geometry of flat origami triangulations · origami in nature and engineering saito et al, pnas 2017...

87
Geometry of Flat Origami Triangulations Bryan Gin-ge Chen & Chris Santangelo UMass Amherst Physics 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Upload: others

Post on 18-Apr-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Geometry of Flat Origami Triangulations

Bryan Gin-ge Chen & Chris SantangeloUMass Amherst Physics

���������

1 2

34

5

6

1 2

34

5

6

1 2

34

5

6

1 2

34

5

6

1 2

34

5

6

1 2

34

5

6

1 2

34

5

6

1 2

34

5

6

Page 2: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Origami in nature and engineering

Andresen et al, PRE 2007Saito et al, PNAS 2017

Wood et al, Science 2015

J.-H. Na et al., Adv. Mat. 2015

Page 3: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeevehttp://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

Page 4: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeevehttp://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

Page 5: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeevehttp://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

Page 6: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeevehttp://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

But how much does a crease pattern really tell us?

Page 7: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeevehttp://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

But how much does a crease pattern really tell us?

What does it tell us near the flat state?

Page 8: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Triangulated Vb-gon : Vb boundary vertices

Rigid origami as bond-node structure

Page 9: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

“bird base”

Triangulated Vb-gon : Vb boundary vertices

Rigid origami as bond-node structure

Page 10: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

“bird base”Demaine et al, Graphs and Combinatorics, 2011

Triangulated Vb-gon : Vb boundary vertices

Rigid origami as bond-node structure

Page 11: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

“bird base”Demaine et al, Graphs and Combinatorics, 2011

Triangulated Vb-gon : Vb boundary verticesVint : # of internal vertices

Rigid origami as bond-node structure

Page 12: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

“bird base”Demaine et al, Graphs and Combinatorics, 2011

Triangulated Vb-gon : Vb boundary verticesVint : # of internal vertices

3Vint+Vb-3: # of folds

Rigid origami as bond-node structure

Page 13: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

“bird base”Demaine et al, Graphs and Combinatorics, 2011

Triangulated Vb-gon : Vb boundary verticesVint : # of internal vertices

3Vint+Vb-3: # of folds

Rigid origami as bond-node structure

Page 14: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

“bird base”Demaine et al, Graphs and Combinatorics, 2011

Triangulated Vb-gon : Vb boundary verticesVint : # of internal vertices

3Vint+Vb-3: # of folds

# of degrees of freedom?

Rigid origami as bond-node structure

Page 15: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

“bird base”Demaine et al, Graphs and Combinatorics, 2011

Triangulated Vb-gon : Vb boundary verticesVint : # of internal vertices

3Vint+Vb-3: # of folds

# of degrees of freedom?

Rigid origami as bond-node structure

N0 = 3(Vint + Vb)� (3Vint + Vb � 3 + Vb)

Page 16: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

“bird base”Demaine et al, Graphs and Combinatorics, 2011

Triangulated Vb-gon : Vb boundary verticesVint : # of internal vertices

3Vint+Vb-3: # of folds

# of degrees of freedom?

Rigid origami as bond-node structure

N0 = 3(Vint + Vb)� (3Vint + Vb � 3 + Vb)=Vb + 3

=6 + (Vb � 3)

Page 17: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

“bird base”Demaine et al, Graphs and Combinatorics, 2011

Triangulated Vb-gon : Vb boundary verticesVint : # of internal vertices

3Vint+Vb-3: # of folds

rigid body motions

# of degrees of freedom?

Rigid origami as bond-node structure

N0 = 3(Vint + Vb)� (3Vint + Vb � 3 + Vb)=Vb + 3

=6 + (Vb � 3)

Page 18: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

“bird base”Demaine et al, Graphs and Combinatorics, 2011

Triangulated Vb-gon : Vb boundary verticesVint : # of internal vertices

3Vint+Vb-3: # of folds

generically Vb-3 dofrigid body motions

# of degrees of freedom?

Rigid origami as bond-node structure

N0 = 3(Vint + Vb)� (3Vint + Vb � 3 + Vb)=Vb + 3

=6 + (Vb � 3)

Page 19: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

1 2

34

5

6

BGC and Santangelo, 2017

Configuration space near the flat state

Page 20: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

1 2

34

5

6

BGC and Santangelo, 2017

Configuration space near the flat state

Page 21: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

1 2

34

5

6

BGC and Santangelo, 2017

Configuration space near the flat state

4 branches

Page 22: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

BGC and Santangelo, 2017

Page 23: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

BGC and Santangelo, 2017

Page 24: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Flat is not generic!

Page 25: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Vint+1 linear motions!

Flat is not generic!

Page 26: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Vint+1 linear motions!

Flat is not generic!

generically 1dofvs ??

Page 27: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Vint+1 linear motions!

Flat is not generic!

generically 1dofvs ??

Toy example:

Page 28: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

linear motion

Vint+1 linear motions!

Flat is not generic!

generically 1dofvs ??

Toy example:

Page 29: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

linear motion

Vint+1 linear motions!

redundant constraints = ‘self stress’

Flat is not generic!

generically 1dofvs ??

Toy example:

Page 30: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

linear motion

compression

tension

Vint+1 linear motions!

redundant constraints = ‘self stress’

Flat is not generic!

generically 1dofvs ??

Toy example:

Page 31: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses and second-order constraints

compression

tension

linear motion

Page 32: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses and second-order constraints

compression

tension

linear motion

The second-order constraints are in 1 to 1 correspondence with self stresses!

Connelly and Whiteley, SIAM J Discrete Math 1996

Page 33: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses and second-order constraints

compression

tension

linear motion

The second-order constraints are in 1 to 1 correspondence with self stresses!

Connelly and Whiteley, SIAM J Discrete Math 1996

uT⌦u = 0 ⌦ symmetric “stress matrix”

Page 34: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses and second-order constraints

compression

tension

linear motion

The second-order constraints are in 1 to 1 correspondence with self stresses!

Connelly and Whiteley, SIAM J Discrete Math 1996

uT⌦u = 0 ⌦ symmetric “stress matrix”

u⌦

Page 35: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses in flat triangulations

BGC and Santangelo, 2017

Page 36: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses in flat triangulations

“wheel stress”

BGC and Santangelo, 2017

Page 37: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses in flat triangulations

“wheel stress”

BGC and Santangelo, 2017

Page 38: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses in flat triangulations

“wheel stress”

BGC and Santangelo, 2017

u vertical displacements

Page 39: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses in flat triangulations

“wheel stress”

BGC and Santangelo, 2017

uT⌦u = 0

⌦ symmetric stress matrix

u vertical displacements

Page 40: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses in flat triangulations

“wheel stress”

BGC and Santangelo, 2017

uT⌦u = 0

⌦ symmetric stress matrix

↵1,2

↵2,3↵4,1

�1,2�2,3

�4,1

1

2

3

4

Gaussian curvature vanishes at each vertex

u vertical displacements

Page 41: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Self stresses in flat triangulations

“wheel stress”

BGC and Santangelo, 2017

uT⌦u = 0

⌦ symmetric stress matrix

↵1,2

↵2,3↵4,1

�1,2�2,3

�4,1

1

2

3

4

Gaussian curvature vanishes at each vertex()

u vertical displacements

!!

Page 42: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

origami n-vertex configuration space

BGC and Santangelo, 2017

1 2

3

4

5

6

uT⌦u = 0

⌦(n+1)x(n+1) symmetric

stress matrix

u (n+1)-vector of vertical displacements

3-dim kernel from isometries

Page 43: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

origami n-vertex configuration space

Kapovich and Millson, Publ. RIMS Kyoto Univ, 1997

BGC and Santangelo, 2017

1 2

3

4

5

6

uT⌦u = 0

⌦(n+1)x(n+1) symmetric

stress matrix

u (n+1)-vector of vertical displacements

Always exactly one negative eigenvalue!

3-dim kernel from isometries

Page 44: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

origami n-vertex configuration space

Kapovich and Millson, Publ. RIMS Kyoto Univ, 1997

BGC and Santangelo, 2017

1 2

3

4

5

6

uT⌦u = 0

⌦(n+1)x(n+1) symmetric

stress matrix

u (n+1)-vector of vertical displacements

Always exactly one negative eigenvalue!

3-dim kernel from isometries

BGC, Theran and Nixon, 2017

Page 45: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

origami n-vertex configuration space

Kapovich and Millson, Publ. RIMS Kyoto Univ, 1997

BGC and Santangelo, 2017

1 2

3

4

5

6

uT⌦u = 0

⌦(n+1)x(n+1) symmetric

stress matrix

u (n+1)-vector of vertical displacements

Always exactly one negative eigenvalue!

3-dim kernel from isometries

BGC, Theran and Nixon, 2017

Page 46: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

What are the two nappes?

1 2

3

4

5

6

BGC and Santangelo, 2017

Page 47: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

What are the two nappes?

1 2

3

4

5

6

BGC and Santangelo, 2017

Page 48: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

What are the two nappes?

1 2

3

4

5

6

BGC and Santangelo, 2017

Page 49: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

What are the two nappes?

1 2

3

4

5

6

Demaine et al, Proceedings of the IASS, 2016

BGC and Santangelo, 2017

Page 50: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

What are the two nappes?

1 2

3

4

5

6

Demaine et al, Proceedings of the IASS, 2016

Negative eigenvectormaximizes Gaussian curvature

BGC and Santangelo, 2017

Page 51: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

What are the two nappes?

1 2

3

4

5

6

Demaine et al, Proceedings of the IASS, 2016

BGC and Santangelo, 2017

Page 52: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

What are the two nappes?

1 2

3

4

5

6

Demaine et al, Proceedings of the IASS, 2016

BGC and Santangelo, 2017

Page 53: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

What are the two nappes?

1 2

3

4

5

6

Demaine et al, Proceedings of the IASS, 2016

BGC and Santangelo, 2017

Page 54: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

What are the two nappes?

1 2

3

4

5

6

Demaine et al, Proceedings of the IASS, 2016

+

BGC and Santangelo, 2017

Page 55: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

What are the two nappes?

1 2

3

4

5

6

The two nappes correspond to popped up and popped down configurations!

Demaine et al, Proceedings of the IASS, 2016

+

Abel et al, JoCG, 2016; Streinu and Whiteley, 2005

+

BGC and Santangelo, 2017

Page 56: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

1 2

34

5

6

BGC and Santangelo, 2017

Multiple vertex configuration space

Page 57: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

1 2

34

5

6

BGC and Santangelo, 2017

Multiple vertex configuration space

Page 58: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

1 2

34

5

6

Vint = 2 ⇒ 2 wheel stresses

BGC and Santangelo, 2017

Multiple vertex configuration space

Page 59: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

1 2

34

5

6

Vint = 2 ⇒ 2 wheel stresses

BGC and Santangelo, 2017

2 homogeneous quadratic equations in 3 unknowns

Multiple vertex configuration space

Page 60: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

1 2

34

5

6

Vint = 2 ⇒ 2 wheel stresses

BGC and Santangelo, 2017

2 homogeneous quadratic equations in 3 unknowns

Bézout’s theorem: at most 2^2 solutions

Multiple vertex configuration space

Page 61: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

1 2

34

5

6

BGC and Santangelo, 2017

Multiple vertex configuration space

Page 62: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???

Page 63: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???

Page 64: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???

Page 65: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???2^Vint*

Page 66: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

+

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???2^Vint*

Page 67: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

+

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???2^Vint*

+

Page 68: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

+

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???

vertex sign patterns seem to uniquely label

pairs of branches!

2^Vint*

+

Page 69: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???2^Vint*

Page 70: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???2^Vint*

Page 71: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???2^Vint*

Page 72: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???2^Vint*

Yes, if the crease patternis constructed with Henneberg-Imoves from a pair of triangles!

Page 73: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???2^Vint*

Yes, if the crease patternis constructed with Henneberg-Imoves from a pair of triangles!

Demaine et al, Graphs and Combinatorics, 2011

Page 74: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

1 2

34

5

6

BGC and Santangelo, 2017

Exactly 2^Vint solutions ???2^Vint*

Yes, if the crease patternis constructed with Henneberg-Imoves from a pair of triangles!

Demaine et al, Graphs and Combinatorics, 2011

How to show that all vertex sign patterns are realized twice?

Page 75: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeevehttp://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

But how much does a crease pattern really tell us?

Page 76: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeevehttp://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

But how much does a crease pattern really tell us?

# of branches ≤ 2^(Vint)

Page 77: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeevehttp://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

But how much does a crease pattern really tell us?

# of Mountain-Valley choices = 2#creases = 2^(3Vint+1)# of branches ≤ 2^(Vint)

Page 78: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeevehttp://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

But how much does a crease pattern really tell us?

# of Mountain-Valley choices = 2#creases = 2^(3Vint+1)Only a tiny fraction of MV’s can be realized!

# of branches ≤ 2^(Vint)

Page 79: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

Robert Lang Daniel Piker, after Ron Resch, Ben Parker and John Mckeevehttp://spacesymmetrystructure.wordpress.com/2009/03/24/origami-electromagnetism/

But how much does a crease pattern really tell us?

# of Mountain-Valley choices = 2#creases = 2^(3Vint+1)

Maybe we’re in good shape…

Only a tiny fraction of MV’s can be realized!

# of branches ≤ 2^(Vint)

Page 80: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

(a)

(b)

1 2

34

5

67

8

9

(c)

3

21

4

5

678

9

BGC and Santangelo, 2017

Hull and Tachi, J Mechanisms Robotics, 2017Abel et al, JoCG, 2016

Brunck et al, PRE, 2016

One crease pattern with fixed M-V labels : two branches!

Page 81: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

(a)

(b)

1 2

34

5

67

8

9

(c)

3

21

4

5

678

9

BGC and Santangelo, 2017

Hull and Tachi, J Mechanisms Robotics, 2017Abel et al, JoCG, 2016

Brunck et al, PRE, 2016

One crease pattern with fixed M-V labels : two branches!

Page 82: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

(a)

(b)

1 2

34

5

67

8

9

(c)

3

21

4

5

678

9

BGC and Santangelo, 2017

Hull and Tachi, J Mechanisms Robotics, 2017Abel et al, JoCG, 2016

Brunck et al, PRE, 2016

One crease pattern with fixed M-V labels : two branches!

Page 83: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

(a)

(b)

1 2

34

5

67

8

9

(c)

3

21

4

5

678

9

BGC and Santangelo, 2017

Hull and Tachi, J Mechanisms Robotics, 2017Abel et al, JoCG, 2016

Brunck et al, PRE, 2016

One crease pattern with fixed M-V labels : two branches!

Page 84: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

BGC and Santangelo, 2017

(a)

(b)

(c)1 2

34

5

6

7

8

9

1 2

345

6

7

8

9

Same M-V labels, same vertex sign pattern : two branches!

Page 85: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

BGC and Santangelo, 2017

(a)

(b)

(c)1 2

34

5

6

7

8

9

1 2

345

6

7

8

9

Same M-V labels, same vertex sign pattern : two branches!

Page 86: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

BGC and Santangelo, 2017

(a)

(b)

(c)1 2

34

5

6

7

8

9

1 2

345

6

7

8

9

Same M-V labels, same vertex sign pattern : two branches!

Page 87: Geometry of Flat Origami Triangulations · Origami in nature and engineering Saito et al, PNAS 2017 Andresen et al, PRE 2007 Wood et al, Science 2015 J.-H. Na et al., Adv. Mat. 2015

+

Thanks!

NSF PHY-1125915EFRI ODISSEI-1240441

Tom Hull, Louis Theran

2^Vint branches from popping vertices up / down?

The flat state is singular,but self stresses help us navigate…

1 2

34

5

6

7

8

9

Summary:

Do these second-order motions generically extend

to continuous motions?