geodetic very long baseline interferometry (vlbi)

6
Geodetic Very Long Baseline Interferometry (VLBI) A brief Note compiled by: Prof. Madhav N. Kulkarni, IIT Bombay  Since the inception of the Very Long Baseline Interferometry (VLBI) system in 1967, this radio interferometry technique has revolutionised the fields of geodesy, geodynamics and astrometry. With the unprecedented precision and resolution made possible by VLBI various tasks such as geodetic positioning, reference frames interconnections, Earth rotation and polar motion monitoring, estimating the crustal movements, and mapping the extra-galactic radio sources, have attained accuracies of the levels never reached before. Due to its tremendous potential “to provide important new geodetic, geophysical, and astrometric information”  geodetic VLBI “moved from an era of development and demonstration to routine operational activities into a period of refinement, rapid extension, and widespread recognition”. Thus, VLBI is the most precise Geodetic technique available today, with numerous applications in different fields. Basic Principal of VLBI :  The VLBI system consists of an array of two or more dish antennas that observe the radio signals received from the same extragalactic radio source like quasar simultaneously. By observing the difference in times of arrival of the signal at the two locations to a very high degree of accuracy (about 10 -14 to 10 -16 sec), and knowing the angular co-ordinates of the radio source, the baseline vector between the two antennas can be estimated (see Fig.). As no direct connection is required between the two antennas, very long baselines of the order of thousands of km can be observed. Accuracies of the order of few mm in measurements of lengths of such long baselines are routinely achieved, thus making the geodetic VLBI the most precise geodetic technique available today. Historical Background : The distant radio sources like quasars, situated in far-away galaxies at millions of light years from the Earth, emitting radio waves continuously, were discovered in the early part of this country. However, it was only in 1967 that practical implementation of the principle of radio interferometry was established. The early interferometric systems had inter-connected antennas, thus limiting the separation of the antennas to a maximum of few hundred metres, and the resolution of few milliarcseconds (mas). With the need to 1

Upload: others

Post on 03-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Geodetic Very Long Baseline Interferometry (VLBI)

A brief Note compiled by: Prof. Madhav N. Kulkarni, IIT Bombay   Since the inception of the Very Long Baseline Interferometry (VLBI) system in 

1967,   this   radio   interferometry   technique   has   revolutionised   the   fields   of   geodesy, geodynamics  and  astrometry.  With   the  unprecedented  precision  and   resolution  made possible   by   VLBI   various   tasks   such   as   geodetic   positioning,   reference   frames interconnections,   Earth   rotation   and   polar   motion   monitoring,   estimating   the   crustal movements, and mapping the extra­galactic radio sources, have attained accuracies of the levels never reached before. Due to its tremendous potential “to provide important new geodetic, geophysical, and astrometric information”  geodetic VLBI “moved from an era of   development   and   demonstration   to   routine   operational   activities   into   a   period   of refinement,   rapid   extension,   and   widespread   recognition”.   Thus,   VLBI   is   the   most precise   Geodetic   technique   available   today,   with   numerous   applications   in   different fields.

Basic Principal of VLBI :  

The VLBI system consists of an array of two or more dish antennas that observe the   radio   signals   received   from   the   same   extragalactic   radio   source   like   quasar simultaneously. By observing the difference in times of arrival of the signal at the two locations to a very high degree of accuracy (about 10­14   to 10­16  sec), and knowing the angular co­ordinates of the radio source, the baseline vector between the two antennas can   be   estimated   (see   Fig.).   As   no   direct   connection   is   required   between   the   two antennas,   very   long   baselines   of   the   order   of   thousands   of   km   can   be   observed. Accuracies of the order of few mm in measurements of lengths of such long baselines are routinely achieved, thus making the geodetic VLBI the most precise geodetic technique available today.

Historical Background : 

The distant radio sources like quasars, situated in far­away galaxies at millions of light years from the Earth, emitting radio waves continuously, were discovered in the early part of this country. However, it was only in 1967 that practical implementation of the principle of radio interferometry was established. The early interferometric systems had inter­connected antennas, thus limiting the separation of the antennas to a maximum of few hundred metres, and the resolution of few milliarcseconds (mas). With the need to 

1

measure   longer   baselines,   it   became necessary   to   remove   this   inter­connection,   thus giving birth to the VLBI technique. Within the twenty five years of its operation, the VLBI   technique   has   become   one   of   the   most   important   systems   in   the   geodetic, geodynamic, geophysical and astrometric fields.

Instrumentation :

The VLBI instrumentation can be divided into several sub­systems :

i)     VLBI Dish Antenna  ii)    Receiver

iii)   Frequency standardiv)   Recorderv)    Calibration Unitvi)   Correlator

The dish antenna varies in size from the large permanently installed antennas, upto 300 meter in diameter, to the small 5 metre antennas of the mobile VLBI systems. The   antenna   collects   the   weak   radio   signals   from   the   quasar   being   observed,   and continuously tracks the radio source by rotating in space. The front end receiver receives this signal and amplifies it. The frequency standard (atomic clock) used is of rubidium and cesium beam clock type or of hydrogen masers, with stabilities of the order of 1 part in 1014 or better. The signals received are recorded on magnetic tapes and later correlated in the correlator unit for post processing. The system is calibrated for environmental and hardware effects, in order to correct for these effects.

Observables :  

The basic observables in geodetic VLBI are time delay (Difference in the times of arrival of the signal at the two antennas) and time delay rate (time derivative of delay). The time delay observable can be of two types ­ phase delay, based upon phase of the radio signal wave, or group delay. These VLBI observables contain information related to the length and orientation of the baseline (or relative positions of the antennas), the parameters defining the Earth rotation and polar motion, and the atmospheric and other instrumental   effects.   Thus,   it   is   possible   to   estimate   baselines   or   the   Earth   rotation parameters (ERPs) from these VLBI observations, to a very high degree of accuracy.

2

Geodetic Applications :

Due to the very high precision offered by VLBI, the technique has found several important applications in the fields of geodesy, geodynamics geophysics, and astrometry and   astrophysics.   Measurement   of   inter­continental   baselines   to   cm­level   precision, establishment of a world­wide control network of geodetic stations, monitoring the plate tectonic  motion,  Earthquake  prediction,  determination  of   the  ERPs   to  monitor  Earth rotation and polar  motion,  establishment  of  an  inertial   reference,  calibration of  other relative new geodetic systems like the Global Positioning System (GPS), control of scale and orientation of geodetic control networks, etc., are some of the important geodetic applications   of   this   system.   The   VLBI   technique   also   has   some   very   challenging applications in other fields like astrometry, including the study of the Universe and the quasars, pulsars, black bodies etc. VLBI defines and maintains the extra­galactic celestial frame. It holds together the International Celestial and Terrestrial Reference Systems. It provides the long­term monitoring of universal time, precession and nutation. The VLBI antennas used for IERS have diameters ranging from 9 m to 70 m. They are operated in several tens of sites. The precision of observations of the interferometric time delay is 10 picoseconds.   VLBI   defines   and   maintains   the   extragalactic   celestial   frame.   It   holds together  the International Celestial  and Terrestrial  Reference Systems. It  provides  the long­term monitoring of Universal Time, precession and nutation. The VLBI antennas used for IERS have diameters ranging from 9m to 70m. They are operated in several tens of   sites.   The   precision   of   observations   of   the   interferometric   time   delay   is   10 picoseconds.

Future Scenario :

With the rapid advances in the instrumentation, electronics, data processing and adjustment techniques, the field of geodetic VLBI is progressing at  a fast pace. With several geodetic VLBI stations continuously carrying out interferometric observations, and new stations  being  established,   including   the  proposed  geodetic  VLBI station  in India,  and  with  the  array of  mobile  VLBI  instruments  augmenting  this  global  VLBI network, this technique is poised to become the most promising high precision geodetic technique in the near future. With the precision and with VLBI limited mainly by the physical   limitations on  the  length of   the baseline due  to  the size of     the Earth,   it   is proposed to launch dedicated satellites with VLBI antennas in space. This new technique of Space VLBI offers exciting possibilities in geodetic and astrometric applications [See Kulkarni, 1992].

3

Space Very Long Baseline Interferometry (Space VLBI):

Space VLBI is an extension of VLBI into the space, where one or more of the antennas will be mounted on the satellite. This extended baseline improves the resolution of the system, thus enabling the scientists to study stars and galaxies farther than before. Scientists hope to study the galaxies over 18 billion light years away with this system, and as the origin of the Universe is estimated to be about this, it  is likely that signal emitted  18  billion  years   ago,  or  at   the   time of   the   ‘Big  Bang’   can  be   studied,   thus enabling us to virtually ‘see’ the Origin of Universe. The geodetic applications of   this system include orbit determination for the satellites, monitoring Earth rotation, defining Reference Frames, estimating Earth’s gravity field, etc.

The first Space VLBI satellite­VLBI Space Observatory Programme (VSOP) of Japan was launched in 1997, and the second satellite­RADIOASTRON of Russia is in final stages. Second generation SVLBI missions under planning by NASA, ESA, Japan, Russia, etc. Space VLBI Study Groups all over the world are involved in intense research activities for analysis of data from these satellites.

The Geodetic  Space  VLBI Study Groups are now  in  the process  of   software development and Data analysis for geodetic applications. At the Ohio State University, Columbus, USA, Dr. Jozsef Adam carried out theoretical research in 1990, in a NASA­funded research project under the guidance of Prof. Ivan I. Mueller, followed by software development   and   computer   simulation   by   Dr.   Madhav   Kulkarni   in   1990­92,   which established the utility of the Space VLBI as a Geodetic tool. Later, Adam and Kulkarni investigated the orbit determination capability of Space VLBI data in 1993 at the Satellite Geodetic Observatory (SGO), Hungary. SGO has now formed an international project named  Geodesy  Demonstration  Experiment   (GEDEX)   for   this  purpose.  A  total  of  7 scientists’ team, headed by Dr. Kulkarni, initiated the software development for GEDEX at SGO in 1997, and the work is still continuing. The success of GEDEX would lead to the future applications of Space VLBI in other Geodetic fields as well. The GEDEX is likely to continue till 2010, and may be extended beyond that, depending on the results obtained. In India, even though no Space VLBI research group exists, some scientists, from National Centre for Radio Astronomy (NCRA), TIFR, Pune, and Physical Research Labs.(PRL), Ahmedabad, etc. are involved in the international research projects in this field.

4

Principle of Geodetic VLBI

   

The 305 metre VLBI Antenna in USA The 6 metre VLBI Antenna at Wettzell, Germany

5

          

The 20 metre VLBI Antenna at Wettzell, Germany                       The 34 metre VLBI Antenna at Wettzell, Germany       

6