

kk const const kk a a22 tt

kk a a tt2/32/3

Radiation dominatesRadiation dominates a a tt1/21/2

Page 30: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Structure Formation by Gravitational Structure Formation by Gravitational InstabilityInstability

Page 31: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Redshift Surveys vs. Millenium SimulationRedshift Surveys vs. Millenium Simulation

www.mpa-garching.mpg.de/millennium

Page 32: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Power Spectrum of Density FluctuationsPower Spectrum of Density Fluctuations

Field of density fluctuationsField of density fluctuations

)x(

)x(

)x()x(

Fourier transformFourier transform

)x(exd xik3k )x(exd xik3k

Power spectrum essentially squarePower spectrum essentially squareof Fourier transformationof Fourier transformation

)k(Pkkˆ2 3kk )k(Pkkˆ2 3kk

Power spectrum is Fourier transform ofPower spectrum is Fourier transform oftwo-point correlation function (two-point correlation function (x=xx=x22xx11) )

)k(Pe

2

kd)x()x()x( xik

3

3

12

)k(Pe

2

kd)x()x()x( xik

3

3

12

)k(

2

3xik

2

2

)k(Pke

kdk

4d

)k(

2

3xik

2

2

)k(Pke

kdk

4d

with the with the -function-function

Gaussian random field (phases ofGaussian random field (phases ofFourier modes Fourier modes kk uncorrelated) is fully uncorrelated) is fully

characterized by the power spectrumcharacterized by the power spectrum2

k)k(P 2k)k(P

or equivalently byor equivalently by

2k

2

)k(Pk)k( k

2321

2

3

2k

2

)k(Pk)k( k

2321

2

3

Page 33: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Processed Power Spectrum in Cold Dark Matter Processed Power Spectrum in Cold Dark Matter ScenarioScenario

Primordial spectrumPrimordial spectrumusually assumed to beusually assumed to beof power-law formof power-law form

n2k k)k(P n2k k)k(P

Harrison-ZeldovichHarrison-Zeldovich(“flat”) spectrum(“flat”) spectrum n n 1 1expected from inflationexpected from inflation(actually slightly less(actually slightly less than 1, as confirmedthan 1, as confirmed by precision data)by precision data)

PrimordialPrimordialspectrumspectrum

Suppressed by stagnationSuppressed by stagnationduring radiation phaseduring radiation phase

Page 34: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Power Spectrum of Cosmic Density Power Spectrum of Cosmic Density FluctuationsFluctuations

Page 35: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Cosmic Microwave Background RadiationCosmic Microwave Background Radiation

Discovery of 2.7 KelvinDiscovery of 2.7 KelvinCosmic microwave background radiationCosmic microwave background radiationby Penzias and Wilson in 1965by Penzias and Wilson in 1965(Nobel Prize 1978)(Nobel Prize 1978)

Beginning of “big-bang cosmology”Beginning of “big-bang cosmology”

Robert W. WilsonRobert W. WilsonBorn 1936Born 1936

Arno A. Penzias Arno A. Penzias Born 1933Born 1933

Page 36: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Last Scattering SurfaceLast Scattering Surface

1133

202010

00

1000

1500

1500

Redshift zRedshift z

Here & Here & NowNow

HorizonHorizon

Page 37: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

COBE Temperature Map of the Cosmic Microwave COBE Temperature Map of the Cosmic Microwave BackgroundBackground

T = 2.725 K (uniform on the sky)T = 2.725 K (uniform on the sky)Dynamical range Dynamical range T = 3.353 mK (T = 3.353 mK (T/T/ T T 10 10-3-3))

Dipole temperature distribution from Doppler effectDipole temperature distribution from Doppler effectcaused by our motion relative to the cosmic framecaused by our motion relative to the cosmic frame

Dynamical range Dynamical range T = 18 T = 18 K (K (T/T/ T T 10 10-5-5))

Primordial temperature fluctuationsPrimordial temperature fluctuations

Page 38: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

COBE SatelliteCOBE Satellite

John C. Mather John C. Mather Born 1946Born 1946

George F. Smoot George F. Smoot Born 1945Born 1945

Nobel Prize 2006Nobel Prize 2006

Page 39: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Sky map of CMBR temperatureSky map of CMBR temperaturefluctuationsfluctuations

T

T,T,

TT,T

,

Power Spectrum of CMBR Temperature Power Spectrum of CMBR Temperature FluctuationsFluctuations

Multipole expansionMultipole expansion

,Ya, m

0 mm

,Ya, m

0 mm

Angular power spectrumAngular power spectrum

mmmmm aa

121

aaC

mmmmm aa

121

aaC

Acoustic PeaksAcoustic Peaks

Page 40: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Flat Universe from CMBR Angular FluctuationsFlat Universe from CMBR Angular Fluctuations

totmax 200 totmax 200

tot tot = 1.02 = 1.02 0.02 0.02

Spergel et al. (WMAP Collaboration)Spergel et al. (WMAP Collaboration)astro-ph/0302209astro-ph/0302209

Triangulation with acoustic peakTriangulation with acoustic peak

Known physicalKnown physical size of acoustic peaksize of acoustic peak at decoupling (zat decoupling (z 1100)1100)

MeasuredMeasuredangular sizeangular sizetoday (ztoday (z == 0)0)

flat (Euclidean)flat (Euclidean)

negative curvaturenegative curvature

positive curvaturepositive curvature

Page 41: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Latest CMB Results (WMAP-5 and Others)Latest CMB Results (WMAP-5 and Others)

Komatsu et al., arXiv:0803.0547Komatsu et al., arXiv:0803.0547

Page 42: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Best-Fit UniverseBest-Fit Universe

PerlmutterPhysics Today(Apr. 2003)

Kowalski et al.arXiv:0804.4142

Page 43: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Concordance Model of CosmologyConcordance Model of Cosmology

A Friedmann-Lemaître-Robertson-Walker model with the followingA Friedmann-Lemaître-Robertson-Walker model with the followingparameters perfectly describes the global properties of the universe parameters perfectly describes the global properties of the universe

The observed large-scale structure and CMBR temperature fluctuationsThe observed large-scale structure and CMBR temperature fluctuationsare perfectly accounted for by the gravitational instability mechanismare perfectly accounted for by the gravitational instability mechanismwith the above ingredients and a power-law primordial spectrum of with the above ingredients and a power-law primordial spectrum of adiabatic density fluctuations (curvature fluctuations) P(k) adiabatic density fluctuations (curvature fluctuations) P(k) k knn

Expansion rateExpansion rate 110 Mpcskm)3.11.70(H 110 Mpcskm)3.11.70(H

AgeAge years10)12.073.13(t 90 years10)12.073.13(t 90

Vacuum energyVacuum energy 015.0721.0 015.0721.0

Baryonic matterBaryonic matter 0015.00462.0B 0015.00462.0B

Power-law indexPower-law index 014.0960.0n 014.0960.0n

Spatial curvatureSpatial curvature Gpc33Rcurv Gpc33Rcurv 009.0018.0 k 009.0018.0 k

Cold Dark MatterCold Dark Matter 013.0233.0CDM 013.0233.0CDM

Page 44: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Structure Formation in the UniverseStructure Formation in the Universe

SmoothSmooth StructuredStructured

Structure forms byStructure forms by gravitational instabilitygravitational instability of primordialof primordial density fluctuationsdensity fluctuations

A fraction of hot dark matter A fraction of hot dark matter suppresses small-scale structuresuppresses small-scale structure

Page 45: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Structure Formation with Hot Dark MatterStructure Formation with Hot Dark Matter

Troels Haugbølle, http://whome.phys.au.dk/~haugboelTroels Haugbølle, http://whome.phys.au.dk/~haugboel

Neutrinos with Neutrinos with mm = 6.9 eV = 6.9 eVStandard Standard CDM ModelCDM Model

Structure fromation simulated with Gadget codeStructure fromation simulated with Gadget codeCube size 256 Mpc at zero redshiftCube size 256 Mpc at zero redshift

Page 46: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Neutrino Free Streaming: Transfer FunctionNeutrino Free Streaming: Transfer Function

Hannestad, Neutrinos in Cosmology, hep-ph/0404239Hannestad, Neutrinos in Cosmology, hep-ph/0404239

Transfer functionTransfer function

P(k) = T(k) PP(k) = T(k) P00(k)(k)

Effect of neutrino freeEffect of neutrino freestreaming on small scalesstreaming on small scales

T(k) = 1 T(k) = 1 8 8//M M

valid forvalid for

88//M M ≪ ≪ 11

Power suppression for Power suppression for FSFS ≳ ≳ 100 Mpc/h100 Mpc/h

mm = 0 = 0

mm = 0.3 eV = 0.3 eV

mm = 1 eV = 1 eV

Page 47: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Power Spectrum of Cosmic Density Power Spectrum of Cosmic Density FluctuationsFluctuations

Page 48: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Some Recent Cosmological Limits on Neutrino Some Recent Cosmological Limits on Neutrino MassesMassesmm/eV/eV(limit 95%CL)(limit 95%CL)

Data / PriorsData / Priors

Spergel et al. (WMAP) 2003Spergel et al. (WMAP) 2003 [astro-ph/0302209] [astro-ph/0302209] 0.690.69 WMAP-1, 2dF, HST, WMAP-1, 2dF, HST, 88

Hannestad 2003Hannestad 2003 [astro-ph/0303076][astro-ph/0303076]1.011.01 WMAP-1, CMB, 2dF, HSTWMAP-1, CMB, 2dF, HST

Crotty et al. 2004Crotty et al. 2004 [hep-ph/0402049][hep-ph/0402049]

1.01.00.60.6

WMAP-1, CMB, 2dF, SDSSWMAP-1, CMB, 2dF, SDSS& HST, SN& HST, SN

Hannestad 2004Hannestad 2004 [hep-ph/0409108][hep-ph/0409108] 0.650.65 WMAP-1, SDSS, SN Ia gold sample,WMAP-1, SDSS, SN Ia gold sample,

Ly-Ly- data from Keck sample data from Keck sample

Seljak et al. 2004Seljak et al. 2004 [[astro-ph/0407372]astro-ph/0407372]0.420.42 WMAP-1, SDSS, Bias,WMAP-1, SDSS, Bias,

Ly-Ly- data from SDSS sample data from SDSS sample

Spergel et al. 2006Spergel et al. 2006 [hep-ph/0409108][hep-ph/0409108] 0.680.68 WMAP-3, SDSS, 2dF, SN Ia, WMAP-3, SDSS, 2dF, SN Ia, 88

Seljak et al. 2006Seljak et al. 2006 [astro-ph/0604335][astro-ph/0604335]0.140.14 WMAP-3, CMB-small, SDSS, 2dF,WMAP-3, CMB-small, SDSS, 2dF,

SN Ia, BAO (SDSS), SN Ia, BAO (SDSS), Ly-Ly- (SDSS) (SDSS)

Hannestad et al. 2006Hannestad et al. 2006 [hep-ph/0409108][hep-ph/0409108] 0.300.30 WMAP-1, CMB-small, SDSS, 2dF,WMAP-1, CMB-small, SDSS, 2dF,

SN Ia, BAO (SDSS), SN Ia, BAO (SDSS), Ly-Ly- (SDSS) (SDSS)

Page 49: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Lyman-alpha ForestLyman-alpha Forest

• Hydrogen clouds absorb from QSOHydrogen clouds absorb from QSO continuum emission spectrumcontinuum emission spectrum

• Absorption dips at Ly-Absorption dips at Ly- wavelengh wavelengh corresponding to redshiftcorresponding to redshift

www.astro.ucla.edu/~wright/Lyman-alpha-forest.htmlwww.astro.ucla.edu/~wright/Lyman-alpha-forest.html

Examples for Lyman-Examples for Lyman- forest in forest inlow- and high-redshift quasarslow- and high-redshift quasars

http://www.astr.ua.edu/keel/agn/forest.gifhttp://www.astr.ua.edu/keel/agn/forest.gif

Page 50: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Weak Lensing Weak Lensing A Powerful Probe for the Future A Powerful Probe for the Future

UnlensedUnlensed LensedLensed

Distortion of background images by foreground matterDistortion of background images by foreground matter

Page 51: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Sensitivity Forecasts for Future LSS Sensitivity Forecasts for Future LSS ObservationsObservations

Kaplinghat, Knox & Song,Kaplinghat, Knox & Song,astro-ph/0303344astro-ph/0303344

σσ(m(mνν) ~ 0.15 eV ) ~ 0.15 eV (Planck)(Planck)

σσ(m(mνν) ~ 0.044 eV (CMBpol)) ~ 0.044 eV (CMBpol)CMB lensing CMB lensing

Lesgourgues, PastorLesgourgues, Pastor& Perotto,& Perotto,hep-ph/0403296 hep-ph/0403296

Planck & SDSS Planck & SDSS mm > 0.21 eV detectable > 0.21 eV detectable

at 2at 2

mm > 0.13 eV detectable > 0.13 eV detectable

at 2at 2Ideal CMB & 40 x SDSS Ideal CMB & 40 x SDSS

Abazajian & DodelsonAbazajian & Dodelsonastro-ph/0212216astro-ph/0212216

Future weak lensingFuture weak lensingsurvey 4000 degsurvey 4000 deg22

σσ(m(mνν) ~ 0.1 eV) ~ 0.1 eV

Wang, Haiman, Hu, Wang, Haiman, Hu, Khoury & May,Khoury & May,astro-ph/0505390astro-ph/0505390

Weak-lensing selectedWeak-lensing selectedsample of > 10sample of > 105 5 clustersclusters

σσ(m(mνν) ~ 0.03 eV) ~ 0.03 eV

Hannestad, Tu & WongHannestad, Tu & Wongastro-ph/0603019astro-ph/0603019

Weak-lensing tomographyWeak-lensing tomography(LSST plus Planck)(LSST plus Planck) σσ(m(mνν) ~ 0.05 eV) ~ 0.05 eV

Page 52: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Fermion Mass SpectrumFermion Mass Spectrum

1010 10010011 1010 10010011 1010 10010011 1010 10010011 1010 10010011 11meVmeV eVeV keVkeV MeVMeV GeVGeV TeVTeV

dd ss bbQuarks (Q = Quarks (Q = 1/3)1/3)

uu cc ttQuarks (Q = Quarks (Q = 2/3)2/3)

Charged Leptons (Q = Charged Leptons (Q = 1)1) ee

All flavorsAll flavors

33 NeutrinosNeutrinos

Page 53: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

““Weighing” Neutrinos with KATRINWeighing” Neutrinos with KATRIN

• Sensitive to Sensitive to common mass scale mcommon mass scale m for all flavors because of small massfor all flavors because of small mass differences from oscillationsdifferences from oscillations• Best limit from Mainz und TroitskBest limit from Mainz und Troitsk m m << 2.2 eV (95% CL) 2.2 eV (95% CL)• KATRIN can reach KATRIN can reach 0.2 eV0.2 eV• Under constructionUnder construction• Data taking foreseen to begin in 2009Data taking foreseen to begin in 2009

http://www-ik.fzk.de/katrin/http://www-ik.fzk.de/katrin/

Page 54: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

““KATRIN Approaching” (25 Nov 2006)KATRIN Approaching” (25 Nov 2006)

Page 55: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Lee-Weinberg Curve for Neutrinos and AxionsLee-Weinberg Curve for Neutrinos and Axions

log(log(aa))

log(mlog(maa))

MM

10 eV10 eV 10 10 eVeV

CDCDMM

HDHDMMAxionsAxions

Thermal RelicsThermal RelicsNon-ThermalNon-Thermal

RelicsRelics

log(log())

log(mlog(m))

MM

10 eV10 eV

CDCDMM

HDHDMM

10 GeV10 GeV

NeutrinosNeutrinos& WIMPs& WIMPs

Thermal RelicsThermal Relics

Page 56: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Axion Hot Dark Matter from Thermalization Axion Hot Dark Matter from Thermalization after after QCDQCD

Freeze-out temperatureFreeze-out temperature

Cosmic thermal degrees ofCosmic thermal degrees offreedom at axion freeze-outfreedom at axion freeze-out

Cosmic thermal degrees ofCosmic thermal degrees offreedom freedom

a)2

(ff

CL

0

00

a

aa

a)2

(ff

CL

0

00

a

aa

aa

Chang & Choi, PLB 316 (1993) 51Chang & Choi, PLB 316 (1993) 51Hannestad, Mirizzi & Raffelt, JCAP 07 (2005) 02Hannestad, Mirizzi & Raffelt, JCAP 07 (2005) 02

094.0)z1(3

z1Ca

094.0)z1(3

z1Ca

104 105 106 107

104 105 106 107

fa (GeV)

fa (GeV)

Page 57: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Low-Mass Particle Densities in the UniverseLow-Mass Particle Densities in the Universe

PhotonsPhotons

NeutrinosNeutrinos

Axions (QCD)Axions (QCD)

ALPsALPs(two photon vertex)(two photon vertex)

410 cm410 cm33Cosmic microwave backgroundCosmic microwave backgroundradiation radiation T = 2.725 KT = 2.725 K

Freeze out at Freeze out at T ~ 2T ~ 23 MeV3 MeVbefore ebefore eee annihilation annihilation

nn 113 nn 113

112 cm112 cm33 ( in one flavor)( in one flavor)

For fFor faa ~ 10 ~ 1077 GeV (m GeV (maa ~ 1 eV) ~ 1 eV)

Freeze out at Freeze out at T ~ 80 MeVT ~ 80 MeV((a interaction)a interaction)

~ 50 cm~ 50 cm33

Primakoff freeze outPrimakoff freeze out

(g(gaa ~ 10 ~ 101010 GeV GeV11))

T T ≫≫ T TQCDQCD ~ 200 MeV ~ 200 MeV< 10 cm< 10 cm33

• No useful hot dark matter limit on ALPs in the CAST search rangeNo useful hot dark matter limit on ALPs in the CAST search range (too few of them today if they couple only by two-photon vertex)(too few of them today if they couple only by two-photon vertex)

• Axion mass limit comparable to limit on Axion mass limit comparable to limit on mm

(Axion number density comparable to one neutrino flavor)(Axion number density comparable to one neutrino flavor)

Page 58: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

Axion Hot Dark Matter Limits from Precision Axion Hot Dark Matter Limits from Precision DataData

mmaa < 1.0 eV (95% CL) < 1.0 eV (95% CL)

mmaa < 0.4 eV (95% CL) < 0.4 eV (95% CL)

WMAP-5, LSS, BAO, SNIaWMAP-5, LSS, BAO, SNIa

WMAP-3, small-scale CMB,WMAP-3, small-scale CMB,HST, BBN, LSS, HST, BBN, LSS, Ly-Ly-

Hannestad, Mirizzi, RaffeltHannestad, Mirizzi, Raffelt& Wong [arXiv:0803.1585]& Wong [arXiv:0803.1585]

Melchiorri, Mena & SlosarMelchiorri, Mena & Slosar[arXiv:0705.2695] [arXiv:0705.2695]

Marginalizing over unknown neutrino hot dark matter componentMarginalizing over unknown neutrino hot dark matter component

Credible regions for neutrino plus axion hotCredible regions for neutrino plus axion hotdark matter (WMAP-5, LSS, BAO, SNIa)dark matter (WMAP-5, LSS, BAO, SNIa)Hannestad, Mirizzi, Raffelt & WongHannestad, Mirizzi, Raffelt & Wong[arXiv:0803.1585][arXiv:0803.1585]

Dashed (red) curves: Same with WMAP-3Dashed (red) curves: Same with WMAP-3From HMRW [arXiv:0706.4198] From HMRW [arXiv:0706.4198]

Page 59: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

DirectDirectsearchsearch

Too muchToo muchcold dark mattercold dark matter

TeleTelescopescopeExperimentsExperiments

Globular clustersGlobular clusters(a-(a--coupling)-coupling)

Too manyToo manyeventsevents

Too muchToo muchenergy lossenergy loss

SN 1987A (a-N-coupling)SN 1987A (a-N-coupling)

Axion BoundsAxion Bounds

101033 101066 101099 10101212 [GeV] f[GeV] faa

eVeVkeVkeV meVmeV eVeVmmaa

Too much hot dark matterToo much hot dark matter

CASTCAST ADMXADMX

Page 60: Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China Geheimnis der dunklen

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany Neutrino Physics & Astrophysics, 17-21 Sept 2008, Beijing, China

TitleTitle

Inner space andInner space andouter spaceouter space

are closely relatedare closely related