geobiology 2007 lecture 10dspace.mit.edu › bitstream › handle › 1721.1 › 53742 › 12...nama...

61
Geobiology 2007 Lecture 10 The Biogeochemical Carbon Cycle Readings: Assigned Reading: Stanley Chapter 10, pp 221-244 Kump et al., Chap. 7 Hayes, J. M., Strauss, H. & Kaufman, A. J.., 1999. The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma Chem. Geol. 161, 103–125. Kerr R.A. 2005. The story of O2. News focus article from Science 308, 1730 (MIT Server) Catling et al., 2005. Astrobiology 5, 415 Other readings: Logan G.A., Hayes J.M., Hieshima G.B. and Summons R.E., 1995, Terminal Proterozoic reorganisation of biogeochemical cycles. Nature 376, 53-56. Rothman D. H., Hayes J. M., and Summons R. E., 2003, Dynamics of the Neoproterozoic carbon cycle. Proceedings of the National Academy of Science (USA) 100, 8124-8129. Acknowledgements: John Hayes and Dan Rothman who provided figures used in this lecture

Upload: others

Post on 01-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Geobiology 2007 Lecture 10The Biogeochemical Carbon Cycle

    Readings: Assigned Reading:Stanley Chapter 10, pp 221-244Kump et al., Chap. 7Hayes, J. M., Strauss, H. & Kaufman, A. J.., 1999. The abundance of 13C in marine

    organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma Chem. Geol. 161, 103–125.

    Kerr R.A. 2005. The story of O2. News focus article from Science 308, 1730 (MIT Server)

    Catling et al., 2005. Astrobiology 5, 415

    Other readings: Logan G.A., Hayes J.M., Hieshima G.B. and Summons R.E., 1995, Terminal

    Proterozoic reorganisation of biogeochemical cycles. Nature 376, 53-56.Rothman D. H., Hayes J. M., and Summons R. E., 2003, Dynamics of the

    Neoproterozoic carbon cycle. Proceedings of the National Academy of Science (USA) 100, 8124-8129.

    Acknowledgements: John Hayes and Dan Rothman who provided figures used in this lecture

  • Geobiology 2006 Lecture 9The Biogeochemical Carbon Cycle

    Need to know: • Elements of the geological C-cycle and exogenic or

    biological (ocean/atm/biology) C-cycle that affect carbon burial

    • ‘Idealized’ redox structure of the surface environment• Concept of mass balance and use of isotopic data to

    model C-cycle over different timescales• What this tells us about progressive oxygenation of the

    crust/atm/ocean• Excursions in the δ13C record of inorganic carbon,

    concept of ‘oxidation’ events and significance for biology

  • Geobiology 2006 Lecture 9The Biogeochemical Carbon Cycle

    • Isotopes are fractionated during chemical and physical equilibrations and during enzyme mediated reactions

    • Patterns in the distributions of C, H, N, S &O isotopic tracers can be related to uptake mechanisms (assimilation), energy-yielding redox reactions (dissimilation) and biosynthetic processes

    • Patterns in the distributions of C, H, N, S &O isotopic tracers in rocks can be understood by analogies to modern processes

  • Courtesy Sam Gon III. Image from Wikimedia Commons, http://commons.wikimedia.org.

  • LifeLife’’s History on Earths History on EarthProkaryote

    World

    1

    Multi-cell Life

    0.1 Humans

    0.01First

    EukaryotesFirst

    Invertebrates

    P O2(

    atm

    )

    GOE0.001

    0.0001

    0.000014.5 4 3.5 3 2.5 2

    Time before Pre1.5 1 0.5

    sent (Ga)0

  • © JM Hayes Courtesy John Hayes. Used with permission.

  • © JM Hayes Courtesy John Hayes. Used with permission.

  • 100-10-20-30

    Carbon Input

    CO HCO2 3=

    Microorganisms

    0.80.2

    Kinetic Isotope Effect

    Crustal Average

    Isotopic Mass Balance of Crustal Carbon Reservoirs

    C13δ

    Reduced Carbon

    Carbonate

    (Des Marais, 2002)Courtesy of Dave Des Marais, NASA Ames. Used with permission.

  • © Rothman et al., 2005 Courtesy of Dan Rothman. Used with permission.

  • Image removed due to copyright restrictions.

    Please see Fig. 2 in Shields, Graham, and Veizer, Ján. “Precambrian marine carbonate isotope database: Version 1.1.”Geochemistry Geophysics Geosystems 3 (June 6, 2002): 12 pages.

    © Rothman et al., 2005 Courtesy of Dan Rothman. Used with permission.

  • © JM HayesMarine Isotopic Signals

    800Ma-presentCourtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

    Courtesy John Hayes. Used with permission.

  • Courtesy of Dan Rothman. Used with permission.

  • © JM Hayes

    δi

    ε

    f

    Courtesy John Hayes. Used with permission.

  • © JM Hayes Courtesy John Hayes. Used with permission.

  • Marine Isotopic Signals 150Ma-present

    Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

    Courtesy John Hayes. Used with permission.© JM Hayes

  • Courtesy of Dan Rothman. Used with permission.

  • Massive Mesozoic-Cenozoic Seven Sisters Fossils (East Sussex) Plankton Deposits

    Chl a+c PhytoplanktonDiatoms

    DinoflagellatesCoccolithophorids

    Courtesy Dan Taylor. Image from Wikimedia Commons, http://commons.wikimedia.org.

    White Cliffs of Dover

    Courtesy NASA

    Diatomaceous Earth Mine,Kenya

    SeaWiFS views a phytoplankton bloom near the Grand Banks of Newfoundland.

    Courtesy Adrian Barnes© J Waldbauer

  • © JM Hayes

    So, how did it all start?

    Courtesy John Hayes. Used with permission.

  • Biogeochemical C Cycles before O2 PhotosynthesisFluxes, x 1012 Moles per Year

    0 - 10

    10 - 10

    10 - 10

    10 - 10

    3

    3 8

    6 9

    7 9

    Cycle Timescales, years

    ?>20

    20Metamorphic and Igneous

    Reduced Carbon

    Mantle Carbon

    4

    Marine HCO3-

    Carbo-nates

    >15

    Marble

    16

    CO : Sea,Atm.

    2

    Fresh Organic Matter

    Sedimentary Organic Matter

    ~40

    ~40-?

    Courtesy of Dave Des Marais, NASA Ames. Used with permission.

  • Biogeochemical Carbon CycleFluxes, x 10 Moles per Year12

    0 - 10

    10 - 10

    10 - 10

    10 - 10

    3

    3 8

    6 9

    7 9

    Cycle Timescales, years

    10

    C13-40 -30 -20 -10 0 +10

    10 960

    6

    2

    45

    Metamorphic and Igneous Reduced Carbon

    Mantle Carbon

    0.4

    2

    Marine HCO3-

    Carbo- nates

    50

    Marble

    1.6

    CO : Sea,Atm.

    2

    Fresh Organic Matter

    Sedimentary Organic Matter

    9000

    8990

    (Des Marais, 2001)Courtesy of Dave Des Marais, NASA Ames. Used with permission.

  • © JM Hayes Courtesy John Hayes. Used with permission.

  • © JM Hayes Courtesy John Hayes. Used with permission.

  • LifeLife’’s History on Earths History on EarthProkaryote

    World

    1

    Multi-cell Life

    0.1 Humans

    P O2(

    atm

    ) 0.01 First EukaryotesDinosaursFirst

    Invertebrates

    0.001

    0.0001

    0.000014.5 4 3.5 3 2.5

    Time befo2

    re Pre1.5 1 0.5 0

    sent (Ga)

  • *

    (Des Marais, 2001)

    -1.0-2.0-3.0-4.0-4.0-70-60-50-40-30-20-10

    01020

    C13δ

    Carbon Isotopic Recordin Sedimentary Carbonates and Organic Matter

    Age, Ga

    Organics

    Oxidized Paleosols

    BIF Disappear

    Carbonates

    Courtesy of Dave Des Marais, NASA Ames. Used with permission.

  • C-Cycle Models; Des Marais et al., 1992, Carbon Isotopic Evidence for Stepwise Oxidation of the Proterozoic Environment. Nature 359, 605

    εp for well-preserved organic matter

    and modeled using a moving 30Ma window

    In steady state, and assuming δ ~ δa

    δi = f * δo – (1-f) δo

    δa = δi + f * ε

    Image removed due to copyright restrictions.

    Please see Fig. 2 in Des Marais, David J., et al. “Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment.”Nature 359 (October 15, 1992): 605-609.

  • C-Cycle Models; Des Marais et al., 1992, Carbon Isotopic Evidence for Stepwise Oxidation of the Proterozoic Environment. Nature 359, 605

    and modeled using a 200 or 100 Ma running average

    evidence for changes in f over time

    Image removed due to copyright restrictions.

    Please see Fig. 3 in Des Marais, David J., et al. “Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment.”Nature 359 (October 15, 1992): 605-609.

  • C-Cycle Models; Des Marais et al., 1992, Carbon Isotopic Evidence for Stepwise Oxidation of the Proterozoic Environment. Nature 359, 605

    Evidence for an increasing crustal inventory of Corg

    Image removed due to copyright restrictions.

    Please see Fig. 4 in Des Marais, David J., et al. “Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment.”Nature 359 (October 15, 1992): 605-609.

  • Ocean RedoxStates through

    Time

    The first order approximation

    Image removed due to copyright restrictions.

    Please see Fig. 2 in Shields, Graham, and Veizer, Ján. “Precambrian Marine Carbonate Isotope Database: Version 1.1.”Geochemistry Geophysics Geosystems 3 (June 6, 2002): 12 pages.

    Figure by MIT OCW.

    Major Divisions of Earth History

    I II III

    Sola

    r Sys

    tem

    For

    mat

    ion

    Late

    Hea

    vy B

    omba

    rdm

    ent

    Earli

    er S

    now

    ball

    Epis

    odes

    Late

    r Sno

    wba

    ll Ep

    isod

    es

    Archean Proterozoic Phanerozoic

    pO2 < 0.002 pO2 > 0.03 pO2 > 0.2bar bar bar

    ferrousoceans

    sulfidicoceans

    oxicoceans

    cyano-bacteria

    algae,protists

    complexanimals& plants

    5.0 4.0 3.0 2.0 1.0 0.0

  • © JM HayesMarine Isotopic Signals

    800Ma-presentCourtesy John Hayes. Used with permission.

  • Courtesy of Dan Rothman. Used with permission.

  • δa (inorganic carbon) for the past 800Ma (Hayes et al., 1999)

  • Courtesy of Dan Rothman. Used with permission.

  • Courtesy of Dan Rothman. Used with permission.

  • Steady State Carbon Burial Model

    Sedimentδa δo

    δi Oceanδ

    In steady state, and assuming δ ~ δaδi = f * δo – (1-f) δoδa = δi + f * ε Where ε = δa – δo

    weathering volcanism

    Courtesy of Dan Rothman. Used with permission.

  • A Carbon Cycle with Two Timescales

    Sedimentδa δo

    δi Oceanδ1, τ1 δ2, τ2δ2− ε

    δ2weathering volcanism

    inorganic-C organic-C

    Courtesy of Dan Rothman. Used with permission.

  • A Carbon Cycle with Two Timescales

    Sedimentδa δo

    δi Oceanδ1, τ1 δ2, τ2δ2− ε

    δ2weathering volcanism

    inorganic-C organic-C

    Courtesy of Dan Rothman. Used with permission.

  • A Carbon Cycle with Two Timescales

    δa

    δo

    δi δ1, τ1 δ2, τ2

    δ2−ε

    δ2weathering, volcanism

    carbonate carbon

    organic carbon

    Courtesy of Dan Rothman. Used with permission.

  • Courtesy of Dan Rothman. Used with permission.

  • A Biogeochemical Model of the Proterozoic Ocean

    Image removed due to copyright restrictions.

    Please see Fig. 3a in Logan, Graham A., et al. “Terminal Proterozoic Reorganization of Biogeochemical Cycles.” Nature 376 (July 6, 1995): 53-56.

  • After Ventilation

    Image removed due to copyright restrictions.

    Please see Fig. 3b in Logan, Graham A., et al. “Terminal Proterozoic Reorganization of Biogeochemical Cycles.” Nature 376 (July 6, 1995): 53-56.

  • Text removed due to copyright restrictions.

    Please see Julian Cribb, “Faeces rain spawned humans,” The Australian, July 7, 1995.

    and

    Deborah Smith, “Scientists May Have Found the Origin of the Faeces,” The Sydney Morning Herald, July 7, 1995.

  • © JM Hayes Courtesy John Hayes. Used with permission.

  • f organic-C buried

    13C fractionationεTOC

    Carbon Isotopic Excursions 800-500Ma

    δ13C limestones

    δ13C marine organic matter

    More complete sediment record

    +

    Improved chronology

    =

    More detailed picture showing abrupt and extreme C-isotopic shifts

    750 Ma 720 Ma 580 Ma

    Marinoan/Varangerglacial(s)

    Sturtianglacial(s)

    Image courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

    Courtesy of Dan Rothman. Used with permission.

    http://www.sciencedirect.com

  • Composite carbon isotopic curve for the Neoproterozoic compared to glacial intervals and absolute geochronology

    Varanger Glaciation

    1000

    0

    δ13C (VPDB)-10 -5 0 5 10

    Arth

    ropo

    dsCambrian

    Vendian

    Edia

    cara

    531

    U-Pbages(Ma)

    543.3 1+_

    545.1 1+_

    548.1 1+_

    580?

    Spin

    y pl

    ankt

    on

    650

    +_746 2+_758 4

    +_827 6

    Stra

    tigra

    phic

    thic

    knes

    s(c

    omm

    on sc

    ale

    exce

    pt a

    rbitr

    ary

    for g

    laci

    atio

    n)

    -10 -5 0 5 10

    Seawater proxy δ13Ccarb850-530 Ma

    MoroccoAdoudounian FormationMagaritz et al. (1991)A.C. Maloof (unpubl.) SiberiaTurkut FormationBartley et al. (1998) NamibiaNama GroupSaylor et al. (1998) AustraliaWonoka FormationCalver (2000) OmanHuqf Group - Shuram FmBurns and Matter (1993) NamibiaOtavi GroupHalverson and Hoffman (2003)

    SvaibardAkademikerbreen GroupHalverson (2003) AustraliaBitter Springs FormationHill and Walter (2000)

    Compilation modified fromHalverson (2003: in prep.)

    Marinion Glaciation

    Sturtian Glaciation NamibiaGariep GroupFolling and Frimmel (2002)"

    Figure by MIT OCW.

  • Paradigm• The C-cycle has evolved radically through

    time• Prior to 2.2 Ga anaerobic prokaryotes

    dominated; wide spread of δorg (δo) values; oxygenic photosynthesis extant but oxygen remained low as sinks >> sources

    • Mantle may have been an important sink for oxidising power (Cloud/Holland)

    • Extreme δcarb(δa) values around 2.2 Gaprobably signify the ‘GOE’ and rise to prominence of aerobes; Decreased spread of δorg (δa) values may reflect dominance of aerobic autotrophs and reductive pentose (Benson-Calvin; C3) cycle

  • Paradigm• Although ample evidence for aerobes, the

    abundance of O2 in atm and ocean remained low (sulfidic ocean) until another major oxidation event caused a second ‘reorganization’ In the Neoproterozoic. This was also signified by extreme δafluctuations.

    • The Neoproterozoic ‘reorganization’ led to pO2 rising to near PAL allowing animals to flourish and stabilizing the new regime (Hayes, Rothman, Summons et al.)

    • Environmental evolution reflected changes in the balance between thermal, crustal, atmospheric & biological processes

  • Fig. 1 in Fike, D. A., et al. "Oxidation of the Ediacaran Ocean." Nature 444 (December 7, 2006): 744-747. Courtesy of Nature. Used with permission.

  • © JM Hayes Phanerozoic coupling of C- and S-cyclesCourtesy John Hayes. Used with permission.

  • © JM Hayes Phanerozoic coupling of C- and S-cyclesCourtesy John Hayes. Used with permission.

  • Fractionation of C-Isotopes during AutotrophyPathway, enzyme React & substr Product ε ‰ OrganismsC3 10-22Rubisco1 Rubisco2 PEP carboxylasePEP carboxykinase

    CO2 +RUBPCO2 +RUBP

    -HCO3 +PEPCO2 +PEP

    3-PGA x 23-PGA x 2oxaloacetateoxaloacetate

    30222

    plants & algaecyanobacteriaplants & algaeplants & algae

    C4 and CAM 2-15PEP carboxylaseRubisco1

    -HCO3 +PEP CO2+RUBP

    oxaloacetate3-PGA x 2

    230

    plants & algae (C4)

    Acetyl-CoACO dehydrogPyruvate synthasePEP carboxylasePEP carboxykinase

    CO2 + 2H+ CoASHCO2 + Ac-CoA

    -HCO3 +PEPCO2 +PEP

    AcSCoApyruvateoxaloacetateOxaloacetate

    15-3652

    2

    bacteria

    Reductive or reverse TCA

    CO2 + succinyl-CoA (+ others)

    α-ketoglutarate

    4-13 Bacteria espgreen sulfur

    3-hydroxypropionate HCO3- + acetylCoA

    Malonyl-CoA Green non-S

  • 0

    10

    0 10 20 30 40 50

    0

    10

    0

    10

    0

    10

    Reduct ive TCA Cycle

    Reduct ive Acetyl CoA Pathway

    Reduct ive Pentose Phosphate Cycle

    3 -Hydroxypropionate Cycle

    Numberof Taxa

    Δδ C Compiled by C. House13Courtesy of Dave Des Marais, NASA Ames. Used with permission.

  • © JM HayesCourtesy John Hayes. Used with permission.

  • © JM Hayes Isotopic RelativitiesCourtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.Courtesy John Hayes. Used with permission.

  • © JM Hayes Courtesy John Hayes. Used with permission.

  • © JM HayesCourtesy John Hayes. Used with permission.

  • Total Global Bacteria: 4 - 6 x 1030 Cells

    Elemental Inventories, 10 g

    TerrestrialBacteria Bacteria/Plantsplants

    C

    N

    P

    350 - 550 560 0.6 - 1

    85 - 130 10 8.5 - 13

    9 - 14 1 9 - 14

    Number Division PercentageLocation

    Soil

    TerrestrialSubsurface

    1030 Cells Time, yrs of Total

    0.26 2.5 5

    1.4 1500 27

    Open Ocean

    OceanicSubsurface

    0.12 0.02 - 0.8 2

    3.5 1500 67

    15

    Figure by MIT OCW.

  • © JM Hayes Courtesy John Hayes. Used with permission.

  • © JM Hayes Courtesy John Hayes. Used with permission.

    Geobiology 2007 Lecture 10�The Biogeochemical Carbon CycleGeobiology 2006 Lecture 9�The Biogeochemical Carbon CycleGeobiology 2006 Lecture 9�The Biogeochemical Carbon CycleCarbon Isotopic Excursions �800-500MaParadigmParadigmFractionation of C-Isotopes during Autotrophy