geo387-radiation-1estimate the solar irradiance at the top of the earth’s atmosphere: • we know...

24
Ch. 4 Radia*on Text: Wallace and Hobbs, Ch. 4, Radia*ve Transfer p113152

Upload: others

Post on 03-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Ch.  4  Radia*on    

Text:  Wallace  and  Hobbs,  Ch.  4,  Radia*ve  Transfer  p113-­‐152  

Page 2: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

•  Radiation can be viewed as a ensemble of electromagnetic waves propagating at the speed of light, c*=2.998X108 m/s.

•  The wave length (λ), wave frequency( ) and wave number υ obey the following relationships:

4.1  The  spectrum  of  radia*on:  

˜ v

υ =1/λ˜ v = c*υ = c* /λ

Page 3: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

4.2 Radiance, irradiance, and flux

•  Radiance: monochromatic or spectral intensity, I: the radiative energy transferred in a specific direction through a unit area (normal to the direction considered) per unit time at a specific wavelength (or wave number).

•  Q: Does Iλ vary with incident •  angle and wavelength?

Iλ = Iλdλλ1

λ2∫radiance also can be expressed as a function of frequencyIυ = λ2Iλ

Page 4: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Flux density-irradiance •  Monochromatic flux density or

irradiance: rate of radiative energy transfer per unit area with a given wave length through a plane surface with a specified orientation in 3D space (integrated incoming radiance for all directions).

•  Q: Is Fλ zenith and azimuth angle dependent?

Fλ = Iλ2π∫ cosθdω

where dw is an elemental arc of soild angle, θ is the anglebetween the incident radiaton and the direction normal to dA, the surface.cosθ : intensity dilution due to slanted orientationrelative to the surface €

If Iλ is isotropic, then

Fλ = Iλ2π∫ cosθdω = Iλ cosθ sinθdθdϕθ =0

π / 2∫

φ =0

2π∫

= 2πIλ cosθ sinθdθθ =0

π / 2∫ = −2πIλ

12

cosθ( )2 |0π / 2

= πIλ

Zenith  angle:  θ

dA  

azimuth  angle:  φ

Page 5: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

What  is  the  difference  between  radiance  and  irradiance?  

•  Radiance:  wavelength  and  angle  dependent  •  Irradiance:  wavelength  dependent,  integrated  over  all  direc*ons.  

Page 6: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Estimate the solar irradiance at the top of the earth’s atmosphere:

•  We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth is 1.50X1011 m. What would be the solar irradiance at the top of the earth’s atmosphere at the zenith?

At the top of the earth's atmosphere

Fso = Isoδω∫ cosθdω because δω is small

Fso = Iso cosθδω ⇒ Fso = Isoδω at zenithThe fraction of the sky (the solid angle) is

occupied by the sun : δω2π

=πRs

2

2πd2

Fso = Isoδω = IsoπRs

2

d2

= 2.00 ×107Wm−2sr−1 × 3.14 7.00 ×108m1.50 ×1011m⎛

⎝ ⎜

⎠ ⎟

2

sr

=1368Wm−2

earth  

d  

2πd2  

The  solar  irradiance  at  the  top  of  the  earth’s  atmosphere  at  the  zenith  is  1368  W/m2.    

Page 7: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

4.3  Blackbody  radia*on  

•  What is a blackbody? –  A surface that completely absorbs all

incident radiation. A blackbody also emits 100% of the absorbed radiation and it’s radiation is isotropic.

–  Radiation emitted by a blackbody is determined by it’s surface temperature as described by three laws:

–  The Plank’s law –  The Wien’s law –  The Stefan-Boltzmann’s law

Nothing  reflects  back-­‐black  

Page 8: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

The Planck’s function:

•  What is the planck’s function? –  The spectrum and wavelength

of maximum radiative energy emitted by a blackbody is determined solely by its temperature.

Bλ (T) =c1λ

−5

π (ec2 /λT −1)

where C1 = 3.74 ×1016 Wm-2,C2 =1.45 ×10-2 mKλ : wavelength, T : temperature, Bλ : radiance of emitted by the blackbody

Page 9: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

•  The  wavelength  of  peak  emission  for  a  blackbody  is  inversely  related  to  the  surface  temperature  of  the  blackbody,  λm=2897/T  –  Where  λm  is  wavelength  in  unit  of  µm,  T  is  temperature  in  unit  of  K.  

•  Q:  If  you  were  an  alien  travel  through  the  solar  system.      •  a)  You  first  spot  the  earth  and  measured  that  the  wavelength  of  maximum  emission  at  11.4  µm.    

What  would  be  the  effec*ve  temperature  of  earth’s  atmosphere?    (effec*ve  temperature  is  the  temperature  corresponding  to  the  maximum  emission);    

•  b)  As  you  con*nued  to  travel,  you  measured  the  wavelength  of  peak  emission  of  the  Mars  at  13.4  µm.    What  would  be  the  effec*ve  temperature  of  Mar’s  atmosphere?    

The  Wien’s  displacement  Law  

Page 10: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

•  The  wavelength  of  peak  emission  for  a  blackbody  is  inversely  related  to  the  surface    temperature  of  the  blackbody,  λm=2897/T  

•  Q:  If  you  were  an  alien  first  spot  the  earth  and  you  measured  that  the  wavelength  of  maximum  emission  at  11.4  µm.    What  is  the  effec*ve  temperature  of  earth’s  atmosphere?    (effec*ve  temperature  is  the  temperature  corresponding  to  the  maximum  emission)  –  Based  on  Wien’s  law,  T=2897/λm=2897/11.4=254K  for  the  earth  –  T=2897/13.4=216K  for  Mars’  atmosphere.  

The  Wien’s  displacement  Law  

Page 11: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

The  Stefan-­‐Boltzman  Law:  •  The  blackbody  flux  density  (irradiance)  integrated  over  all  wavelengths  using  the  Planck  func*on,  F,  is  propor*onal  to  T4.  F  =σ  T4                      

where  σ=5.67X10-­‐8  Wm-­‐2K-­‐4,  T:  temperature  in  K.  

The  Stefan-­‐Boltzman  law  is  commonly  used  in  es*mate  radia*ve  energy  balance  because  its  simple  rela*on  with  T.  

Page 12: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Exercise:  

•  The  effec*ve  temperature  of  the  Venus  atmosphere  is  225K.      – A)  What  is  the  radia*ve  energy  emihed  by  the  Venus  atmosphere?  

– B)  The  solar  irradiance  at  the  top  of  the  Venus  atmosphere  is  2639  W/m2.  How  much  solar  radia*on  has  to  be  reflected  in  order  to  balance  the  radia*ve  energy  emihed  by  the  Venus  atmosphere?  

Page 13: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Exercise:  •  The  effec*ve  temperature  of  the  Venus  atmosphere  is  225K.      

–  A)  What  is  the  radia*ve  energy  emihed  by  the  Venus  atmosphere?  

–  B)  The  solar  irradiance  at  the  top  of  the  Venus  atmosphere  is  2639  W/m2.  How  much  solar  radia*on  has  to  be  reflected  in  order  to  balance  the  radia*ve  energy  emihed  by  the  Venus  atmosphere?  

a) Based on the Stefan - Boltzman law :Femit =σT4 = 5.67X10−8Wm−2K −4 × (2.25 ×102K)4

=145 Wm−2

Venus atmosphere emits 145 Wm-2 longwave radiative energy

b) The solar radiation absorbed by the Venus' atmosphere hasto be balanced by the longwave emission. Thus

Fs(1− a)⋅ πRv2 = 4πRv

2Femit ⇒ α =1- 4FemitFs

=1− 4X145Wm2

2639Wm2 = 0.78

78% of the solar radiation has to be reflected back to space to balancelongwave emission by the Venus' atmosphere.

Page 14: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Non-­‐blackbody:  

•  Earth’s  atmosphere  and  surface  is  not  exactly  a  blackbody.  Earth  emits  on  average  about  61%  of  the  absorbed  radia*on.  

•  Emissivity,  ελ=Iλ/Bλ(T) –  The ratio of emitted radiation intensity vs. that corresponding

to the blackbody radiation. •  Reflectivity, Rλ=Iλ(reflected)/Iλ(incident) –  The ratio of reflected radiation intensity vs. that of incident

radiation. •  Transmissivity, Tλ=Iλ(transmitted)/Iλ(incident)  

Page 15: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

•  The  Kirchhoff’s  law:  the  emissivity  must  equal  to  the  absorp*vity  to  maintain  radia*ve  equilibrium  at  each  and  all  wavelengths.    

Ελ=αλ      

•  Kirchhoff’s  law  is  applicable  to  gases  below  al*tude  of  60  km,  where  frequency  of  molecular  collision  >>  frequency  of  molecular  absorb  and  emit  radia*on.  

Page 16: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

The Greenhouse effect:

•  How  does  greenhouse  effect  increases  the  surface  temperature?  

•  Conceptually,  we  can  approximately  treat  the  earth’s  atmosphere  as  mul*ple  isothermal  layers  that  let  sun  light  penetrate  through  but  trap  all  infrared  radia*on.      

•  The  more  layers  we  have,  the  stronger  the  greenhouse  effect  is  on  the  surface  temperature.  

F   F  

F

T

Te  

T(z)  

z

F  

Surface  receives  heat  of  2F  

F

T

Te2  

T(z)  

z  F  

Surface  receives  heat  of  3F  

F  

F  

2F  

Te1  

2F  3F   3F  

F  

Page 17: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

F   F  

F

T

Te  

T(z)  

z

F  

Surface  receives  heat  of  2F  

F

T

Te2  

T(z)  

z  

F  

Surface  receives  heat  of  3F  

F  

F  

2F  

Te1  

2F   3F  

Exercise:      Calculate  the  surface  effec*ve  temperature  assuming      

a)  the  atmosphere  is  one  isothermal  layer;    

b)  the  atmosphere  is  approximately  two  isothermal  layers,  respec*vely.          Assuming  that  the  incident  solar  radia*on  is  342  W/m2  at  the  top  of  the  atmosphere.  30%  of  it  is  reflected  back  to  space  by  the  earth.      Assuming  the  isothermal  layers  and  the  surface  act  like  blackbodies.      

Page 18: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

a) If the atmosphere were one isothermal layer :Fsfc,a↓ = 2Fs(1− 0.3) =σTsfc,a

4

Tsfc,a =2Fs⋅ 0.7

σ

⎝ ⎜

⎠ ⎟

1/ 4

=2X0.7X342W /m2

5.67 ×10−8W /m2 /K 4

⎣ ⎢

⎦ ⎥

1/ 4

= 303K

b) If we approximately treat the atmosphere as two isothermal layers : Fsfc,b↓ = 3Fs(1− 0.3) =σTsfc,b

4

Tsfc,b =3Fs⋅ 0.7⋅ 0.9

σ

⎝ ⎜

⎠ ⎟

1/ 4

=3X0.7X342W /m2

5.67 ×10−8W /m2 /K 4

⎣ ⎢

⎦ ⎥

1/ 4

= 335Kmulti − isothermal layers with greenhouse gases are very effective in trapping longwave radiation and leadingto warmer surface temperature.

Page 19: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Discussion:  

•  Tsfc,a=303K  for  one  isothermal  layer  •  Tsfc,b=335K  for  two  isothermal  layers  

Why  are  these  es*mated  Tsfc  values  much  higher  than  observed  global  mean  Tsfc=288K?  

Page 20: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Discussion:  •  Tsfc,a=303K  for  one  isothermal  layer  •  Tsfc,b=335K  for  two  isothermal  layers  

Why  are  these  es*mated  Tsfc  values  much  higher  than  observed  global  mean  Tsfc=288K?  

•  Energy  leaked  through  the  atmospheric  window  is  not  accounted  for.  •  Atmospheric  absorp*on  change  with  height.  •  In  reality,  the  surface  solar  radia*on  is  balanced  by  latent  and  sensible  heat  flux,  in  

addi*on  to  the  longwave  radia*on.  •  When  surface  T  become  sufficiently  high,  lapse  rate  become  unstable  and  

convec*ve  adjustment  will  reduce  surface  temperature  to  neutral  lapse  rate.  

Page 21: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Discussion:  

•  Climate skeptics claims that a further increase of greenhouse gases would not increase surface temperature because CO2 absorption is saturated in the troposphere. However, observations have shown a strong increase of CO2 in the upper troposphere, where CO2 absorption is not saturated. Do you think that a further increase of CO2 would increase the surface temperature? Why or why not?

Source:  Charles  Jackson’s  Tech  talk,  F09  

Page 22: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Summary-­‐1:  •  What  are  differences  between  radiance,  irradiance,  and  radia*ve  flux?  – Radiance  is  the  radia*ve  energy  transmihed  in  a  specific  direc*on  at  a  specific  wavelength  per  unit  area  and  *me  interval.    The  unit  is  W/m2/Sr.  It  is  wavelength,  zenith  and  azimuth  angle  dependent.  

–  Irradiance:  radiance  integrated  over  all  incident  angles  (direc*ons).    It  is  wavelength  dependent.  

– Radia*ve  flux:  irradiance  integrated  for  all  wavelengths.    

Page 23: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Summary-­‐2:  •  What  is  blackbody?  What  determines  the  emission  of  radia*ve  energy  for  a  blackbody?  – A  blackbody  is  an  object  absorbs  all  incident  radia*on  and  emit  all  the  absorbed  radia*on.  

– The  wavelength  of  maximum  emission  and  total  radia*ve  flux  emihed  by  a  blackbody  is  a  func*on  of  its  surface  temperature,  following  the  Planck’s  func*on,  Wien’s  Law  and  Stefan-­‐Boltzman’s  law.  

Page 24: GEO387-Radiation-1Estimate the solar irradiance at the top of the earth’s atmosphere: • We know that solar radiance is 2.00X107 W/m2/sr, the distance between the sun and the earth

Summary-­‐3:  •  What  is  the  greenhouse  effect?  –  The  greenhouse  effect  is  due  to  absorp*on  and  re-­‐emission  of  the  longwave  radia*ve  energy  by  greenhouse  gases.    These  trace  gases  allow  solar  radia*on  pass  through  the  atmosphere,  but  opaque  for  longwave  radia*on  emihed  by  the  earth’s  surface.  

– How  does  increase  of  greenhouse  gases  increase  the  surface  temperature?  

   It  increases  temperature  in  the  upper  troposphere,  which  in  turn,  increases  downwelling  longwave  radia*on  (F~Te4),  and  warm  the  surface  temperature.