genetics and breeding of groundnut -...

59
Faujdar Singh and D.L. Oswalt International Crops Research Institute for the Semi-Arid Tropics Patancheru, Andhra Pradesh 502 324, India 1991 Skill Development Series no. 4 Compiled by Genetics and Breeding of Groundnut ICRISAT Human Resource Development Program

Upload: others

Post on 24-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Faujdar Singh and D.L. Oswalt

International Crops Research Institute for the Semi-Arid Tropics Patancheru, Andhra Pradesh 502 324, India

1991

Ski l l Development Series no. 4

Compiled by

Genetics and Breeding of Groundnut

ICRISAT

Human Resource Development Program

Page 2: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod
Page 3: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Genetics and Breeding of Groundnut

Compiled by

Faujdar Singh and D.L. Oswalt

Skill Development Series no.4

International Crops Research Institute for the Semi-Arid Tropics Patancheru, Andhra Pradesh 502 324, India

1991

Human Resource Development Program

ICRISAT

Page 4: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Human Resource Development Program

Publications in this Skill Development Series (SDS) are issued semiformally for limited distribution to program participants, colleagues, and collaborators. Copies may be requested by the SDS number. Constructive criticism from readers is welcomed by: Program Leader, Human Resource Development Program, ICRISAT.

Information has been taken from published and unpublished reports. This publication should not be cited as a reference.

Comments, suggestions, and encouragement from Dr S.N. Nigam, Dr S.L. Dwivedi, Dr A.K. Singh, Dr D. McDonald, and Dr Y. L. Nene for compiling this document are gratefully acknowledged. T h a n k s to Mr S.V. Prasad Rao and Mrs Jagatha Seetharaman for computerization of this m a n u s c r i p t .

Acknowledgements

Page 5: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

CONTENTS

Introduction 5

Genetic Studies in Groundnut 5

Qualitative Inheritance 5 Linkage Studies 9 Quantitative Inheritance 9 Heritability and Genetic Advance 9 Gene Effects 11 Heterosis 13 Character A s s o c i a t i o n 14 Genotype x Environment (GxE) Interactions 15

Groundnut Breeding 16

Germplasm Collection and Evaluation 17 Hybridization 17 Choice of Selection Procedures for Groundnut 21

Utilization of Wild Species 22

Mutation Breeding 23

MP 1. E s t a b l i s h i n g Groundnut Crossing Nurseries 25 MP 2. Emasculation and Crossing in Groundnut 27 MP 3. Handling Crosses of Groundnut 29 MP 4. Incorporation of Genes from Wild Diploids

into Cultivated Groundnut 32 MP 5. Induced Mutagenesis 35 MP 6. Handling the Mutation Breeding Population 37

References 38

Evaluation 50

Page 6: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod
Page 7: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Inheritance studies of plant and flower characters (Table 1 ) , p o d and seed characters (Table 2 ) , and disease resistance (Table 3) are summarized while linkage studies are discussed separately.

T a b l e 1 . I n h e r i t a n c e s t u d i e s o f p l a n t a n d f l o w e r c h a r a c t e r s i n g r o u n d n u t .

Character (s) Genetics Reference (s)

Growth habit

Spreading (S) vs b u n c h ( B ) t y p e

Spreading dominant S x B = 3S:1B (monogenic)

Patel et a l . 1 9 3 6 ; Dalai 1962; Jadhav and Shinde 1979

Spreading digenic B x S = 15S :1B (duplicate) B x B = 9S :7B (complementary)

Hayes 1933 Patel et al. 1936; Dalai 1962

Bunch type dominant S x B = 3B:1S (monogenic) Hassan and Srivastava

1966a;Balaiah et a l . 1 9 7 7

Semispreading (SS) dominant B x SS = 3SS :1S (monogenic) Balaiah et al. 1977

Growth habit determined by four genes Essomba et al. 1987

SDS no. 4 HRDP 5

Qualitative inheritance

Detailed literature reviews of the inheritance of characters in groundnut have been reported by Hammons (1973) , Wynne and Coffelt (1982), Reddy (1988), and Wynne and Halward (1991).

Genetic Studies in Groundnut

The objective of a crop breeding program is to create variability and select the desirable genotype (s) for cultivation or for breeding p u r p o s e s . Groundnut, being a highly self-pollinated crop, requires special attention in emasculation, crossing, and selection as these p r o c e s s e s require special skills and may be time consuming. Genetic studies assist the breeder in understanding the inheritance mechanism and enhance the efficiency of a breeding program. Considerable progress has b e e n made in genetics and plant breeding of groundnut during the last three decades (see reviews Wynne and Gregory 1981; Wynne and Coffelt 1982; Norden et a l . 1982; Reddy 1988; and Wynne and Halward 1 9 8 9 ) . An attempt has been made to compile the recorded experiences of groundnut breeders and geneticists. Questions are provided to assist in self evaluation of selected skills by the, readers.

Introduction

Page 8: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Table 1. Continued

Character(s) Genetics Reference(s)

Plant type

Spanish Controlled by duplicate genes (Va1 Va1, va2 va2) Hull 1937

Valencia Controlled by double recessive genes (va1 va1, va2 va2) Hull 1937

Runner Controlled by duplicate genes (va1 va1, Va2 Va1) Hull 1937

Dwarfism Recessive to tall (monogenic) Duplicate (15 tall:1 dwarf)

Hull 1937; Bhuiyan 1984 Hayes 1933; Husted 1934; Mohammad et al. 1966; Balaiah et al. 1977

Stem pigmentation Dark or purple dominant to light color (monogenic) 3 dark:l light

Hayes 1933; Patil 1966; Balaiah et al. 1977; Jadhav and Shinde 1979

Purple and green pigmentation controlled by one and two duplicate genes Essomba et al. 1987

Leaf color Dark green foliage dominant to light green (monogenic)

Badami 1923; Dalai 1962

Leaf shape Elliptical-recessive to elliptical-oblong

Hassan 1964

Marrow leaf dominant to normal (monogenic)

Balaiah et al. 1977

Red color of leaf veins dominant to its absence

Hayes 1933

Inflorescence On main stem controlled by two sets of duplicate loci with epistatic action Sequential flowering -controlled by duplicate pairs of recessive genes - monogenic recessive to alternate

Hammons 1971; Wynne 1975 Mouli and Kale 1982

Mouli et a l . 1 9 8 6

Corolla color Dark dominant to light

Orange incomplete dominant to white

Hayes 1933; Patil 1965; Bilquez and Lecomte 1969; Jadhav and Shinde 1979

Kumar and Joshi 1943

Yellow dominant to white controlled by duplicate genes (15 yellow:1 white) Yellow incomplete dominant to white or controlled by additive genes (9 yellow:6 pale yellow:1 white)

Patil 1966; Jadhav and Shinde 1979

Habib et al. 1980

King petal shape

Boat shape dominant to broad or scoop shape (monogenic)

Srivastava 1968

Nodulation Determined by three genes

Nonadditive genes

Essomba et al. 1987; Dutta and Reddy 1988 Phillips et al. 1989

6 HRDP SDS no. 4

Page 9: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

T a b l e 2 . I n h e r i t a n c e s t u d i e s o f p o d a n d s e e d c h a r a c t e r s i n g r o u n d n u t .

Character(s) Genetics Reference(s)

Pad size Large pod dominant to small Small pod dominant to large (duplicate gene)

Balaiah et al. 1977 Cahaner 1978

Pod constriction Absence is dominant to its presence (digenic)

Badami 1928

Trigenically inherited Hassan 1964

Controlled by three nuclear and one cytoplasmic factor, complementary duplicate Coffelt and Hammons 1974a

Seed size Large seed is dominant to small seed size Hassan 1964; Balaiah et al.

1977

Controlled by five pairs of genes, four having isodirectional effect Martin 1967

Seed shape Long seed shape dominant to short (digenic); duplicate 15 longs 1 short

Hayes 1933

Flat end of seed dominant to smooth Sibale 1985

Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod (monogenic) Balaiah et al. 1977

Testa color Monogenic Red x brown = Red Brick red x light tan = Red Red x light rose = Red White x pink or red = 3 whites: 1 red or pink (monogenic)

Badami 1928 Stokes and Hull 1930 Patil 1966

Norden et al. 1988; Branch 1989

Digenic 15:1 ratio Flesh x white = 15F:1W White x red = 15R:1W Pink x white = 15Pk:lW Purple x rose = 15P:lr

Rose x light rose = 15R:llr White x red = 9R:3Rs:4W

Higgins 1940 Higgins 1940 Hammons 1957; 1972 Prasad and Srivastava 1967 Prasad and Srivastava 1967 Srivastava 1968

Purple color inherited by three pairs of genes

Patel et al. 1936; Mohammed et al. 1966; Srivastava 1968

White and purple color inherited by four or five pairs of genes

Hammons 1963; Prasad and Srivastava 1967; Srivastava 1968

White seed coat color dominant to pink or red (monogenic) Norden et al. 1988

Seed dormancy Incomplete dominance to non dormancy (monogenic)

Stokes and Hull 1930; Lin and Lin 1971

Protein content High protein content dominant to low protein Shany 1977

Oil content Low oil content dominant to high oil Shany 1977

Two recessive genes (Ol1 and Ol2) controls high oleic acid character Moore and Knauft 1989

Note: Seed size and testa color are reported as governed by more than three genes.

7 HRDP SDS no. 4

Page 10: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

T a b l e 3 . I n h e r i t a n c e s t u d i e s o n d i s e a s e r e s i s t a n c e i n g r o u n d n u t .

Character (s) Genetics Reference (s)

Groundnut rosette A pair of independent comple- de Berchoux 1960; virus (GRV) mentary genes 1 resistant : 15 Nigam and Bock 1990

susceptible

Early and late Resistance is recessive Smartt 1964; Sharief leafspot 1972

Controlled by two or more nuclear genes

Sharief et al. 1978

Quantitatively inherited Sharief et al. 1978; Kornegay et al. 1980; Norden 1980

Additive gene

Multiple recessive genes

Anderson et al. 1986; Green 1985

nonadditive gene action Influenced by cytoplasmic

Nevill 1982

factors, and additive genes Coffelt and Porter Resistance to early and late leafspots independently

1982; 1986

inherited Anderson et al. 1985

Rust Resistance recessive to susceptibility and controlled by two or three genes Bromfield and Bailey 1972 Controlled by duplicate Nigam et al. 1980; recessive genes

Resistance recessive to susceptibility and controlled in additive fashion F2

ratio 1 resistant: 6 inter-

Knauft and Norden 1983; Knauft 1987

mediates 9 susceptible Controlled by additive, additive x additive, and

Tiwari et al. 1984

additive x dominant gene effects Reddy et al. 1987

Necrotic etch Resistance dominant to normal condition with digenic ratio 15 nondiseased : 1 diseased Hammons 1980

Sclerotinia blight Controlled by cytoplasmic Coffelt and Porter 1982 factors

Seed coat Monogenic, duplicate additive splitting and complementary Bovi et al. 1983

Verticillium wilt Duplicate recessive de Berchoux 1960

8 HRDP SDS no. 4

Page 11: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Badami (1923) observed linkage between violet color and hardiness in stems and thin pericarp with small seed. Patel et a l . (1936) reported a n o n r a n d o m assortment of growth habit and branching type in a cross between 'Philippine white' (spreading branched type) and 'Corientes 3' (bunched, and nonbranched type) with a crossover value of 3 0 % . Patil (1965) reported linkage between growth habit and p o d reticulation with a crossover value of 4 0 % ; and stem hairiness with pod reticulation w i t h a crossover value of 3 1 % . Coffelt and Hammons (1973) reported linkage between small seed size and albino seedlings.

Stalker et a l . (1979) reported linkages of late maturity, small seed size, separate p o d cell, and low yield with leafspot resistance in crosses involving cultivated groundnut and wild species (A. c a r d e n a s i i ) .

Balaiah et a l . (1984) suggested linkage involving the genes controlling the growth habit, b r a n c h i n g number of primaries, number of secondaries, p i g m e n t a t i o n on the shoot, and leaflet shape. The crossover between the loci controlling these characters ranges from 6 to 3 9 % . Mouli et a l . (1984) reported linkage between the bifurcate nature of leaf and small size of leaflet. A locus for testa v a r i e g a t i o n (V) and one of the t w o genes controlling nodulation (N) were reported to be linked (Dashiell 1 9 8 3 ) .

Estimates of heritability, genetic advance, gene e f f e c t s , and h e t e r o s i s , h a v e b e e n reported in groundnut.

9 SDS no. 4 HRDP

Heritability and Genetic Advance High heritability combined with high genetic advance was considered an indication of additive genetic variance (Johanson et a l . 1 9 5 5 ) . However, it was reported that heritability values were highly influenced by the environment in groundnut (Lin et a l . 1 9 7 1 ) . T h e heritability and genetic advance estimates are listed in Table 4.

Linkage Studies

Quantitative Inheritance

Page 12: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Table 4. Heritability (H - broad sense and h - narrow sense) and genetic advance (G) studies in groundnut.

Character(s) Component(s) Reference(s)

Pod yield plant-1 High (H) Lin et al. 1971; Reddy 1968; Majumdar et al. 1969; Dixit et al. 1970; Sangha 1973b; Patra 1975; Sandhu and Khera 1976; Lakshmaiah 1978; Gibori et al. 1978

High (h) Moderate (h) Low (H)

Wynne and Rawling 1978; Cahaner 1978 Basu et al. 1986a Bernard 1960; Lin 1966

Mature pods plant-1 High (H) Kulkarni and Albuquerque 1967; Majumdar et al. 1969; Lin et a l . 1 9 7 1 ; Basu and Ashokraj 1969; Alam et al. 1985; Sandhu and Khera 1976; Sivasubramaniam et al. 1977

High (H and G) Dholaria and Joshi 1972; Sangha 1973a; Kushwaha and Tawar 1973; Alam et al. 1985

Low (H) Lin et al. 1971

100 pod mass High (H) Cahaner 1978; Basu and Ashokraj 1969; Dixit et al. 1970

Low (H) Hammons 1974; Lakshmaiah 1978; Xiang et al. 1984

100 seed mass High (H) Basu and Ashokraj 1969; Dixit et al. 1970; Sangha 1973b

High (H and G) Dholaria and Joshi 1972; Sangha 1973a; Kushwaha and Tawar 1973; Badwal et al. 1967; Badwal and Gupta 1968

Moderate (H) and high (G) Alam et al. 1985

Pod length High (H) Kushwaha and Tawar 1973

High (h) Low (H)

Wynne and Rawling 1978 Sibale 1985

Pod breadth High (H) Kushwaha and Tawar 1973

Seeds pod-1 Low (H) Hammons 1974

Days to 50% flowering High (H) Basu and Ashokraj 1969

Primary branches High (H) Kulkarni and Albuquerque 1967; Majumdar et al. 1969; Dixit et al. 1970; Raman and Sreerangaswamy 1970

Plant height High (H) Kulkarni and Albuquerque 1967; Dixit et al. 1970; Alam et al. 1985; Basu et al. 1986a

Secondary branches plant"'

High (H and G) Alam et al. 1985; Reddy 1968; Dixit et al. 1970; Raman and Sreerangaswamy 1970

Maturity Low (H) Mohammed et al. 1978

Note: High and low values of heritability are in relation to the characters studied in the experiment.

10 SDS no. 4 HRDP

Page 13: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Gene Effects

The most common designs used by the geneticist to study the genetic parameters and their interpretations are line x tester, diallel, triallel, and quadriallel. These designs give estimates of gene effects and general and specific combining ability effects for the parents and crosses involving the p a r e n t s . The general combining ability (GCA) effect is attributed to additive gene effect and additive x additive gene interactions that are fixable and could be easily exploited through selection. On the other hand, a specific combining ability (SCA) effect is due to dominance and epistasis (additive x dominance and dominance x dominance) that is not fixable. The other m e t h o d s useful for genetic analyses are the generation mean analysis, N o r t h Carolina designs (NCI, N C I I , N C I I I ) , and their m o d i f i c a t i o n s . The genetic studies on quantitative traits are summarized in Table 5.

SDS no. 4 11 HRDP

W h e n the additive gene effect for a trait is high, the character under consideration could be improved using simple selection p r o c e d u r e s . Therefore, plants with desirable traits could be selected even in the early generations. Thus procedures like p u r e line selection, pedigree selection, and their modification are u s e f u l .

W h e n dominance or over dominance gene effects are predominant, the best way is to utilize F 1S as commercial h y b r i d s . This option is not available to groundnut b r e e d e r s , because it is a cleistogamous crop. However, recurrent selection procedures could be used to b r i n g the desirable additive genes into broad b a s e d p o p u l a t i o n s .

When epistasis is involved, all selections should be deferred until the F 5 generation. However, on the basis of early-generation testing one can discard the low-yielding and undesirable crosses for economic traits (poor seed quality) or those susceptible to biotic and abiotic factors. Therefore, use of bulk population selection and/or its modifications like bulk-pedigree and single seed descent selection procedures are recommended. However, additive x additive epistasis, b e i n g an interaction of fixable gene effects, could be fixed and thus p r o v i d e an opportunity to select desirable p l a n t s .

Fisher (1918) p a r t i t i o n e d genetic variance into additive effect, dominance, and epistasis, i.e., interactions, additive x additive, additive x dominance, and dominance x dominance. Interactions and gene effects other than additive are also referred to as nonadditive. The implication of gene effects in plant breeding has been dealt with as follows:

-

-

-

Page 14: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

T a b l e 5 . G e n e t i c v a r i a n c e s a n d g a n a e f f e c t s t u d i e s i n g r o u n d n u t .

character(s) Genetic component(s) Reference(s)

Pod yield GCA variance' > SCA Wynne et al. 1970, 1975; Wynne 1976; Garet 1976; Gibori et al. 1978; Habib et al. 1985

Nonadditive

Additive and non additive Additive gene effect

Schilling 1986; Sandhu and Khera 1976 Mohammed et al. 1978 Sridharan and Marappan 1980; Basu et al. 1987

Pod number plant-1 GCA variance > SCA Nonadditive

SCA variance > GCA

Habib et al. 1985 Sandhu and Khera 1976; Dwivedi et al. 1989 Khanorkar et al. 1984

100 pod mass (mean pod mass)

Additive and nonadditive Nonadditive

Schilling 1986

Duplicate gene Cahaner et al. 1979

100 seed mass Additive and nonadditive Nonadditive Additive

Reddy et al. 1986 Sandhu and Khera 1976 Sridharan and Marappan 1980

Seeds pod-1 Nonadditive Schilling 1986

Pod length Nonadditive Additive

Schilling 1986 Dwivedi et al. 1989

Pod size Nonadditive Additive and nonadditive

Schilling 1986 Mohammed et al. 1978

Plant height GCA variance > SCA Additive SCA > GCA

Habib et al. 1985 Sridharan and Marappan 1980 Khanorkar et al. 1984

Primary branches plant-1

GCA variance > SCA SCA variance > GCA Additive and nonadditive Additive dominant genes

Habib et al. 1985 Khanorkar et al. 1984 Reddy et al. 1986 Cahaner et al. 1979

Secondary branches plant-1

Additive and nonadditive Reddy et al. 1986

Days to 50% flowering Additive and nonadditive Additive

Reddy et al. 1986 Basu et al. 1987

Days to maturity GCA variance > SCA Additive

Habib et al. 1985 Basu et al. 1987

Shelling percentage GCA variance > SCA Additive SCA variance > GCA

Labana et al. 1981 Basu et al. 1987 Dwivedi et al. 1989

Oil content SCA variance > GCA Basu et al. 1988

Protein content SCA variance > GCA Basu et al. 1988

Iodine value SCA variance > GCA Basu et al. 1988

Nitrogen fixation Epistasis (nonadditive) Phillips et al. 1989; Nigam et al. 1980

(Note: GCA variance indicates additive genetic variance; SCA variance indicates nonadditive genetic variance.)

12 HRDP SDS no. 4

Page 15: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

A c o n s i d e r a b l e amount of h e t e r o s i s (Table 6) h a s b e e n reported in

g r o u n d n u t . In general crosses involving Valencia x Spanish p a r e n t s

h a d h i g h h e t e r o s i s for p o d y i e l d and its component c h a r a c t e r s .

T a b l e 6 . E s t i m a t e s o f h e t e r o s i s o v e r a i d - p a r e n t ( M P ) a n d b e t t e r p a r e n t ( B P ) i n g r o u n d n u t .

Character(s) Cross Heterosis Reference (s)

Pod yield Spanish x Virginia Valencia x Spanish Subspecific group

Virginia x Spanish Virginia x Virginia

Spanish x Spanish

Positive High High F1 37.02% more over BP High heterosis Moderate heterosis 37.44 to 95.33% over MP; and 4.20 to 70.3% over BP High positive; Heterosis 5.2 to 30.5% over MP

Higgins 1940 Wynne et al. 1970 Coffelt and Hammons 1974 Raju 1978 Raju et al. 1981

Sridharan and Marappan 1980 Basu et al. 1986c

Isleib and Wynne 1983

Top mass Virginia x Spanish Virginia x Valencia

Positive Syakudo and Kwabata 1963

Pod length Virginia x Spanish Virginia x Valencia

F1 equal to MP value Upto 11.2% over MP

Syakudo and Kwabata 1963 Isleib and Wynne 1983

Branch number F1 superior to BP Hassan and Srivastava 1966a

Leaflet length F1 superior to BP Hassan and Srivastava 1966a

Days to 50% flowering

Valencia x Virginia F1 superior to MP Parker et al. 1970

Vegetative characters

Virginia x Valencia High heterosis Wynne et al. 1970

100-pod mass plant-1

Virginia x Spanish F1 higher than BP Heterosis ranges 6.38 to 30.2% over MP; and 35.8 to 165.2 % over BP

Garet 1976 Sridharan and Marappan 1980 Dwivedi et al. 1989

100 seed mass

Virginia x Spanish Virginia x Spanish Virginia x Virginia

F1 higher than BP F1 high heterosis Moderate heterosis Heterosis ranges 6.38 to 30.2% over MP

Garet 1976 Raju et al. 1979 Raju et al. 1979

Sridharan and Marappan 1980

Pods plant-1 Virginia x Spanish F1 higher than BP; 20.5% more over BP; 23.33 to 87.5% over MP; and to 38.4 over BP

Garet 1976 Raju 1978 Sridharan and Marappan 1980

Mature pods Spanish x Spanish Up to 17.5% over MP Isleib and Wynne 1983

Shelling percentage

Virginia x Spanish F1 higher than BP; Ranges from -23.3% to +10.3% over BP

Garet 1976

Dwivedi et al. 1989

13 SDS no. 4 HRDP

T a b l e 5 suggests that b o t h a d d i t i v e a n d n o n a d d i t i v e genetic

v a r i a n c e s a r e important in the inheritance of economic traits of

g r o u n d n u t . H o w e v e r , their estimations w i l l d e p e n d o n t h e p a r e n t s

involved in c r o s s e s . T h e conclusions d e r i v e d for o n e set of crosses

m a y o r m a y not h o l d t r u e for a n o t h e r .

Heterosis

Page 16: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Character Association The knowledge of the nature and magnitude of the association among characters are important for indirect selection when the desirable character has low heritability. The efficiency of indirect selection is measured as a correlated response (CRY).

CRY = ix x hx x hy x rg x Py. Where ix = selection intensity; hx and hy = heritability of characters x and y;

rg = genetic correlation between x and y characters; and Py = p h e n o t y p i c standard deviation of y in that the

correlated change is sought through selection on x.

W h e n a selection is to be made on several characters using the simultaneous selection model (Singh 1972) the use of a correlation study is h e l p f u l in avoiding undesirable changes in other correlated characters while selecting for some characters (Table 7 ) .

Table 7. Summary of character association studies in groundnut.

Character Correlated with Reference (s)

I. Positive correlations with:

Pod yield Number of mature pods plant-1

Alam et al. 1985; Deshmukh et al. 1986; Dholaria et al. 1973; Chandola et al. 1973; Nevano 1924; Dorairaj 1962; Jaswal and Gupta 1966; Lin et al. 1969; Bhargava et al. 1970; Dholaria and Joshi 1972; Phadnis et al. 1973; Kushwaha and Tawar 1973; Patra 1980; Yadava et al. 1981, 1984; Sandhu and Khera 1977; Coffelt and Hammons 1974b; Liao et al. 1989

Number and mass of seeds plant-1

Phadnis et al. 1973; Dholaria et al. 1973; Redona and Lantican 1986

Secondary branches plant-1 Lakshmaiah et al. 1983; Alam et al. 1985; Sandhu and Khera 1977

Primary branches plant-1 Chandola et al. 1973; Prasad 1981; Balkishan 1979; Bhargava et al. 1970; Khangura and Sandhu 1972; Sandhu and Khera 1977

Shelling (%) Kataria et al. 1984; Raju et al. 1981; Khangura and Sandhu 1972; Patra 1980; Yadava et al. 1984

100 seed mass Deshmukh et al. 1986

Number of pods plant-1 Phaokantarakorn and Waranyuwat 1987; Liao et al. 1989

Days to maturity Alam et al. 1985

14 HRDF SDS no. 4

continued

Page 17: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Table 7. Continued

II. Path-coefficient studies:

A. Direct effects

Yield Primary branches Khangura and Sandhu 1972; Yadava et al. 1984

Secondary branches Lakshmaiah et al. 1983

Mature pods plant-1 Deshmukh et al. 1986; Badwal and Singh 1973; Chandola et al. 1973; Sandhu and Khera 1977; Raju 1978; Balkishan 1979; Lakshmaiah et al. 1983; Yadava et al. 1984; Nigam et al. 984

100 seed mass Badwal and Singh 1973; Yadava et al. 1984; Deshmukh et al. 1986

Number of seeds pod-1 Balkishan 1979

Days to maturity Yadava et al. 1984

B. Indirect affect via:

Yield Secondary branches Shelling (%) Badwal and Singh 1973

III. Negative correlation with protein content:

Oil content Tai and Young 1975

Genotype X Environment (GxE) Interactions

G x E interaction has considerable influence on the p r o g r e s s of crop improvement. H i g h y i e l d i n g cultivars w i t h the least genotype x environment interactions are normally d e s i r a b l e . However, w h e n a cultivar is to be selected for a specific environment, the G x E interactions are desirable. Chen and W a n (1968) observed cultivar x y e a r and cultivar x location interactions w e r e low for y i e l d and the cultivar x y e a r x location interaction w a s highly significant. Several studies indicated that cultivar x y e a r x location interactions w e r e significant for y i e l d and y i e l d components in groundnut (Chen and W a n 1968; Tai and Hammons 1 9 7 8 ; O j o m o and Adelana 1970; Sangha and Jaswal 1975; W y n n e and Isleib 1 9 7 8 ) . Thus n o advantage could b e gained by subdividing the p r o d u c t i o n areas into subareas for breeding or testing p u r p o s e s (Wynne and Isleib 1 9 7 8 ) .

Further significant linear and nonlinear components of g e n o t y p e x environment interactions w e r e reported for 100 seed m a s s , oil content, and shelling p e r c e n t a g e . T h e m a g n i t u d e of the linear component of G x E w a s h i g h for p o d y i e l d , 100 seed m a s s a n d oil c o n t e n t . T h e nonlinear component w a s important for d a y s to maturity and p o d y i e l d (Kumar et a l . 1 9 8 4 ) . T h e stability p a r a m e t e r s for the different traits w e r e governed by an independent genetic system (Yadava and Kumar 1978a, 1978b, and 1 9 7 9 ) . Shorter and N o r m a n (1983) m a d e an environmental classification b a s e d on cultivar x environment i n t e r a c t i o n s . This indicated that there w e r e no temporal or closely

SDS no. 4 15 HRDP

Page 18: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

related regional environment groups w i t h similar cultivar x environment interactions, and concluded that lower critical p e r c e n t a g e differences b e t w e e n n e w and established cultivars in p r e r e l e a s e trials can be obtained by adding environments rather t h a n r e p l i c a t i o n s .

Pod yield, p e r c e n t a g e of sound m a t u r e seeds, and p e r c e n t a g e of extra large seeds studied in F4 and in F5 generations showed that p o p u l a t i o n s of individual cross and lines w i t h i n the cross w e r e significantly different for all the c h a r a c t e r s . Populations of different crosses interacted w i t h the y e a r , location, and environments for all t r a i t s , w h e r e a s lines w i t h i n a cross interacted w i t h the environment for all the traits except p o d y i e l d (Wynne and Coffelt 1 9 8 0 ) . Reddy et a l . (1984) observed that seasonal differences in groundnut y i e l d s w e r e m o r e p r o n o u n c e d than varietal d i f f e r e n c e s . T h e m a g n i t u d e of variety x season interaction w a s h i g h in the Virginia type, b e i n g less interactive than the Spanish t y p e . An individual variety w i t h stability across the locations w a s identified.

Schilling et a l . (1983) developed multilines u s i n g sibling lines composited b e t w e e n the F 4 and F 5 g e n e r a t i o n s . T h e relationships among sibling c o m p o n e n t s of t w o groundnut m u l t i l i n e s across the environment w e r e calculated. For one m u l t i l i n e three component lines did not differ significantly from t h e m u l t i l i n e nor did d e v i a t i o n s from regression a n d stability variances differ among c o m p o n e n t s . Conversely, components of the second m u l t i l i n e d i s p l a y e d significant variability for y i e l d , regression coefficient ( b ) , and deviation from regression (S2d) . T h e data indicated that the compositional scheme for groundnut m u l t i l i n e s is a feasible method to circumvent G x E interaction.

N o r d e n et a l . (1986) studied the stability of four groundnut m u l t i l i n e s and their component lines. They found highly significant interactions of g e n o t y p e s (population) w i t h environments for p o d y i e l d , p e r c e n t a g e of fancy p o d s , 100 seeds m a s s , p e r c e n t a g e of extra large s e e d s , and sound m a t u r e seed yield. Large differences in y i e l d and market quality traits w e r e not found b e t w e e n s i b - l i n e s . However, differences w e r e found in stability estimated from regression coefficients and deviation from regression of m u l t i l i n e s compared to their component lines. This w a s possibly due to a buffering action resulting from greater genetic variability. Multilines did not h a v e greater stability in all cases, but the d i f f e r e n c e b e t w e e n t h e m u l t i l i n e and its least stable component line w a s generally greater than the d i f f e r e n c e b e t w e e n the multiline and its most stable component line. T h u s , the chances of improving t h e y i e l d stability and market acceptability of a groundnut cultivar w e r e increased w h e n the m u l t i l i n e a p p r o a c h w a s followed.

T h e m a i n b r e e d i n g g o a l s should meet the requirements of a grower, a p r o c e s s o r , and a consumer. A grower requires h i g h y i e l d , pest resistance a n d tolerance of environmental stresses, and y i e l d stability. A p r o c e s s o r requires u n i f o r m m a t u r i t y favorable to m e c h a n i z a t i o n a n d p r o c e s s i n g characteristics. T h e consumer requires g o o d quality oil and groundnut seeds w i t h a c c e p t a b l e shape, size, c o l o r , and taste for confectionery p u r p o s e s (Wynne and Gregory 1 9 8 1 ; B r a n c h 1 9 7 9 ) .

16 SDS no. 4 HRDF

Groundnut Breeding

Page 19: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

A large number of groundnut accessions are available in the national programs of many c o u n t r i e s . ICRISAT maintains a world collection of over 12 000 accessions of groundnut from 92 countries of which 6 0 % were obtained from the USA, South America (Peru, Bolivia, Brazil, A r g e n t i n a ) ; western Africa (Senegal, Burkina Faso, M a l i , N i g e r i a ) , southern Africa (Zambia, Zimbabwe, Mozambique, T a n z a n i a ) , and Asia (India and Indonesia) (V. Ramanatha Rao, ICRISAT, personal communication 1 9 8 8 ) .

A germplasm line could be used directly as a variety, if it is found suitable. When some collections have genetic variability, they are subjected to selection (pure line or mass selection) to isolate desirable genotypes. The third way to use the germplasm accession is as a parent to transfer the desirable characteristics into established genotypes or to obtain the transgressive segregants.

Bailey (1968) estimated that 7 5 - 8 0 % of the groundnut cultivars grown in the USA were derived wholly or in part from selections introduced from foreign countries. Higgins and Bailey (1955) by exercising selections in the different lots of farmers' groundnuts of USA identified six groundnut v a r i e t i e s ; GFA Spanish, Dixie Spanish, Southeastern runner 56-15, Virginia bunch 67, Virginia bunch G 2 , and Virginia runner G 2 6 .

Spanish varieties released through pure line selections in USA were A r g e n t i n a ( 1 9 5 1 ) , Comet (1977), and Spantex (1950). Virginia varieties released were Virginia 56R (1957) and Virginia 61R (1962).

SDS no. 4 17 HRDP

Hybridization

The objective of hybridization is to recombine characters from different lines into a desirable genotype for commercial utilization. The results of crossing will be known after several years, therefore, it is necessary to consider the following points before starting a hybridization program:

Germplasm Collection and Evaluation

Breeding for resistance to foliar diseases (leafspots and r u s t ) .

Breeding for resistance to soilborne diseases (pod rot, A s p e r g i l l u s flavus, and collar rot, A. n i g e r ) .

Breeding for resistance to p e s t s . This includes t h r i p s , jassids, leafminer, spodoptera etc.

Breeding for drought resistance or tolerance.

B r e e d i n g for adaptation to specific environments and requirements. This includes cultivars for oil production with varying duration (early, medium, and late type) and for direct consumption.

Efforts have bee n made to accomplish these requirements at ICRISAT under five p r o j e c t s .

-

-

-

-

-

Page 20: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Wall defined objectives. The breeding objectives should be well defined before taking up hybridization, such as resistance to diseases, insect p e s t s or improvement in oil content.

Choice of p a r e n t s . Select the parents based on the breeding objective. One parent can be a desirable variety of the area and the other parent or p a r e n t s m a y have a desirable trait(s) not present in the first p a r e n t . It is safe to select the parents for a particular trait from various sources (Tables 8a, 8b, and 8 c ) .

H a t i n g d e s i g n . Depending on the breeding objectives and the traits available in different sources single, double or three way crosses are attempted. The other way is to attempt crosses using mating designs suitable for biometrical studies. This will help in understanding the genetics of characters as well as to identify the material for a breeding program.

When the number of parents involved in a cross exceeds two, it creates a problem in crossing. As the number of parents increases the number of b u d s to be crossed must be increased to realize the m a x i m u m recombinations. Groundnut, being a highly self-pollinated crop (cleistogamous) makes it difficult to use population improvement p r o c e d u r e s . However, diallel selective matings (Jensen 1970) and modified recurrent selection schemes (Compton 1968) were applied in groundnut improvement (Wynne 1 9 7 6 ) . At ICRISAT Center, single crosses, three-way crosses, and double crosses are m a d e .

1 8 SDS no. 4 HRDP

Page 21: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

T a b l e 8 a . G r o u n d n u t g e n o t y p e s r e p o r t e d r e s i s t a n t t o t o l e r a n t o f d i s e a s e s .

character Genotypes with desirable traits

1. Early leaf spots (cercospera arachidicola) Late leaf spots Phaeoisariopsis personata

FESR-5-l-B-b4, FESR-5-2-B-64, NC3033, and PI 109839, ICG 7878, ICG 6284 UP 81206-1, UF 81206-2, 72 x 32B 3-2-2-2-l-b3-B NC3033, AC3139, PI Nos. 203395, 203397, 261893-2-1-1-13, 261893-1-3-B, 261893-2-1-4-1-2B, 261906-1-1-1-2-3B and NC 3033, Southern Runner', ICG 7756, ICG 1710, ICGV 86699

2. PI Nos. 259747, 341879, 350680, 380622, 315608, 314817, 405132, Tarapota, DHT 200, Israel line 136, PI 314817, NC Ac 17133, PI 25947, NC Ac 17090, and EC 76446

Lines resistant to late leaf spot and rusts (Interspecific hybrid crosses)

CS9, CS30, CS22, CS62, CS31, CS26, CS36, CS2403, CS820/1, CS13-1-B1-B3-B1, CS16-B2-B2-B1, CS29/1-B2-B1-B1, and NC Ac 17090

3. Web blotch (Phoma arachidicola) Florunner, Florigiant, and GK3

4. Florispan, and F334A-B-14

5. Sclerotinia blight (Sclerotinia sclerotiorum)

NC 11165, Chico, PI 535817

6. CBR-Black rot NC 3033, Argentine, NC2, VAGP1, NC Ac 18016

7. Pythium pod rot (Pythium myriotylum)

PI Nos. 341885, 365553, 535816 and Toalson

8. Southern stem rot (Sclerotium rolfsii)

NC2

9. Aflatoxin (Aspergillus flavus and A. parasiticus)

Tolerant: Florunner, Daron IV, Shulamit, PI 337394F, PI 337409, J 11, U4-7-5, VRR 245, GFA-1, GFA-2, Ah 7223, UF 71513, 55-437

10. Rosette virus (Vector Aphis craccivora)

RG 1, RMP 40, RMP 12, RMP 91, KH 14-9A, and M-25-68

11. Bud necrosis ICGV No. 86029, 86030, 86031, 86032, 86033, and 86038

12. Necrotic etch leaf disease Jenkins Jumbo

HRDP SDS no. 4 19

(Puccinia arachidis) Rust

Page 22: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

SDS no. 4 HRDP 20

T a b l e 8 b . G r o u n d n u t g e n o t y p e s r e p o r t e d r e s i s t a n t t o o r t o l e r a n t o f i n s e c t p e s t s .

Character Genotypes with desirable traits

1. Lesser cornstalk borer (Elasmopalpus liqnosellus)

Florunner and Comet

2. Southern corn root. worm (Diabrotica undecimpunctate

NC 6

3. Thrips (Frankliniella fusca)

PI 280688, NC Ac 343, low damaged lines, NC Ac 2242, NC Ac 2214, NC Ac 2240, NC Ac 2232, and NC Ac 2230

ICRISAT pest resistant lines (low incidence)

ICG(PRS) 13, ICG(PRS) 4, ICG(PRS) 68, ICG(PRS) 77, and ICGPRS 36

4. Termites NC Ac 224 0, and NC 343

5. Jassid (Empoasca kerri) NC Ac 2214, NC Ac 2240, and NC Ac 2230, ICGV 87157, and ICG(FDRS) 10

T a b l e 8 c . G r o u n d n u t g e n o t y p e s d e s i r a b l e f o r d r o u g h t r e s i s t a n c e , e a r l i n e s s , q u a l i t y , a n d c o n f e c t i o n e r y t y p e .

Character Genotypes with desirable traits

Drought resistant/ tolerant lines

GNP 35, ICG 1660, ICG 3386, ICG 3736, ICG 296, ICG 405, ICG 1697, ICG 4790, ICG 4747, ICG 6997, ICG 2960, ICG 3301, ICG 4 5 4 4 , I C G 4728, ICG 3657, UP 67, Arbrook (PI 262817)

Earliness Chico, 91176, 91776, ICGS (E) 71, ICGS (E) 61, and ICGS (E) 11

Quality Oil: Tainan 10 (57.1%)

Protein: NC-F1a 14 (32%)

Confectionary type ICRISAT genotypes HYQ (CG) 514, HYQ (CG) 53, HYQ (CG) S5, ICGV 86564, ICGV 86577

Nitrogen fixation NC 7, NC Ac 2821

Sources for Tables 8 a , 8 b , and 8c: Norden et al. 1982, Subrahmanyam et al. 1980, ICRISAT 1985, 1986, 1987, 1990, and Reddy et al. 1991.

Page 23: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Both additive and nonadditive gene effects are evidently important for economic traits in groundnut. However, the former appears more important than the latter. Therefore, the breeding method that exploits b o t h additive and nonadditive gene effects may be suitable for the improvement of groundnut. Due to limitations in attempting large scale crossing, use of recurrent selection procedures are restricted. Therefore, a basic goal in most groundnut breeding programs is to develop pureline cultivars or multilines by using siblings to obtain wide adaptability and resistances to biotic and abiotic factors. Thus it is desirable to make single, three-way, or double crosses to pool the characters from different genotypes in the local cultivar that has wide adaptation. These crosses are grown with large F2 p rogenies so that further selection can be made using pedigree, m o d i f i e d p e d i g r e e , bulk, single seed (SSD), or single p o d descent m e t h o d s . An accelerated pedigree selection method (Valentine 1984) or stratified m a s s selection (Holly and Wynne 1986) and a sequential selection method (Branch et a l . 1991) were found useful in groundnut.

The accelerated pedigree selection (APS) involves an initial selection b a s e d on the assessment of the lines rather than the p l a n t s . These lines are derived by the accelerarted generations procedure. Unlike the SSD m e t h o d the line selection can begin in an early generation, that will minimize the risk of differential mortality. The length of the A P S b r e e d i n g cycle is shorter than that of either the pedigree or SSD selection m e t h o d s . In addition to enhancing the efficiency of selection, the A P S is expected to result in more genotypes b e i n g retained and a closer selection for the desirable combination of characters (Valentine 1 9 8 4 ) .

Stratified mass selection for higher seed yield was effective in interspecific crosses, but was only effective in one of the three intrasubspecific crosses (Holly and W y n n e , 1 9 8 6 ) . The confounding effect of shelling percentage with seed yield and the small number of F2 p lants evaluated may be partially responsible for the lack of effective selection in two of the intrasubspecific crosses for high seed yield having higher shelling p e r c e n t a g e . However, the high and low selections when evaluated in the F 4 generation did not differ for shelling percentage except for one intrasubspecific cross.

A sequential selection m e t h o d was p r o p o s e d (Branch et a l . 1991) to minimize genotype by environment interactions. In this procedure early generation selections at m o r e than one location identified p u r e -line genotypes with wider adaptability. This method involves cyclic early generation selections through different environments. Plants were selected in each generation at each location and were grown at different locations for evaluation. This method was found significantly better than the pedigree method and at par with the single seed descent m e t h o d of selection for pod yield in groundnut (Branch et a l . 1 9 9 1 ) .

An alternate approach to overcome breeding limitations of the p e d i g r e e m e t h o d is the use of recurrent selection. Modifications of the recurrent selection techniques to include closely related species should further broaden the b a s e . Guok et a l . (1986) carried out phenotypic recurrent selections for yield in a tetraploid population derived from a cross of A r a c h i s hypogaea x Arachis cardenasii Krap. Resistance to late leaf spot was recorded for selected families. Ten families selected for high p o d yield and large p o d size from the

21 SDS no. 4 ARDP

Choice of Selection Procedures for Groundnut

Page 24: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Diseases and pests cause serious yield losses to groundnut production. The range of genetic variation, particularly resistance to p e s t s , and diseases is limited in cultivated groundnut (Arachis h y p o g a e a ) . The collections of wild species from South America have contributed a wide range of genes that confer resistance to important pests and diseases. This germplasm provides opportunity for genetic improvement of cultivated groundnut.

Several A r a c h i s species are identified (Table 9) with resistance to pests and p a t h o g e n s . Particularly important are those which either have resistance to many (multiple) pests and diseases or are resistant to diseases for which variability is not available in the cultivated species.

The tetraploid A. hypogaea is classified into section Arachis along with the compatible diploid species that are resistant to several diseases and p e s t s . A p p r o p r i a t e genome and ploidy manipulations m a k e it possible to incorporate desirable genes from the wild diploid into Arachis hypogaea as discussed in MP 4.

22 HRDP SDS no.4

Utilization of Wild Species

segregates of the original cross were randomly intermated to the initial population. After two cycles of recurrent selection using S 1

t esting, the response to selection was compared with individual parents of the three cycles (C1, C2, and C3) in four environments. Two cycles of selection resulted in an increase in pod yield of 210 ± 70 kg ha - 1 cycle - 1, however, seed m a s s , shelling percentage and extra large seeds decreased significantly. Little variability was observed among lines after the second c y c l e . Genetic variability for resistance to late leaf spot existed among the parents over the 3 y e a r s .

It is evident from the foregoing discussions that the pure line selection, m a s s selection, recurrent selection, and bulk selection with its modifications are useful for handling segregating materials of groundnut. The details of these procedures are available in standard plant b r e e d i n g b o o k s .

Procedures for establishing groundnut breeding nurseries in the greenhouse, and a nursery in the field (MP 1 ) , emasculation and crossing (MP 2 ) , and a simple p r o c e d u r e for handling of segregating generations (MP 3) are separately discussed.

Page 25: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

T a b l e 9 . W i l d A r a c h i s s p e c i e s w i t h m u l t i p l e r e s i s t a n c e t o d i s e a s e s a n d p e s t s .

S e c t i o n / S p e c i e s D i s e a s e / P e s t 1

RUS LLS ELS PS PM TSW THR APH JAS

Arachis A. duranensis A. villosa A. correntina A. cardenasii A. chacoense A. stenosperma Arachis spp.

I R R R(2) 3

R

R/I R

R(l)

R R R

R(3)

R

R R R

R R R R

R R

R

R R R R

Erectoides A. appressipila Arachis spp

I R(3)

R R(2) R(l) I(3) R(3)

Rhizomatosae A. qlabrata R I R R R R R R

1 . R U S = Rust, LLS = Late leaf spot, ELS = Early leaf spot, PS = Peanut stunt virus, PM = Peanut mottle virus, TSW = Tomato spotted wilt virus

THR = Thrips, APH = Aphids, JAS = Jassids. 2. I = Immune, R = Resistant. 3. Figures in parentheses are number of species. (Source: ICRISAT 1987)

Mutation Breeding Induced mutation has produced desirable results in several self-pollinated crops like wheat and rice as well as groundnut. There are examples where mutants were identified directly for cultivation. Useful mutants have b e e n identified for yield and quality traits in groundnut (Patil 1 9 7 5 ) .

Success of mutation breeding depends on:

o The identification of clear objectives. o Incorporation of the desired characters.

Efforts to produce mutations in groundnut have been successful for b o t h qualitative and quantitative characters using chemical as well as physical m u t a g e n s . Ashri and Levy (1976) used ethylmethane sulphonate (EMS) and diethyl sulphate in groundnut for producing m u t a t i o n s . Levy and Ashri (1978) found ethidium bromide to be a very effective mutagen in groundnut.

A variety TG 1 w a s developed by using X-rays (75 kr) and repeated selection for improved seed m a s s . TG 1 had 0.7 to 0.9 g seed - 1

c ompared to 0.4 to 0.5 g seed - 1 of its parent in the A l l India Coordinated Research Project on Oilseeds (AICORPO) during 1969-72 (Patil 1 9 7 5 ) .

F u rther high yielding lines such as TG 16, TG 1 7 , and TG 19 were derived by hybridization of different mutants with cultivars (Patil 1 9 7 7 ) . Hybridization of m u t a n t s and improved cultivars

SDS no. 4 23 HRDP

R

I2

I I I I

Page 26: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

followed by radiation treatment have p r o d u c e d alterations of

characters in subspecies fastigiata and subspecies hypogaea. and also

modifications in plant type (Mouli et a l . 1 9 8 2 ) . Genotypes developed

by m u t a t i o n b r e e d i n g are given in Table 10 and mutagenesis in MP 5 and

MP 6.

T a b l e 1 0 . G r o u n d n u t v a r i e t i e s d e v e l o p e d t h r o u g h m u t a t i o n b r e e d i n g .

Name of mutant (variety selected)

Genotype irradiated/ pedigree

Inducing mutagen

Improved characters over parent

A. Direct mutants

TG 1 (Trombay Groundnut 1) released as Vikram

Bold 1 X-rays 75 kr

High seed mass 0.7-0.9 g seed as compared to 0.4-0.5 g seed"1 of parent, and yield

LV 3A LV 3 20 kr-Gamma Improved shelling % rays

TG 18A TG 18 -do- Large pod, dormancy, early maturity, and 76% seed out turn

Co 2 PoL 1 EMS Early maturity, 77% seed out turn

B. Mutants utilised in crossing program

TG 7, TG 13, TG 8, TG 9, TG 10, TG 11, TG 12

TG 1 x Virescent F5

Mutant crossed with other genotype

Medium to large pods, and dormancy

TG 16 Virescent/ TG 1

Selected in F6

Large pod

TG 17 Darker green/ TG 1

Selected in F4

Medium pods and dormancy

TG 19A TG 17 x TG 1 Dark green foliage, large pods dormancy

Source: Patil 1975; Mouli et al. 1982; and Sivaram et al. 1989.

24 HRDP SDS no. 4

Page 27: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

A. A crossing nursery in the greenhouse

Hybridization of groundnut is commonly done in a greenhouse to ensure m a x i m u m seed setting under controlled conditions. The plants are grown in 15 L p o t s (30 cm diameter) on greenhouse benches in sterilized fertile soil. In each pot, 2-4 groundnut plants are maintained for hybridization.

Material and facilities required.

o Pots and gravel. o Sterilized soil, sterilized sand, and composted farm m a n u r e . o Chemicals - Bavistin and carbofuran. o Fertilizer - Diammonium phosphate o Seed o Greenhouse

Preparing pot for sowing. Prepare a soil mixture containing sterilized soil, sterilized sand, and compost in the ratio of 4:2:1. Put 2-3 cm of gravel in the base of each p o t . Then fill the pot with the soil m i x t u r e leaving 2-3 cm at the top. Now make holes for sowing seed 5 cm deep and put 50 g diammonium phosphate pot - 1 in the holes and some granules of carbofuran. Sow two Bavistin treated seeds hole - 1.

A f ter sowing, p l a c e the pots on stones or bricks and irrigate w e l l . Leave only 2-4 seedlings pot - 1 and place the pots on iron benches fitted with thick wire net.

Intensive care is required to keep plants healthy and free of diseases and p e s t s .

The temperature of the greenhouse should be maintained between 22-30oC at flowering with the humidity ranging from 6 0 - 7 0 % . The soil moisture is m a i n t a i n e d at 8 0 - 8 5 % of field capacity.

Label each pot with plastic pegs to identify the genotype and cross to be m a d e .

The crossing nurseries (blocks) are established in a well prepared field. A b a l a n c e d supply of plant nutrients is essential in the nursery with adequate N, P, K and calcium in the fruiting zone.

It is convenient to sow a crossing nursery on a 75 cm ridge-and-furrow system. Groundnuts are planted in 5-9 m rows of female or m a l e parents alternate to each other. This facilitates collection of flowers for pollination. The number of rows for each parent (female and male) should be decided as per the objective of the crossing, and amount of seed required. When a broadbed-and-furrow system is followed the emasculation can be attempted on p l a n t s from the furrow side or from top of the bed.

SDS no. 4 25 HRDP

MP 1. Establishing Groundnut Crossing Nurseries

B. A crossing nursery in the field

Page 28: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

The female and male parents are labeled w i t h tags of different color. For example, the m a l e parent with a red and the female parent with a b l u e t a g . The name of t h e parent and number of rows sowed should be m e n t i o n e d on each tag.

Optimum soil moisture should be 4 0 % of the total soil volume in the podding zone regardless of soil moisture content in the rooting zone (Ono et a l . 1 9 7 4 ) . Therefore, PURFO or sprinkler irrigation is necessary after emasculation to create the required humidity and to supplement the water loss during bright sunny d a y s . Half an hour irrigation every evening is recommended when the rains fail and the temperature is high.

Temperatures from 22 to 33°C are ideal for flowering and fruiting of groundnut. The optimum soil temperature is b e t w e e n 28-30°C.

26 SDS no. 4 HRDP

Page 29: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

A n t h e s i s . Flowering starts about 25-30 days after seedling emergence. The dehiscence of the anthers takes place (at ICRISAT Center, Hyderabad) from 0400 to 0500 and flowers open from 0530 to 0730.

Anthesis is affected by the temperature and humidity (Norden 1 9 8 0 ) . T h e r e f o r e , it is necessary to control these two factors in the greenhouse. During flowering time, the humidity should be above 7 0 % and the temperature between 28 and 30°C.

Emasculation. Emasculation of groundnut can be accomplished on w a r m bright days from 1330 to 1 6 3 0 . On cloudy or rainy d a y s , emasculation could be delayed until 2100-2200 (Norden 1 9 8 0 ) . N i g a m et al.(1.990) discussed the detailed technique of artificial hybridization in groundnut.

Steps for emasculation.

1. Select the well developed b u d for emasculation, and remove all other buds at the node to ensure that only one flower develops at that n o d e . Pull the leaf down gently to expose the bud.

2. With one hand hold the b u d between your thumb and index finger.

3. Remove the sepal on the side of the keel and push down the sepal on the side of the standard.

4. Open the standard petal with the forceps and pull down the w i n g p e t a l s .

5. Hold back the standard petal with the thumb and index finger. Break open the keel with the point of the forceps. M o v e the keel up and pull it free of the stigma and a n t h e r s . The keel is p u l l e d down and held out of the way with the thumb and index finger, while all anthers along w i t h their filaments are removed.

6. N o w return the standard p e t a l to its original position over the stigma. Usually no attempt is m a d e to cover the emasculated flowers for protection from outside p o l l e n .

7. A small thread is put on the hypanthium of the emasculated flowers for identification (Norden 1980) or on the stem above the b u d a x i s . Use different colored threads on different days to identify emasculated b u d s for p o l l i n a t i o n . A record of the number of b u d s emasculated should be maintained for each p a r e n t .

Pollination. On the morning after emasculation, the standard petal is usually expanded and the stigma is exposed between 0600 and 0 7 3 0 . A healthy flower from the male parent (pollen source) is selected. Its corolla is removed exposing the anthers and pollen. N o w directly squeeze the p o l l e n on to the emasculated flower stigma or on to the forceps, and transfer the pollen from the forceps to the stigma of an emasculated flower. A f t e r pollination, remove all other flowers that were not hand p o l l i n a t e d by breaking their hypanthium near the b a s e .

The m a x i m u m physiological development of pollen is from 0500 to 0700. It was found that p o l l e n remained viable up to 8 days when stored in a sealed desiccator over calcium chloride in a refrigerator at 6 C . W h e n flowers were stored at 28 C and at a relative humidity of

SDS no. 4 27 HRDP

MP 2. Emasculation and Crossing in Groundnut

Page 30: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

5 6 % the pollen remained viable for only 8.5 h (Hassan and Srivastava 1 9 6 6 b ) .

P ollination success. Hybridizing groundnuts in the greenhouse may result in over 7 0 % s u c c e s s . A success rate of 4 4 % was reported in India from field hybridization, starting at 0630 during the monsoon season (Jul to A u g ) , compared to 2 7 % w h e n pollination w a s started at 0830 (Norden 1 9 8 0 ) .

Number of pegs or pods developed x 100 = Successful crosses % N u m b e r of flowers p o l l i n a t e d

P o d davelopment and h a r v a a t . When fertilization is successful, the tissue below the ovary, called the gynophore, elongates into a peg carrying the ovary at its tip geotropically into the soil. In the soil the ovary takes a horizontal position and a p o d develops. Mature pods can be harvested usually 55-65 days after the p e g s developed.

28 SDS no. 4 HRDP

Page 31: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

MP 3. Handling Crosses of Groundnut

T h e crossed seeds are grown along w i t h their parents to identify h y b r i d s . Plants in the F1 generation resembling the female parent (selfed) should be removed. Undesirable F 1S that are highly susceptible to d i s e a s e s , or insects, or that are poor in quality can be rejected at harvest.

The harvested seeds on F1 plants are grown in bulk in unreplicated p l o t s w i t h a large p o p u l a t i o n (1000-2000 p l a n t s ) . The selection p r o c e d u r e s such as b u l k selection, pedigree selection, bulk-pedigree selection, or single seed (pod) descent selection can be followed for handling the segregating g e n e r a t i o n s . The detail of these selection p r o c e d u r e s can be found in plant breeding text b o o k s . A simple modified bulk selection method as p r a c t i c e d at ICRISAT is outlined in Figure 1. Some criteria for selections are listed (Table 1 1 ) . The end product or groundnut variety can be developed as a pure line, m u l t i l i n e , or m i x t u r e of p u r e l i n e s .

Some of the ICRISAT varieties that are released are listed in Table 12.

T a b l e 1 1 . C h a r a c t e r i s t i c s f o r s e l e c t i o n o f p l a n t s f r o m g r o u n d n u t

p o p u l a t i o n s .

C h a r a c t e r C r i t e r i a f o r s e l e c t i o n

E a r l i n e s s M a x i m u m e a r l y f l o w e r i n g i n a f e w d a y s

D r o u g h t r e s i s t a n c e T o t a l b i o m a s s p r o d u c t i o n ( u n d e r s t r e s s

c o n d i t i o n s )

L e a s t d i f f e r e n c e i n y i e l d u n d e r d r o u g h t a n d

i r r i g a t e d c o n d i t i o n s

H i g h p o d y i e l d u n d e r s t r e s s c o n d i t i o n s

I n s e c t r e s i s t a n c e L e a f h a i r s ( t r i c h o m e s ) r e p e l s o m e i n s e c t s

H i g h a d a p t a t i o n P e r f o r m w e l l u n d e r a p o o r e n v i r o n m e n t a n d

a r e r e s p o n s i v e t o r i c h e n v i r o n m e n t s

C o n f e c t i o n e r y t y p e L a r g e s e e d e d , s m o o t h , a n d u n i f o r m s i z e d s e e d s

N u t r i t i o n a l a n d f o o d q u a l i t y

H i g h o l e i c a c i d / l i n o l e i c a c i d r a t i o

29 SDS no. 4 HRDP

Page 32: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Operations

Attempt 100-150 buds to obtain 50 pods or 70-75 seeds

Identify hybrid plants and harvest as a bulk

Grow F2s in disease screening nursery, reject undesirable t y p e s , select and bulk plant types into three groups

Grow separate bulks and select plants from each group

Grow selected bulks and select plants from each group

Preliminary yield t r i a l : (4 m x 4 rows with 3 replications) Reject for poor yield

A d v a n c e yield t r i a l : (4 rows of 9 m, 3 replications, 2-3 l o c a t i o n s ) . R e j e c t for poor yield and select best entries for elite t r i a l .

Multilocation t r i a l s : (4 m length, 4 rows, and 3 replications) 1 or 2 years to select the entries that could go to national programs for testing

Multilocation International T r i a l : (for 2 y e a r s ) . The best material may go to national programs for release

Figure 1. M o d i f i e d bulk selection as practiced at ICRISAT. (Source: S.L. Dwivedi, ICRISAT, personal communication 1987)

30 SDS no. 4 HRDP

Seed multiplication and release

International trial

F4 and F5

F3 Spanish Valencia Virginia

F2

Generation

A x B Cross

F1

v

V V V

F1

Page 33: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

T a b l e 1 2 . I C R I S A T g r o u n d n u t v a r i e t i e s r e l e a s e d f o r c u l t i v a t i o n

Variety Season and area of cultivation

Year of release

Remarks

ICGS 11 (ICGV 87123)

Post-rainy season Andhra Pradesh, Karnataka, Madhya Pradesh, and Maharashtra States of India

1986 Spanish selection, dark green foliage, small-to medium-sized, two-seeded pods with tan-colored seeds. Yield potential 4.5 t ha-1. Tolerant to bud necrosis disease

ICGS 44 (ICGV 87128)

Post-rainy season/ and rainy season Gujarat State of India In Pakistan as component line of BARD-699

1988 Spanish type, two-seeded small-to medium-sized pods, tan-colored seeds. Tolerant to bud necrosis

ICGS 5 (ICGV 87121)

Rainy season. India - Uttar Pradesh

1989 Virginia bunch, small-to medium-sized, two seeded pods with tan colored seeds. Pod yield 2.7 t ha-1

ICGS 76 (ICGV 87141)

Rainy season. India - Andhra Pradesh, Karnataka, Kerala, southern Maharashtra and Tamil Nadu. Under consideration for release in Sudan

1989 Virginia selection, medium-to-small elliptic, dark green leaves. Two-seeded medium-sized pods. Seeds tan-colored. Field tolerance to bud necrosis. Good recovery for pod yield from midseason drought

ICGS 1 (ICGV 87119)

Rainy season. Bihar, Haryana, Punjab, Rajasthan and Uttar Pradesh States of India

1990 Spanish type, medium-to-small dark green, elliptic leaves; two-seeded, medium-sized pods

ICG(FDRS) 10 (ICGV 87160)

Rainy season. India -Andhra Pradesh, Karnataka, and Maharashtra

1990 Sequential flowering, bunched, two-seeded, tan-colored, medium-sized seeds. Highly resistant to rust, moderate resistance to late leaf spot. Less susceptible to bud necrosis, peanut mottle virus, stem rot, and leaf miner

ICGS 37 (ICGV 87187)

Post-rainy season. India - Madhya Pradesh and Maharashtra. In Pakistan as component line of BARD-699

1990 Spanish selection with small-medium dark green, elliptic leaves. Two seeded medium sized pods. Moderately resistant to rust and late leaf spot, tolerant to bud necrosis, and peanut mottle, photoperiod insensitive

Source: Anonymous 1990. Crop improvement in India: ICRISAT cultivars. ICRISAT Public Awareness Series. ICRISAT Plant Description Material no. 21, 24, and 27. Patancheru, A.P. 502324, India: International Crops Research Institute for the Semi-Arid Tropics.

31 SDS no. 4 HRDP

Page 34: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Genome analysis at ICRISAT, in section A r a c h i s , revealed that a majority of d i p l o i d w i l d species has a common 'A' genome, but that A. batizocoi has a different 'B' genome. Both genomes have the base number 10, they are homeologous and together constitute the cultivated species A. hypogaea (Singh and Moss 1982, 1 9 8 4 ) . This has helped in identification of suitable methods (Fig. 2) for gene transfer from diploid A r a c h i s species w i t h 'A' and 'B' genomes (Singh 1 9 8 6 ) .

M e t h o d 1. Compatibility between cultivated tetraploid A. hypogaea and the diploid species p e r m i t s direct hybridization (Fig. 2 a ) . This crossing results in triploid hybrids that are sterile. In the triploid h y b r i d s , c h romosome numbers are doubled by colchicine treatment to p r o d u c e a fertile hexaploid amphidiploid. Hexaploids are screened against various diseases and p e s t s , and resistant segregants are b a c k crossed w i t h A. hypogaea till cytogenetically stable tetraploid A. hypogaea - like derivatives are obtained.

M e t h o d 2. Triploid hybrids occasionally can produce pods w i t h v i a b l e seeds. About 8 2 % of these seeds p r o d u c e h e x a p l o i d s . These progenies or p r o g e n i e s w i t h less than 60 chromosomes are back crossed w i t h A. hypogaea until stable tetraploids are p r o d u c e d (Fig. 2 b ) .

M e t h o d 3. Production of amphidiploids by doubling the chromosome number in F1 hybrids of diploid w i l d species (AxA or AxB) followed by crossing them w i t h A r a c h i s hypogaea (4x) is another option for genetic introgression Fig. 2 c ) . In this hybrid coherence to genomes of A. hypogaea b e c a u s e of homology between 'A' and 'B' genomes overcomes fertility p r o b l e m s when crossing to Arachis hypogaea to combine desirable traits.

M e t h o d 4. Production of an autotetraploid by doubling the chromosome number in a w i l d Arachis species followed by crossing them to A. hypogaea (4x) at the tetraploid level is another option (Fig. 2d) w h i c h may overcome the barriers d e v e l o p e d as a result of ploidy d i f f e r e n c e s . The p a r t i a l l y fertile hybrids w i t h greater allelic recombinations are p r o d u c e d for b a c k c r o s s i n g to A. hypogaea.

A n o t h e r m e t h o d is to reduce the chromosome number in A. hypogaea to a diploid level and then perform hybridization w i t h diploid wild species at the diploid level. However, the feasibility of this option can not be assessed till production of haploids from A. hypogaea is achieved (A.K. Singh, ICRISAT, personal communication 1 9 8 9 ) .

32 SDS no. 4 HRDP

MP 4. Incorporation of Genes from Wild Diploids into Cultivated Groundnut

T h i s involves t h r e e s t e p s .

A. Gene transfer from compatible species.

Page 35: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

c. Production of hybrid tetraploids from two wild diploids.

d. Production of tetraploids from diploids.

(Source: ICRISAT 1980, and A.K.Singh, ICRISAT, personal communication 1 9 8 9 ) .

SDS no.4 33 HRDP

Wild diploid

Colchicine Ireatmenl

Wild diploid

Wild diploid

a. Production and testing

of hexaploids.

Hybrid

Colchicine treatment

cultivated tetraploid Allotelraploid

Hybrid lelraploid

Hybrid lelraploid

Cullivaled Letraploid

AutoLelraploid

b. Production of hybrid

tetraploids from diploids.

4x A. hypogaea like derivatives

Back crossed to A. hypogaea

Progenies 2 x , 3 x , 4x, 6x

Restitution nuclei x unequal

segregation produce gametes

x-3x

Cultivated lelraploid

Wild

diploid

Wild diploid

Cultivated Letraploid

Sterile triploid

Colchicine treatment

Hexaploid

Back crossed to Arachis hypogaea

4 x A. hypogaea like derivatives

Figure 2. Methods of producing hexaploids and hybrid tetraploids for backcrossing to Arachis hypogaea to transfer genes from wild species into cultivated groundnut.

X

X

X

X

X

Page 36: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

The hybrids p r o d u c e d by crossing cultivated groundnut with the diploid wild species are triploid and sterile. Their fertility could be restored by induction of polyploidy using the colchicine technique developed by Spielman and M o s s (1976). In this technique, actively growing branches of sterile triploid hybrids are cut 20-30 mm above the node of young laterals. Leaves, buds and petioles are removed from the next 2 or 3 n o d e s ; a glass tube that fits tightly with the stem is filled with the colchicine solution and the second cut is made below the first cut (Singh et a l . 1 9 8 3 ) . Place the glass tube immediately over the cut end to maintain the flow of colchicine (Fig. 3 ) . Leave t h e t u b e on the plant for 24-48 h. It is important to prevent air b u b b l e s in the t u b e . After removing the tube, a hexaploid branch may develop which can flower and produce a peg. Another way of ploidy m a n i p u l a t i o n is successive back crossing of a triploid hybrid with A. hypogaea that results in fertile hexaploid hybrids (Singh 1986).

C. Use of incompatible species

Incompatible species from sections Rhizomatosae and Erectoides have been crossed w i t h A. hypogaea or diploid species of section Arachis' with the help of hormone treatments (GA3, IAA, and Kinetin) and/or in vitro embryo rescue t e c h n i q u e s . Hybrid plants have been established in two combinations (Sastri and Moss 1 9 8 2 ) .

Figure 3. Method of colchicine treatment of young laterals. (Source: Singh et a l . 1983)

34 SDS no. 4 HRDF

Developing hexapioid branch. First

cut Second cut

First cut

Colchicine

Glass tube

B. Ploidy manipulations

Page 37: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

MP 5. Induced Mutagenesis

Mutagenesis

Treating a biological material with a mutagenic agent to induce mutants is m u t a g e n e s i s .

Physical m u t a g e n s . The most frequently used physical mutagens are x-rays, gamma rays, and neutrons. All these forms of radiations ionize atoms in a tissue by detaching electrons from the a t o m s .

X-rays are produced in special machines by bombarding tungsten or m o l y b d e n u m with electrons. For gamma-irradiations seeds are normally exposed using the radioactive isotopes cobalt-60 or cesium-137. in a gamma chamber. Neutrons are obtained from a nuclear reactor where uranium-235 fuel undergoes nuclear fission.

Physical m u t a g e n e s i s . The seed is dried to a low moisture content and put in sealed packets for irradiation. The seed is placed in the chamber for a fixed time depending on the dose of irradiation. In groundnut 5 kr, 10 kr, 15 kr, 20 kr, 30 kr, and 45 kr gamma irradiations are reported (Pathirana and Wijewickrama 1 9 8 2 ) . However, the most desirable groundnut mutants were recovered between 5-20 kr X-ray irradiation when .irradiated up to 75 kr (Patil 1 9 7 5 ) .

Chemical m u t a g e n s . These are agents that react with DNA by alkylating the phosphate groups as well as purine and pyrimidine b a s e s . Among the 30-40 chemical mutagens, some of the most powerful and useful are ethyl methane sulphonate (EMS), diethylsulfate (DES), ethylene-imine (EI), N - n i t r o s o - N-methyl Urethane (NMUT), N-nitro-N-methyl urea (NMU), and ethyl bromide (EB).

Chemical m u t a g e n e s i s . The effect of a chemical mutagen depends on its concentration, duration of treatment, temperature and pH of the mutagenic solution, and water content in seeds.

For chemical mutagenesis, soak the seed in water for 2-4 h, thereafter put the seed into the chemical at the desired concentration for 5-6 h. Then put the seed in a cloth bag under running tap water for 8-10 h to wash the excess chemical off the seed s u r f a c e . R e m o v e the excess water on the seed surface by drying for a few hours in the shade.

Selecting dose level

The highest number of induced mutations result when the number of fertile M1 plants is maximized to produce a large M2 generation. When using sparsely ionizing radiations (x-rays and gamma rays) in greenhouse t e s t s , an optimum dose should cause 3 0 - 5 0 % reduction in seedling h e i g h t . When densely ionizing radiations (neutrons) are used, the height reduction should be 1 5 - 3 0 % . With chemical mutagens, the reduction should be 1 0 - 3 0 % . In p r a c t i c e , an optimum dose is often achieved by using three separate doses (with an untreated c o n t r o l ) . One dose should be chosen based on reduction in seedling height in laboratory and field t e s t s . The other two doses should be about 1 0 % higher and 1 0 % lower (Sigurbjornsson 1 9 8 3 ) . A dose close to LD 50 (Lethal D o s e 50) should be optimum, since it provides a maximum percentage of useful m u t a n t s . LD 50 is that dose of mutagen that would kill 5 0 % of the treated individuals (Singh 1 9 8 3 ) .

35 SDS no, 4 HRDP

Page 38: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Amount of seed to be treated

A number of seeds should be treated with a mutagen to ensure identification of sufficient mutants in the M2 and later generations. The size of the M1 p o p u lation i.e., the number of seeds to be treated is partly governed by the effectiveness and the efficiency of the mutagen.

Brock (1976) calculated M2 progeny size and M1 population requirements according to the various mutant segregation ratios and the probability of the occurrence of homozygous m u t a n t s . Assuming a 5 0 % lethality in the M1 generation of 5000 p l a n t s , 2500 fertile survivors w o u l d be t e s t e d in the M2 generation. The M2 generation with 20 individuals per progeny would then be 20 x 2 500 = 50 000 p l a n t s . Thus a m i n i m u m of 5 000-10 000 seeds should be treated with a mutagen.

36 SDS no. 4 HRDP

Page 39: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

The M1 generation starts with the germination of mutagen-treated seeds. The M 1 is heterozygous due to newly induced mutant genes and will segregate into mutants and nonmutants in the M2 generation. Only dominant mutations will be expressed in the M1 generation while recessives will be expressed in the M 2. Homozygous mutants are expressed in the M3 generation. The M1 generation should receive the best possible care to control weeds, insects, and diseases. This will help to transfer as many mutations as possible to the M 2 generation where selection for the desired genotypes will be done (Table 1 3 ) .

The M 2 could be generated from all the surviving plants (seeds of the M1 g e n e r a t i o n ) , or one can sample the better plants in the. M1. Redei (1974) recommended a large M1 population and small M2 families. The single seed descent or plant to row method, should be used in the mutation breeding program to identify low frequency of mutant p h e n o t y p e s .

T a b l e 1 3 . H a n d l i n g g e n e r a t i o n s o f m u t a n t s .

Year or crop season

Generation Operations

First M1 Sow the treated seed at wide spacing. Harvest seeds of individual plants separately.

Second M2 Grow individual plant progenies. Harvest vigorous, normal looking plants separately.

Third M3 Grow individual M2-plant progenies (M2) . Select superior plants among the progenies showing segregation and harvest separately.

Fourth M4 Grow individual M3-plant progenies (M3). Harvest superior and homogeneous lines in bulk. Reject segregating arid undesirable lines.

Fifth M5 Conduct a preliminary yield trial with suitable checks. Identify superior lines.

Sixth to eighth

M6-M9 Conduct replicated multilocation yield trials to identify outstanding lines for release as varieties.

Tenth Ml0-M11 Seed multiplication and on-farm testing.

(Source: Sigurbjornsson 1983; and Singh 1983).

Success of identifying mutants in the M 2 and M 3 p opulation may depend on ease of detection. By the M 5 or M 6 generation most of the mutants become homozygous and their seed can be multiplied for preliminary evaluation. Patil (1980) reported that over 6 0 % of the groundnut mutants appeared in the M2 and M3 generations. However, economically important mutants v i z . , the tertiary-branching and the large p o d size were isolated only after M3. Further, consistent selection for increased seed m a s s resulted in the isolation of the large p o d mutant in M5. Therefore, individual plant selection plays an important role in mutation breeding.

SDS no. 4 37 HRDF

MP 6. Handling the Mutation Breeding Population.

Page 40: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

References

Alam, M . S . , Begum, D . , and K h a i r , A . B . M . A . 1985. Study o f g e n e t i c p a r a m e t e r s and c h a r a c t e r i n t e r r e l a t i o n s h i p i n g r o u n d n u t . B a n g l a d e s h J o u r n a l of A g r i c u l t u r a l R e s e a r c h 10 (2) : 1 1 1 - 1 1 7 .

A n d e r s o n , W . F . , W y n n e , J.C., and G r e e n , C . C . 1 9 8 5 . P o t e n t i a l for i n c o r p o r a t i o n of e a r l y and late l e a f s p o t r e s i s t a n c e in p e a n u t . P r o c e e d i n g s o f A m e r i c a n P e a n u t R e s e a r c h a n d E d u c a t i o n S o c i e t y 1 7 : 3 0 . (Abstract.)

A n d e r s o n , W . F . , W y n n e , J.C., G r e e n , C . C , and B e n t e , M . K . 1 9 8 6 . C o m b i n i n g a b i l i t y and h e r i t a b i l i t y of r e s i s t a n c e to e a r l y and late l e a f s p o t s of p e a n u t . Peanut S c i e n c e 1 3 : 1 0 - 1 4 .

A s h r i , A., and Levy, A . 1 9 7 6 . N a t u r a l and induced p l a s m o n v a r i a t i o n a f f e c t i n g g r o w t h h a b i t in p e a n u t s , A. h y p o g a e a . P a g e s 4 17 -430 in E x p e r i m e n t a l m u t a g e n e s i s i n p l a n t s (Filer, K., e d . ) . S o f i a , B u l g a r i a : B u l g a r i a n A c a d e m y o f S c i e n c e .

B a d a m i , V . K . 1 9 2 3 . H y b r i d i z a t i o n work on g r o u n d n u t . P a g e s 2 9 - 3 0 in. A g r i c u l t u r a l D e p a r t m e n t report for 1 9 2 2 - 2 3 . M y s o r e , K a r n a t a k a , I n d i a : D e p a r t m e n t o f A g r i c u l t u r e .

B a d a m i , V . K . 1 9 2 8 . A r a c h i s h y p o g a e a (the g r o u n d n u t ) . I n h e r i t a n c e s t u d i e s . P h . D . t h e s i s , C a m b r i d g e U n i v e r s i t y , C a m b r i d g e , UK. p p 2 9 7 - 3 7 4 .

B a d w a l , S.S., and G u p t a , V . P . 1 9 6 8 . C o r r e l a t i o n s o f q u a n t i t a t i v e t r a i t s and s e l e c t i o n i n d i c e s for i m p r o v i n g p o d y i e l d s i n g r o u n d n u t (Arachis h y p o g a e a L . ) . J o u r n a l o f R e s e a r c h , P u n j a b A g r i c u l t u r a l U n i v e r s i t y 5 : 2 0 - 2 3 .

B a d w a l , S.S., G u p t a , V . P . , and D a l a i , J.L. 1 9 6 7 . G e n e t i c v a r i a b i l i t y in r e l a t i o n to g e n e t i c a d v a n c e in a c o l l e c t i o n of g r o u n d n u t v a r i e t i e s . J o u r n a l o f R e s e a r c h , P u n j a b A g r i c u l t u r a l U n i v e r s i t y 4 : 3 3 8 - 3 4 2 .

B a d w a l , S.S., and S i n g h , H. 1 9 7 3 . E f f e c t of g r o w t h habit on c o r r e l a t i o n s and p a t h c o e f f i c i e n t s in g r o u n d n u t . Indian J o u r n a l of G e n e t i c s and Plant B r e e d i n g 3 3 : 1 0 1 - 1 1 1 .

Bailey, W . K . 1 9 6 8 . P e a n u t v a r i e t y i m p r o v e m e n t in t h e U S A . P a g e s 1-5 in P r o c e e d i n g s o f t h e F i f t h N a t i o n a l P e a n u t R e s e a r c h C o n f e r e n c e , 15-17 Jul 1 9 6 8 , N o r f o l k , V i r g i n i a , U S A . B l a c k s b u r g , V i r g i n i a , U S A : V i r g i n i a P o l y t e c h n i c I n s t i t u t e .

B a l a i a h , C., R e d d y , P.S., and R e d d i , M . V . 1 9 7 7 . G e n e t i c a n a l y s i s in g r o u n d n u t . I. I n h e r i t a n c e s t u d i e s on 18 m o r p h o l o g i c a l c h a r a c t e r s in c r o s s e s with 'Gujarat N a r r o w Leaf M u t a n t ' . P r o c e e d i n g s o f the Indian A c a d e m y o f S c i e n c e s , S e c t i o n B 8 5 : 3 4 0 - 3 5 0 .

B a l a i a h , C . , Reddy, P.S., and R e d d i , M . V . 1 9 8 4 . S t u d i e s o n l i n k a g e b e t w e e n si:-: m o r p h o l o g i c a l c h a r a c t e r s in c r o s s e s w i t h 'Gujarat N a r r o w Leaf M u t a n t ' g r o u n d n u t (Arachis h y p o g a e a L . ) . O l e a g i n e u x 3 9 : 3 2 5 - 3 2 7 .

B a l k i s h a n , P. 1 9 7 9 . S t u d i e s on the g e n e t i c p a r a m e t e r s in the F 2 g e n e r a t i o n o f eight c r o s s e s o f g r o u n d n u t (Arachis h y p o g a e a L . ) . M . S c . t h e s i s , A n d h r a P r a d e s h A g r i c u l t u r a l U n i v e r s i t y , H y d e r a b a d , A n d h r a P r a d e s h , I n d i a . 9 1 p p .

Basu, A . K . , and A s h o k r a j , P.C.A. 1969. G e n o t y p i c v a r i a b i l i t y i n some q u a n t i t a t i v e c h a r a c t e r s o f g r o u n d n u t . S c i e n c e and C u l t u r e 3 5 : 4 0 8 - 4 0 9 .

Basu, M . S . , N a g r a j , G., and Reddy, P . S . 1 9 8 8 . G e n e t i c s o f o i l and o t h e r m a j o r c o m p o n e n t s i n g r o u n d n u t (Arachis h y p o g a e a L . ) . I n t e r n a t i o n a l J o u r n a l o f T r o p i c a l A g r i c u l t u r e 6 ( 1 - 2 ) : 1 0 6 - 1 1 0 .

38 SDS no. 4 HRDP

Page 41: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

B a s u , M . S . , Singh, N . P . , V a d d o r i a , M.A., and Raddy, P.S. 1986a. G e n e t i c a r c h i t e c t u r e o f y i e l d and its c o m p o n e n t s i n g r o u n d n u t (Arachis. h y p o g a e a L . ) . A n n a l s o f A g r i c u l t u r a l R e s e a r c h 7 : 1 4 4 - 1 4 8 .

B a s u . , M . S . , V a d d o r i a , M . A . , Singh, N . P . , and Raddy, P.S. 1986b. S t u d i e s o n h e t e r o s i s in inter and i n t r a - s u b s p e c i f i c c r o s s e s of g r o u n d n u t . J o u r n a l of O i l s e e d s R e s e a r c h 3 ( 2 ) : 2 2 3 - 2 3 0 .

Basu, M . S . , V a d d o r i a , M.A., Singh, N . P . , and Reddy, P . S . 1 9 8 7 . C o m b i n i n g a b i l i t y for y i e l d a n d its c o m p o n e n t s in d i a l l e l c r o s s of g r o u n d n u t . Indian J o u r n a l o f A g r i c u l t u r a l S c i e n c e s 5 7 : 8 2 - 8 4 .

B a r n a r d , R . L . 1 9 6 0 . The b r e e d i n g b e h a v i o r and i n t e r r e l a t i o n s h i p s o f some p o d a n d seed t r a i t s o f p e a n u t . P h . D . t h e s i s , N o r t h C a r o l i n a S t a t e U n i v e r s i t y , R a l e i g h , N C , U S A .

B h a r g a v a , P.D., D i x i t , P.K., Saxena, D.K., and B h a t i a , L.K. 1 9 7 0 . C o r r e l a t i o n s t u d i e s on y i e l d and its c o m p o n e n t s in erect v a r i e t i e s of g r o u n d n u t (Arachis h y p o q a e a L . ) . R a j a s t h a n Journal o f A g r i c u l t u r a l S c i e n c e s 1 : 6 4 - 7 1 .

B h u i y a n , S.A. 1 9 8 4 . I n h e r i t a n c e of p l a n t t y p e in g r o u n d n u t . Indian J o u r n a l o f G e n e t i c s a n d P l a n t B r e e d i n g 4 4 : 2 1 5 - 2 1 7 .

B i l q u e z , A . F . , and L e c o m t e , J. 1969. H e r e d i t e de la c o l o r a t i o n des fleurs c h e z l ' a r a c h i d e . (In F r . ) . O l e a g i n e u x 2 4 : 4 1 1 - 4 1 2 .

B o v i , M . L . A . , N o r d e n , A . J . , and Gorbat, D.W. 1983. Seed coat s p l i t t i n g in p e a n u t - its i n h e r i t a n c e a n d r e l a t i o n s h i p w i t h seed w e i g h t . P e a n u t S c i e n c e 1 0 : 3 6 - 4 0 .

B r a n c h , W . D . 1 9 7 9 . Q u a l i t i e s g e n e t i c i s t s look for. Peanut F a r m e r 1 5 : 9 .

B r a n c h , W . D . 1 9 8 9 . I n h e r i t a n c e o f d o m i n a n t w h i t e p e a n u t t e s t a c o l o r . J o u r n a l of H e r e d i t y 80 ( 2 ) : 1 5 5 - 1 5 6 .

B r a n c h , W . D . , K e r b y , J.S., W y n n e , J.C., H o l b r o o k , C.C., and A n d a r s o n , W . F . 1 9 9 1 . S e q u e n t i a l v s . p e d i g r e e s e l e c t i o n m e t h o d for y i e l d and leaf spot r e s i s t a n c e i n p e a n u t . C r o p S c i e n c e 3 1 : 2 7 4 - 2 7 6 .

B r o c k , R . D . 1 9 7 6 . P r o s p e c t s a n d p e r s p e c t i v e s i n m u t a t i o n b r e e d i n g . P a g e s 1 1 7 - 1 3 2 in G e n e t i c d i v e r s i t y in p l a n t s (Muhammed, A., A k s e l , R., and v o n B o r s t e l , R . C . , e d s . ) . N e w Y o r k , U S A : P l e n u m P r e s s .

B r o m f i e l d , K.R., and B a i l a y , W . K . 1 9 7 2 . I n h e r i t a n c e o f r e s i s t a n c e t o P u c c i n i a a r a c h i d i s i n p e a n u t . P h y t o p a t h o l o g y 6 2 : 7 4 8 . (Abstract.)

C a h a n a r , A . 1 9 7 8 . The i n h e r i t a n c e o f y i e l d c o m p o n e n t s and p l a n t c o n f o r m a t i o n i n p e a n u t s , A r a c h i s h y p o q a e a L . P h . D . t h e s i s , H e b r e w U n i v e r s i t y , J e r u s a l e m , I s r a e l .

C a h a n a r , A., H i l l e l , J., and A s h r i , A. 1 9 7 9 . D e t e c t i o n of g e n e t i c i n t e r a c t i o n s by a n a l y z i n g the F 2 g e n e r a t i o n of d i a l l e l c r o s s . T h e o r e t i c a l and A p p l i e d G e n e t i c s 5 5 : 1 6 1 - 1 6 7 .

C h a n d o l a , R . P . , D i x i t , P.K., and S a x a n a , D . K . 1 9 7 3 . N o t e o n p a t h c o e f f i c i e n t a n a l y s i s o f y i e l d c o m p o n e n t s i n g r o u n d n u t . Indian J o u r n a l o f A g r i c u l t u r a l S c i e n c e s 4 3 : 8 9 7 - 8 9 8 .

Chan, C.Y., a n d W a n , H. 1 9 6 8 . V a r i e t y x e n v i r o n m e n t i n t e r a c t i o n s in r e g i o n a l t r i a l s of s o y b e a n s and g r o u n d n u t and t h e i r i m p o r t a n c e in b r e e d i n g . J o u r n a l o f t h e A g r i c u l t u r a l A s s o c i a t i o n o f C h i n a , N e w S e r i e s 6 4 : 1 - 1 2 .

C o f f a l t , T.A., and H a m m o n s , R . O . 1 9 7 3 . E a r l y - g e n e r a t i o n t r i a l s o f p e a n u t s . P e a n u t S c i e n c e 1:3-6.

39 SDS no. 4 HRDP

Page 42: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

C o f f e l t , T.A., and H a m m o n s , R . O . 1 9 7 4 a . I n h e r i t a n c e of p o d c o n s t r i c t i o n s in p e a n u t s . J o u r n a l o f H e r e d i t y 6 5 : 9 4 - 9 6 .

Coffelt, T.A., and H a m m o n s , R . O . 1 9 7 4 b . C o r r e l a t i o n and h e r i t a b i l i t y s t u d i e s of n i n e c h a r a c t e r s in p a r e n t a l and i n t r a s p e c i f i c c r o s s p o p u l a t i o n s of Arachis h y p o g a e a L . O l e a g i n e u x 2 9 : 2 3 - 2 7 .

Coffelt, T.A., and P o r t e r , D.M. 1 9 8 2 . S c r e e n i n g p e a n u t s for r e s i s t a n c e to S c l e r o t i n i a b l i g h t . P l a n t D i s e a s e R e p o r t e r 6 6 : 3 8 5 - 3 8 7 .

C o f f e l t , T.A., and P o r t e r , D.M. 1 9 8 6 . F i e l d s c r e e n i n g of r e c i p r o c a l c h i c o x f l o r i g i a n t p e a n u t p o p u l a t i o n s for r e s i s t a n c e to leafspot in V i r g i n i a . Peanut S c i e n c e 1 3 ( 2 ) : 5 7 - 6 0 .

C o m p t o n , W . A . 1 9 6 8 . R e c u r r e n t s e l e c t i o n i n s e l f - p o l l i n a t e d c r o p s w i t h o u t e x t e n s i v e c r o s s i n g . C r o p S c i e n c e 8 : 7 7 3 - 7 7 4 .

D a l a l . , J.L. 1 9 6 2 . I n h e r i t a n c e s t u d i e s i n g r o u n d n u t c r o p . I n d i a n O i l s e e d s J o u r n a l 6 : 2 8 8 - 2 9 2 .

D a s h i e l l , K . E . 1 9 8 3 . I n h e r i t a n c e o f n o d u l a t i o n and its a s s o c i a t i o n w i t h g e n e s c o n t r o l l i n g t e s t a c o l o r i n A r a c h i s h y p o g a e a L . D i s s e r t a t i o n A b s t r a c t s B 4 4 : 2 0 6 3 B .

da B e r c h o u x , C. 1 9 6 0 . L a r o s e t t e d e l'arachide en H a u t e v o l t a . C o m p a r t m e n t d e s l i g n e e s r e s i s t a n t e s . O l e a g i n e u x 1 5 : 2 2 9 - 2 3 3 .

D e s h m u k h , S.N., B a s u , M . S . , and R e d d y , P . S . 1 9 8 6 . G e n e t i c v a r i a b i l i t y , c h a r a c t e r a s s o c i a t i o n and p a t h c o e f f i c i e n t s o f q u a n t i t a t i v e t r a i t s i n V i r g i n i a b u n c h v a r i e t i e s o f g r o u n d n u t . Indian J o u r n a l o f A g r i c u l t u r a l S c i e n c e s 5 6 : 8 1 6 - 8 2 1 .

D h o l a r i a , S.J., and J o s h i , S.N. 1 9 7 2 . E f f e c t of high and low f e r t i l i z a t i o n o n v a r i a b i l i t y i n g r o u n d n u t (Arachis h y p o q a e a L . ) . Indian J o u r n a l o f A g r i c u l t u r a l S c i e n c e s 4 2 : 4 6 7 - 4 7 0 .

D h o l a r i a , S.J., J o s h i , S.N., and K a b a r i a , M . M . 1 9 7 3 . S e l e c t i o n i n d i c e s under high and low f e r t i l i t y i n g r o u n d n u t . M a d r a s A g r i c u l t u r a l J o u r n a l 6 0 : 1 3 8 3 - 1 3 9 3 .

D i x i t , P.K., B h a r g a v a , P.D., S a x e n a , D.K., and B h a t i a , L.K. 1 9 7 0 . E s t i m a t e s of g e n o t y p i c v a r i a b i l i t y of some q u a n t i t a t i v e c h a r a c t e r s in g r o u n d n u t (Arachis h y p o q a e a L . ) . I n d i a n J o u r n a l o f A g r i c u l t u r a l S c i e n c e s 4 0 : 1 9 7 - 2 0 2 .

D o r a i r a j , S.M. 1 9 6 2 . P r e l i m i n a r y steps for the f o r m u l a t i o n of s e l e c t i o n index for y i e l d i n g r o u n d n u t (Arachis h y p o q a e a L . ) . M a d r a s A g r i c u l t u r a l J o u r n a l 4 9 : 1 2 - 2 7 .

D u t t a , M., and R e d d y , L.J. 1 9 8 8 . F u r t h e r s t u d i e s on g e n e t i c s of n o n n o d u l a t i o n i n p e a n u t . C r o p S c i e n c e 2 8 ( 1 ) : 6 0 - 6 2 .

D w i v e d i , S.L., T h o n d a p a n i , K., and Nigam, S.N. 1989. H e t e r o s i s and c o m b i n i n g a b i l i t y s t u d i e s and r e l a t i o n s h i p a m o n g fruit and seed c h a r a c t e r s in p e a n u t . P e a n u t S c i e n c e 1 6 : 1 4 - 2 0 .

E s s o m b a , N . B . , C o f f e l t , T.A., B r a n c h , W . D . , and S c o y o c , S.W.Van. 1 9 8 7 . I n h e r i t a n c e o f m o r p h o l o g i c a l t r a i t s i n p e a n u t (Arachis h y p o q a e a L . ) . P r o c e e d i n g s o f A m e r i c a n Peanut R e s e a r c h and E d u c a t i o n S o c i e t y 1 9 : 1 6 .

F i s h e r , R.A. 1 9 1 8 . O n the c o r r e l a t i o n b e t w e e n r e l a t i v e s o f the s u p p o s i t i o n o f M e n d e l i a n i n h e r i t a n c e . T r a n s a c t i o n s o f the R o y a l S o c i e t y o f E d i n b u r g h 5 2 : 3 9 9 - 4 3 3 .

Garet, B. 1 9 7 6 . H e t e r o s i s et a p t i t u d e s a la c o m b i n a i s o n c h e z l'arachid (Arachis h y p o q a e a L . ) . (In Fr.) O l e a g i n e u x 3 1 : 4 3 5 - 4 4 2 .

40 HRDP SDS no. 4

Page 43: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

G i b b o n s , R.W. 1 9 8 5 . B r e e d i n g for g r o u n d n u t r o s e t t e v i r u s d i s e a s e r e s i s t a n c e . P a g e 17 in C o l l a b o r a t i v e research on g r o u n d n u t r o s s e t t e v i r u s : s u m m a r y p r o c e e d i n g s o f the C o n s u l t a t i v e G r o u p M e e t i n g t o D i s c u s s C o l l a b o r a t i v e R e s e a r c h o n G r o u n d n u t R o s e t t e V i r u s D i s e a s e , 13-14 A p r 1985, C a m b r i d g e , UK. P a t a n c h e r u , A . P . 502 3 2 4 , India: I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e for t h e S e m i - A r i d T r o p i c s .

G i b o r i , A., H i l l e l , J., C a h a n e r , A., and A s h r i , A. 1 9 7 8 . A 9x9 d i a l l e l a n a l y s i s o f p e a n u t s (A. h v p o q a e a L . ) . T h e o r e t i c a l and A p p l i e d G e n e t i c s 5 3 : 1 6 9 - 1 7 9 .

G r e e n , C . C . 1 9 8 5 . E v a l u a t i o n and i n h e r i t a n c e of c o m p o n e n t s of p a r t i a l r e s i s t a n c e t o e a r l y l e a f s p o t (Cercospora a r a c h i d i c o l a Hori) i n p e a n u t . P h . D . t h e s i s , N o r t h C a r o l i n a S t a t e U n i v e r s i t y , R a l e i g h , N C , U S A .

Guok, H.P., W y n n e , J.C., and Stalker, H.T. 1986. R e c u r r e n t s e l e c t i o n w i t h i n a p o p u l a t i o n from an i n t e r s p e c i f i c peanut c r o s s . C r o p S c i e n c e 2 6 : 2 4 9 - 2 5 3 .

H a b i b , A . F . , J o a h i , M . S . , K u l l a i s w a m y , B . I . , and Bhat, B.N. 1 9 8 5 . C o m b i n i n g a b i l i t y e s t i m a t e s i n p e a n u t s (Arachis h y p o g a e a L . ) . Indian J o u r n a l o f G e n e t i c s and P l a n t B r e e d i n g 45 (2):235-239.

H a b i b , A . F . , J o a h i , M . S . , V i s h w a n a t h a , K.P., and J a y a r a m a i a h , H . 1 9 8 0 . G e n e t i c s of w h i t e f l o w e r in A r a c h i s h y p o g a e a L. N a t i o n a l S e m i n a r on the A p p l i c a t i o n of G e n e t i c s to Improvement of G r o u n d n u t , 16-17 Jul 1 9 8 0 , C o i m b a t o r e , I n d i a : T a m i l N a d u A g r i c u l t u r a l U n i v e r s i t y .

H a m m o n s , R . O . 1 9 5 7 . P e a n u t i n v e s t i g a t i o n s . A n n u a l r e p o r t , T i f t o n , GA, U S A : U n i t e d S t a t e s D e p a r t m e n t o f A g r i c u l t u r e , A g r i c u l t u r a l R e s e a r c h S e r v i c e .

H a m m o n s , R . O . 1 9 6 3 . W h i t e t e s t a i n h e r i t a n c e in the p e a n u t . J o u r n a l of H e r e d i t y 5 4 : 1 3 9 - 1 4 2 .

H a m m o n s , R . O . 1 9 7 1 . I n h e r i t a n c e of i n f l o r e s c e n c e in m a i n stem leaf a x i l s in A r a c h i s h y p o g a e a L . C r o p S c i e n c e 1 1 : 5 7 0 - 5 7 1 .

H a m m o n a , R . O . 1 9 7 2 . P e a n u t s . P a g e s 2 1 7 - 2 2 3 , 252 i n G e n e t i c v u l n e r a b i l i t y o f m a j o r c r o p s . W a s h i n g t o n , D C , U S A : N a t i o n a l A c a d e m y o f S c i e n c e s .

Hammona, R . O . 1 9 7 3 . G e n e t i c s o f A r a c h i s h y p o g a e a . P a g e s 135-173 in P e a n u t s - c u l t u r e a n d u s e s . S t i l l w a t e r , O K , U S A : A m e r i c a n P e a n u t R e s e a r c h and E d u c a t i o n A s s o c i a t i o n .

H a m m o n a , R . O . 1 9 7 4 . G e n e t i c v a r i a b i l i t y in p e a n u t s : a second look. P r o c e e d i n g s o f A m e r i c a n P e a n u t R e s e a r c h and E d u c a t i o n A s s o c i a t i o n 6 : 1 7 - 2 0 .

Hammona, R . O . 1 9 8 0 . I n h e r i t a n c e of a n e c r o t i c - e t c h leaf d i s e a s e in p e a n u t s . Peanut S c i e n c e 7 : 1 3 - 1 4 .

H a s s a n , M . A . 1 9 6 4 . G e n e t i c , f l o r a l , b i o l o g i c a l and m a t u r i t y s t u d i e s i n g r o u n d n u t . M . S c . t h e s i s , R a n c h i U n i v e r s i t y , R a n c h i , B i h a r , I n d i a .

H a s s a n , M . A . , and S r i v a s t a v a , D . P . 1966a. Inheritance of g r o w t h h a b i t in g r o u n d n u t (Arachis h y p o g a e a L . ) . J o u r n a l o f the Indian B o t a n i c a l S o c i e t y 4 5 : 2 9 3 - 2 9 5 .

H a s s a n , M . A . , and S r i v a s t a v a , D . P . 1966b. F l o r a l b i o l o g y and p o d d e v e l o p m e n t of p e a n u t s t u d i e d in I n d i a . J o u r n a l of the Indian B o t a n i c a l S o c i e t y 4 5 : 1 9 5 - 1 9 6 .

H a y e s , T.R. 1 9 3 3 . T h e c l a s s i f i c a t i o n o f g r o u n d n u t v a r i e t i e s w i t h p r e l i m i n a r y n o t e o n t h e i n h e r i t a n c e o f some c h a r a c t e r s . T r o p i c a l A g r i c u l t u r e (Trinidad) 1 0 : 3 1 8 - 3 2 7 .

B i g g i n s , B . B . 1 9 4 0 . I n h e r i t a n c e of seed coat color in p e a n u t s . J o u r n a l of A g r i c u l t u r a l R e s e a r c h (USA) 6 1 : 7 4 5 - 7 5 2 .

SDS no. 4 41 HRDP

Page 44: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

H i g g i n s , B . B . , and B a i l e y , W.K. 1 9 5 5 . N e w v a r i e t i e s and s e l e c t e d s t r a i n s o f p e a n u t s . G e o r g i a A g r i c u l t u r a l E x p e r i m e n t S t a t i o n B u l l e t i n N e w S e r i e s 1 1 . 3 5 p p .

H o l l y , R.N., and W y n n a , J.C. 1 9 8 6 . E f f e c t i v e n e s s o f s t r a t i f i e d m a s s s e l e c t i o n for y i e l d in i n t r a - s u b s p e c i f i c a n d i n t e r - s u b s p e c i f i c c r o s s e s of p e a n u t . P e a n u t S c i e n c e 1 3 : 3 3 - 3 5 .

H u l l , F.H. 1 9 3 7 . I n h e r i t a n c e of rest p e r i o d of s e e d s a n d c e r t a i n o t h e r c h a r a c t e r i s t i c s i n t h e p e a n u t . T e c h n i c a l B u l l e t i n n o . 3 1 4 . G a i n e s v i l l e , F L , U S A : F l o r i d a A g r i c u l t u r a l E x p e r i m e n t S t a t i o n . p p 3 1 7 .

Husted, L. 1 9 3 4 . G e n e t i c a n d c y t o l o g i c a l s t u d i e s o n the p e a n u t , A r a c h i s . I . C y t o l o g i c a l s t u d i e s o n t h e p e a n u t , A r a c h i s . I I . C h r o m o s o m e n u m b e r , m o r p h o l o g y , a n d b e h a v i o r , a n d t h e i r a p p l i c a t i o n t o the p r o b l e m o f the o r i g i n o f t h e c u l t i v a t e d f o r m s . I I I . G e n e t i c s t u d i e s o n the p e a n u t , A r a c h i s . IV. A report on t h e i n h e r i t a n c e of some c h a r a c t e r s . P h . D . t h e s i s , U n i v e r s i t y of V i r g i n i a , V i r g i n i a , U S A . 9 6 p p .

I C R I S A T ( I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e for t h e S e m i - A r i d T r o p i c s ) . 1 9 8 0 . A n n u a l report 1 9 7 8 - 7 9 . P a t a n c h e r u , A . P . 502 3 2 4 , I n d i a : I C R I S A T . 288 p p .

I C R I S A T ( I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e for the S e m i - A r i d T r o p i c s ) . 1 9 8 5 . A n n u a l report 1 9 8 4 . P a t a n c h e r u , A . P . 502 3 2 4 , I n d i a : I C R I S A T . 376 p p .

I C R I S A T ( I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e for the S e m i - A r i d T r o p i c s ) . 1 9 8 6 . A n n u a l report 1 9 8 5 . P a t a n c h e r u , A . P . 502 3 2 4 , I n d i a : I C R I S A T . 379 p p .

I C R I S A T ( I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e for the S e m i - A r i d T r o p i c s ) . 1 9 8 7 . A n n u a l report 1 9 8 6 . P a t a n c h e r u , A . P . 502 3 2 4 , I n d i a : I C R I S A T . 367 p p .

I C R I S A T ( I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e for the S e m i - A r i d T r o p i c s ) . 1 9 9 0 . A n n u a l report 1 9 8 9 . P a t a n c h e r u , A . P . 502 3 2 4 , I n d i a : I C R I S A T . 336 p p .

Isleib, T.G., and W y n n e , J.C. 1 9 8 3 . H e t e r o s i s in test c r o s s e s of 27 e x o t i c p e a n u t c u l t i v a r s . C r o p S c i e n c e 2 3 : 8 3 2 - 8 4 1 .

Jadhav, G . D . , and S h i n d e , N . N . 1 9 7 9 . G e n e t i c s t u d i e s in g r o u n d n u t (Arachis h y p o q a e a L . ) . I n d i a n J o u r n a l o f A g r i c u l t u r a l R e s e a r c h 1 3 : 9 3 - 9 6 .

J a s w a l , V . S . , and G u p t a , V . P . 1 9 6 6 . C o r r e l a t i o n and r e g r e s s i o n s t u d i e s i n s p r e a d i n g t y p e s o f g r o u n d n u t . J o u r n a l o f R e s e a r c h , P u n j a b A g r i c u l t u r a l U n i v e r s i t y 3 : 3 8 5 - 3 8 8 .

J e n a e n , N . F . 1 9 7 0 . A d i a l l e l s e l e c t i v e m a t i n g system for c e r e a l b r e e d i n g . C r o p S c i e n c e 1 0 : 6 2 9 - 6 3 5 .

J o h a n a o n , H.W., R o b i n s o n , H.F., and C o m a t o c k , R . E . 1 9 5 5 . E s t i m a t e s o f g e n e t i c a n d e n v i r o n m e n t a l v a r i a b i l i t y i n s o y b e a n s . A g r o n o m y J o u r n a l 4 7 : 3 1 4 - 3 1 8 .

K a t a r l a , V . P . , R a o , S.K., and K u a h w a h a , J . S . 1 9 8 4 . Y i e l d c o m p o n e n t s i n b u n c h t y p e o f g r o u n d n u t . M y s o r e J o u r n a l o f A g r i c u l t u r a l S c i e n c e s 1 8 : 1 3 - 1 6 .

K h a n g u r a , J.L., and S a n d h u , R . S . 1 9 7 2 . P a t h a n a l y s i s i n g r o u n d n u t (Arachis h y p o q a e a L . ) . I n d i a n J o u r n a l o f A g r i c u l t u r a l S c i e n c e s 4 2 : 7 9 2 - 7 9 5 .

K h a n o r k a r , S.M., T i w a r i , S.P., S h u k l a , A . K . , N a g a r a j , G., and P a t h a k , K.K. 1 9 8 4 . C o m b i n i n g a b i l i t y , g e n e a c t i o n , a n d c o r r e l a t i o n for q u a n t i t a t i v e a n d q u a l i t a t i v e c h a r a c t e r s i n R a b i - s u m m e r g r o u n d n u t . J o u r n a l o f C y t o l o g y and G e n e t i c s 1 9 : 6 0 - 6 6 .

K n a u f t , D . A . 1 9 8 7 . I n h e r i t a n c e o f rust r e s i s t a n c e i n g r o u n d n u t . P a g e s 1 8 3 -187 in G r o u n d n u t rust d i s e a s e . P r o c e e d i n g s of a D i s c u s s i o n G r o u p M e e t i n g , 2 4 -2 8 S e p 1 9 8 4 , I C R I S A T C e n t e r . P a t a n c h e r u , A . P . 502 3 2 4 , I n d i a : I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e for t h e S e m i - A r i d T r o p i c s .

42 SDS no. 4 HRDP

Page 45: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

K n a u f t , D.A., and N o r d e n , A . J . 1983. I n h e r i t a n c e of rust r e s i s t a n c e in p e a n u t s . P r o c e e d i n g s o f A m e r i c a n Peanut R e s e a r c h and E d u c a t i o n S o c i e t y 1 5 : 9 6 .

K o r n e g a y , J.L., B a u t a , M . K . , and W y n n e , J.C. 1 9 8 0 . I n h e r i t a n c e of r e s i s t a n c e to C e r c o s p o r a a r a c h i d i c o l a and C e r c o s p o r i d i u m p e r s o n a t u m in six V i r g i n i a - t y p e p e a n u t l i n e s . P e a n u t S c i e n c e 7:4-9.

K u l k a r n i , G.N., and A l b u q u e r q u a , S.D.S. 1967. Study of v a r i a t i o n in some q u a n t i t a t i v e c h a r a c t e r s of n i n e s t r a i n s of g r o u n d n u t e v o l v e d at R a i c h u r . M y s o r e J o u r n a l o f A g r i c u l t u r a l Science 1:53-59.

K u m a r , L . S . S . , and J o s h i , W . V . 1943. Inheritance of flower c o l o u r in A r a c h i s h y p o g a e a L. ( g r o u n d n u t ) . Indian Journal of G e n e t i c s and Plant B r e e d i n g 3: 5 9 - 6 0 .

K u m a r , P., Y a d a v a , T.P., and Gupta, S.C. 1 9 8 4 . S t a b i l i t y a n a l y s i s in b u n c h g r o u p o f g r o u n d n u t . J o u r n a l o f R e s e a r c h , Haryana A g r i c u l t u r a l U n i v e r s i t y 1 4 : 1 8 0 - 1 8 3 .

K u s h w a h a , J.S., and T a w a r , M . L . 1973. E s t i m a t e s of g e n o t y p i c and p h e n o t y p i c v a r i a b i l i t y i n g r o u n d n u t (Arachis h y p o g a e a L . ) . Indian J o u r n a l o f A g r i c u l t u r a l S c i e n c e s 4 3 : 1 0 4 9 - 1 0 5 4 .

L a b a n a , K . S . , S a n g h a , A . S . , and H u s s a i n , I . 1 9 8 1 . C o m b i n i n g a b i l i t y a n a l y s i s in g r o u n d n u t . C r o p I m p r o v e m e n t 8:116-119.

L a k s h m a i a h , B . 1 9 7 8 . S t u d i e s o n the r e l a t i o n s h i p b e t w e e n yield and its c o m p o n e n t s i n g r o u n d n u t (Arachis h y p o g a e a L . ) . M . S c . t h e s i s , A n d h r a P r a d e s h A g r i c u l t u r a l U n i v e r s i t y , B a p a t l a , A n d h r a P r a d e s h , I n d i a .

L a k s h m a i a h , B., R e d d y , P.S., and Reddy, B.M. 1 9 8 3 . S e l e c t i o n c r i t e r i a for i m p r o v i n g y i e l d i n g r o u n d n u t (Arachis h y p o g a e a L . ) . O l e a g i n e u x 3 8 : 6 0 7 - 6 1 3 .

Levy, A., and A s h r i , A . 1 9 7 8 . Induced p l a s m o n m u t a t i o n s a f f e c t i n g the g r o w t h habit of p e a n u t s , A. h y p o g a e a L. M u t a t i o n R e s e a r c h 5 1 : 3 4 7 - 3 6 0 .

Liao, X.M., Zhang, L.H., L i , L.R., and Zhang, C.R. 1989. C o r r e l a t i o n and p a r t i a l c o r r e l a t i o n a n a l y s e s o f c h a r a c t e r s o f s p a n i s h - t y p e g r o u n d n u t v a r i e t i e s . O i l C r o p s o f C h i n a 1:29-31.

Lin, H. 1 9 6 6 . S t u d i e s on the g e n e t i c b e h a v i o u r of q u a n t i t a t i v e c h a r a c t e r s in p r o g e n i e s from c r o s s e s b e t w e e n g r o u n d n u t s of the V i r g i n i a and S p a n i s h t y p e s . J o u r n a l o f the A g r i c u l t u r a l A s s o c i a t i o n o f C h i n a 5 4 : 1 7 - 2 4 .

Lin, H., C h e n , C . C . , and Lin, C.Y. 1 9 6 9 . S t u d i e s on t h e y i e l d c o m p o n e n t s of p e a n u t . I I . The p a t h c o e f f i c i e n t of yield c o m p o n e n t s in d i f f e r e n t c r o p s o f p e a n u t . J o u r n a l o f the A g r i c u l t u r a l A s s o c i a t i o n o f C h i n a 6 5 : 2 2 - 3 1 .

Lin, H., Chan, C.C., and Lin, C.Y. 1971. S t u d i e s of t h e e f f e c t of s e l e c t i o n for y i e l d of p o d at d i f f e r e n t p l a n t i n g d e n s i t i e s in F 5 bulk p o p u l a t i o n of p e a n u t . J o u r n a l o f t h e A g r i c u l t u r a l A s s o c i a t i o n o f C h i n a 6 7 : 2 7 - 3 5 .

Lin, H., and Lin, C.Y. 1 9 7 1 . S t u d i e s on the seed d o r m a n c y of p e a n u t s . (In C h . S u m m a r y in En.) J o u r n a l of A g r i c u l t u r a l R e s e a r c h of C h i n a 2 0 : 4 9 - 5 3 .

M a j u m d a r , P.K., R a m p r a k a s h , and H a q u e , M . F . 1 9 6 9 . G e n o t y p i c a n d p h e n o t y p i c v a r i a b i l i t y in q u a n t i t a t i v e c h a r a c t e r s in g r o u n d n u t . Indian J o u r n a l of G e n e t i c s and P l a n t B r e e d i n g 2 9 : 2 9 1 - 2 9 6 .

M a r t i n , J.P. 1 9 6 7 . A c o n t r i b u t i o n to the study of c e r t a i n h e r e d i t a r y c h a r a c t e r s o f a g r o n o m i c i m p o r t a n c e i n the g r o u n d n u t . O l e a g i n e u x 2 2 : 6 7 3 - 6 7 6 .

M o h a m m a d , S.V., L o g a n a t h a n , N . S . , R a m a c h a n d r a n , M., and S r i d h a r a n , C . S . 1 9 6 6 . E v o l u t i o n o f w h i t e k e r n e l l e d g r o u n d n u t . M a d r a s A g r i c u l t u r a l J o u r n a l 5 3 : 3 6 3 - 3 6 8 .

HRDP SDS no. 4 43

Page 46: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

M o h a m m a d , J., W y n n e , J.C., and R a w l i n g , J.O. 1 9 7 8 . E a r l y g e n e r a t i o n v a r i a b i l i t y a n d h e r i t a b i l i t y e s t i m a t e s i n c r o s s e s o f V i r g i n i a a n d S p a n i s h p e a n u t s . O l e a g i n e u x 3 3 : 8 1 - 8 6 .

M o o r a , K.M., and K n a u f t , D.A. 1 9 8 9 . The i n h e r i t a n c e of h i g h o l e i c a c i d in p e a n u t . J o u r n a l o f H e r e d i t y 3 0 ( 3 ) : 2 5 2 - 2 5 3 .

M o u l i , C . , and K a l e , D.M. 1 9 8 2 . G a m m a - r a y i n d u c e d S p a n i s h b u n c h m u t a n t w i t h large p o d g r o u n d n u t . O l e a g i n e u x 3 7 : 5 8 3 - 5 8 8 .

M o u l i , C., K a l e , D.M., and P a t i l , S.H. 1 9 8 4 . B i f u r c a t e d l e a f l e t s in g r o u n d n u t . O l e a g i n e u x 3 9 : 3 7 5 - 3 7 7 .

M o u l i , C . , K a l e , D.M., a n d P a t i l , S.H. 1 9 8 6 . I n h e r i t a n c e o f s e q u e n t i a l f l o w e r i n g p a t t e r n i n t h e m u t a n t s o f g r o u n d n u t c u l t i v a r Robut 3 3 - 1 . C u r r e n t S c i e n c e 5 5 : 1 1 8 5 - 1 1 8 7 .

M o u l i , C . , P a t i l , S.B., and K a l a , D.M. 1 9 8 2 . A l t e r a t i o n s i n s u b s p e c i f i c c h a r a c t e r s o f g r o u n d n u t . P a g e s 2 0 5 - 2 2 0 i n I n d u c e d m u t a t i o n s for i m p r o v e m e n t o f g r a i n l e g u m e p r o d u c t i o n . V i e n n a , A u s t r i a : I n t e r n a t i o n a l A t o m i c E n e r g y A g e n c y .

N a v a n o , G . 1 9 2 4 . S t u d i e s d e a l k u n e c o r r e l a z i o n nell a r a c h i d e (Arachis h y p o g a e a L . ) . (In It.) S t a z i o n i S p e r i m e n t a l i A g r a r i e I t a l i a n e 5 7 ( 1 - 3 ) : 1 7 - 3 3 .

N a v i l l , D.J. 1 9 8 2 . I n h e r i t a n c e o f r e s i s t a n c e t o C e r c o s p o r i d i u m p e r s o n a t u m i n g r o u n d n u t : a g e n e t i c m o d e l a n d its i m p l i c a t i o n s for s e l e c t i o n . O l e a g i n e u x 3 7 : 3 5 5 - 3 6 2 .

Nigam, S.N., and B o c k , K.R. 1 9 9 0 . I n h e r i t a n c e of r e s i s t a n c e to g r o u n d n u t r o s e t t e v i r u s i n g r o u n d n u t (Arachis h y p o g a e a L . ) . A n n a l s o f A p p l i e d B i o l o g y 1 1 7 : 5 5 3 - 5 6 0 .

Nigam, S.N., D w i v a d i , S.L., and G i b b o n s , R.W. 1 9 8 0 . G r o u n d n u t b r e e d i n g at I C R I S A T a t I C R I S A T . P a g e s 62-68 in P r o c e e d i n g s o f I n t e r n a t i o n a l W o r k s h o p o n G r o u n d n u t ' s , ( d a t e ) , 1 9 8 0 . I C R I S A T C e n t e r . P a t a n c h e r u , A . P . 502 3 2 4 , I n d i a : I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e for the S e m i - A r i d T r o p i c s .

Nigam, S.N., D w i v a d i , S.L., S i g a m a n i , T.S.N., and G i b b o n s , R . N . 1 9 8 4 . C h a r a c t e r a s s o c i a t i o n a m o n g v e g e t a t i v e a n d r e p r o d u c t i v e t r a i t s i n a d v a n c e d g e n e r a t i o n s o f i n t e r - s u b s p e c i f i c a n d i n t r a - s u b s p e c i f i c c r o s s e s i n p e a n u t . P e a n u t S c i e n c e 1 1 : 9 5 - 9 8 .

Nigam, S.N., R a o , M . J . V . , a n d G i b b o n s , R.W. 1 9 9 0 . A r t i f i c i a l h y b r i d i z a t i o n i n g r o u n d n u t . I n f o r m a t i o n B u l l e t i n n o . 2 9 . P a t a n c h e r u , A . P . 502 3 2 4 , I n d i a : I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e for t h e S e m i - A r i d T r o p i c s . 2 6 p p .

N o r d a n , A . J . 1 9 8 0 . P e a n u t . P a g e s 4 4 3 - 4 5 6 i n H y b r i d i z a t i o n o f c r o p p l a n t s (Watter R . F . , a n d H e n r y , H.H., e d s . ) . M a d i s o n , W I , U S A : A m e r i c a n S o c i e t y o f A g r o n o m y , a n d C r o p S c i e n c e S o c i e t y o f A m e r i c a .

N o r d a n , A . J . , G o r b a t , D.W., K n a u f t , D.A., and M a r t i n , F.G. 1 9 8 6 . G e n o t y p e x e n v i r o n m e n t i n t e r a c t i o n s i n p e a n u t m u l t i l i n e p o p u l a t i o n s . C r o p S c i e n c e 2 6 : 4 6 - 4 8 .

N o r d a n , A . J . , K n a u f t , D.A., and G o r b a t , D.W. 1 9 8 8 . A d o m i n a n t g e n e for w h i t e s e e d coat i n p e a n u t (Arachis h y p o g a e a L . ) . J o u r n a l o f H e r e d i t y 7 9 ( 3 ) : 2 1 2 - 2 1 4 .

N o r d a n , A . J . , S m i t h , O . D . , and G o r b a t , D.W. 1 9 8 2 . B r e e d i n g o f the c u l t i v a t e d p e a n u t . P a g e s 9 5 - 1 2 2 in. P e a n u t s c i e n c e a n d t e c h n o l o g y (Pattee, H . E . , and Y o u n g C . T . , e d s . ) . Y o a k u m , TX, U S A : A m e r i c a n P e a n u t R e s e a r c h a n d E d u c a t i o n S o c i e t y .

O j o m o , O.A., a n d A d a l a n a , B . O . 1 9 7 0 . V a r i e t y x e n v i r o n m e n t i n t e r a c t i o n s in g r o u n d n u t v a r i e t y t e s t s i n w e s t e r n N i g e r i a . J o u r n a l o f A g r i c u l t u r a l S c i e n c e (UK) 7 5 : 4 1 9 - 4 2 0 .

44 SDS no. 4 HRDP

Page 47: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

O n o , V., N a k a y a m a , K., and K u b u t a , M. 1 9 7 4 . Effect of soil t e m p e r a t u r e a n d soil m o i s t u r e in p o d d i n g zone and p o d d e v e l o p m e n t of p e a n u t p l a n t s . P r o c e e d i n g s o f the C r o p S c i e n c e Society of Japan 4 3 : 2 4 7 - 2 5 1 .

P a r k e r , R . C . , W y n n e , J.C., and Emery, D.A. 1970. C o m b i n i n g a b i l i t y e s t i m a t e s in A r a c h i s h y p o g a e a L. S e e d l i n g r e s p o n s e s in a c o n t r o l l e d e n v i r o n m e n t . C r o p S c i e n c e 1 0 : 4 2 9 - 4 3 2 .

P a t e l , J.S., John, C.M., and S e s h a d r i , C.R. 1936. The i n h e r i t a n c e of c h a r a c t e r s in the g r o u n d n u t - A r a c h i s h y p o q a e a L. P r o c e e d i n g s of the Indian A c a d e m y o f S c i e n c e s 3 : 2 1 4 - 2 3 3 .

P a t h i r a n a , R., and w i j e w i c k r a m a , P.J.A. 1982. M u t a t i o n i n d u c t i o n for g e n e t i c v a r i a b i l i t y in g r o u n d n u t (Arachis h y p o q a e a L . ) . Pages 195-204 in, I n d u c e d m u t a t i o n s for i m p r o v e m e n t o f grain legumes p r o d u c t i o n I I I . V i e n n a , A u s t r i a : I n t e r n a t i o n a l A t o m i c E n e r g y A g e n c y .

P a t i l , S.H. 1 9 6 5 . G e n e t i c s t u d i e s i n g r o u n d n u t (Arachis h y p o q a e a L . ) . M . S c . t h e s i s , U n i v e r s i t y o f P o o n a , P o o n a , M a h a r a s h t r a , India.

P a t i l , S.H. 1 9 6 6 . M u t a t i o n s i n d u c e d in g r o u n d n u t by X - r a y s . Indian J o u r n a l o f G e n e t i c s a n d P l a n t B r e e d i n g 2 6 A : 3 3 4 - 3 4 8 .

P a t i l , S.H. 1 9 7 5 . R a d i a t i o n induced m u t a t i o n s for i m p r o v i n g g r o u n d n u t p r o d u c t i o n . Indian F a r m i n g 2 6 : 1 9 - 2 2 .

P a t i l , S.H. 1 9 7 7 . M u t a t i o n b r e e d i n g i n i m p r o v i n g g r o u n d n u t c u l t i v a r s . P a g e s 1 4 5 - 1 4 7 in I n d u c e d m u t a t i o n s for the i m p r o v e m e n t of g r a i n l e g u m e s in S o u t h e a s t A s i a . V i e n n a , A u s t r i a : I n t e r n a t i o n a l A t o m i c E n e r g y A g e n c y .

P a t i l , S.H. 1 9 8 0 . M u t a t i o n b r e e d i n g o f g r o u n d n u t a t T r o m b a y . P a g e s 1 0 9 - 1 1 0 in Induced m u t a t i o n s for t h e improvement of grain legumes p r o d u c t i o n . V i e n n a , A u s t r i a : I n t e r n a t i o n a l A t o m i c E n e r g y A g e n c y .

P a t r a , G.J. 1 9 7 5 . H e r i t a b i l i t y and g e n e t i c a d v a n c e of some q u a n t i t a t i v e c h a r a c t e r s in g r o u n d n u t h y b r i d s in F 8 g e n e r a t i o n . Indian J o u r n a l of A g r i c u l t u r a l S c i e n c e s 4 5 : 3 0 8 - 3 1 1 .

P a t r a , G.J. 1 9 8 0 . M u l t i p l e c r i t e r i a s e l e c t i o n in some p o p u l a t i o n s of g r o u n d n u t . I n d i a n J o u r n a l o f G e n e t i c s and Plant B r e e d i n g 4 0 : 1 3 - 1 7 .

P h a d n i s , B.A., E k b o t e , A . P . , and M a n k e r , A . R . 1 9 7 3 . C o r r e l a t i o n s t u d i e s i n some m e t r i c a l c h a r a c t e r s i n g r o u n d n u t (Arachis h y p o q a e a L . ) . JNKVV R e s e a r c h J o u r n a l 7 : 6 8 - 7 2 .

P h a o k a n t a r a k o r n , P., and W a r a n y u w a t , A . 1 9 8 7 . E a r l y g e n e r a t i o n y i e l d t e s t i n g a s s e l e c t i o n p r o c e d u r e s i n p e a n u t s . K a s e t s a r t J o u r n a l 2 0 ( 2 0 ) : 2 1 4 - 2 1 6 .

P h i l l i p s , T.D., W y n n e , J.C., E l k a n , G.M., and S c h n e w e i s , T.J. 1 9 8 9 . I n h e r i t a n c e o f s y m b i o t i c n i t r o g e n fixation in t w o p e a n u t c r o s s e s . Peanut S c i e n c e 1 6 ( 2 ) : 6 6 - 7 0 .

P r a s a d , M . M . K . D . 1 9 8 1 . G e n e t i c c h a r a c t e r i z a t i o n and h e t e r o t i c p o t e n t i a l o f v a r i e t a l g r o u p s i n g r o u n d n u t (Arachis h y p o q a e a L . ) . P h . D . t h e s i s , A n d h r a P r a d e s h A g r i c u l t u r a l U n i v e r s i t y , H y d e r a b a d , A n d h r a P r a d e s h , I n d i a . 303 p p .

Prasad, S., and S r i v a s t a v a , D . P . 1 9 6 7 . I n h e r i t a n c e of t e s t a c o l o u r in g r o u n d n u t (Arachis h y p o q a e a L . ) . Science and C u l t u r e 3 3 : 4 8 9 - 4 9 0 .

R a j u , P.R.K. 1 9 7 8 . S t u d i e s o n c o m b i n i n g a b i l i t y and o t h e r i n t e r - r e l a t e d a s p e c t s i n c e r t a i n c r o s s e s o f g r o u n d n u t (Arachis h y p o q a e a L . ) . M . S c . t h e s i s , A n d h r a P r a d e s h A g r i c u l t u r a l U n i v e r s i t y , H y d e r a b a d , A n d h r a P r a d e s h , I n d i a . 6 9 p p .

R a j u , P.R.K., R e d d i , M . V . , and A n a n t a s a y a n a , K . 1 9 7 9 . C o m b i n i n g a b i l i t y and h e t e r o s i s i n g r o u n d n u t . A n d h r a A g r i c u l t u r a l J o u r n a l 2 6 : 1 9 3 - 1 9 6 .

SDS no. 4 45 HRDP

Page 48: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

R a j u , P.R.K., R e d d i , M . V . , and A n a n t a s a y a n a , K . 1 9 8 1 . C o r r e l a t i o n and p a t h a n a l y s i s in a d i a l l e l set of five c u l t i v a r s of g r o u n d n u t . A n d h r a A g r i c u l t u r a l J o u r n a l 2 8 : 1 2 0 - 1 2 3 .

R a m a n , V . S . , a n d S r e e r a n g a s w a m y , S.R. 1 9 7 0 . G e n e t i c v a r i a b i l i t y o f q u a n t i t a t i v e a t t r i b u t e s in t h e p r o g e n i e s of the h y b r i d A r a c h i s h y p o g a e a x A r a c h i s m o n t i c o l a . M a d r a s A g r i c u l t u r a l J o u r n a l 5 7 : 5 7 1 - 5 7 7 .

Reddy, C.R. 1 9 6 8 . S t u d i e s for the f o r m u l a t i o n of s e l e c t i o n i n d i c e s for y i e l d i n g r o u n d n u t (Arachis h y p o q a e a L . ) . M . S c . t h e s i s , A n d h r a P r a d e s h A g r i c u l t u r a l U n i v e r s i t y , H y d e r a b a d , A n d h r a P r a d e s h , I n d i a .

Reddy, P . S . 1 9 8 8 . G e n e t i c s b r e e d i n g and v a r i e t i e s . P a g e s 2 0 0 - 3 1 7 in. G r o u n d n u t (Reddy, P . S . , e d . ) . N e w D e l h i , I n d i a : Indian C o u n c i l o f A g r i c u l t u r a l R e s e a r c h .

R a d d y , P., R a o , K.V., and R a o , N . G . P . 1 9 8 4 . I m p l i c a t i o n s of v a r i e t y x s e a s o n i n t e r a c t i o n s in g r o u n d n u t b r e e d i n g . I n d i a n J o u r n a l of G e n e t i c s and Plant B r e e d i n g 44(3) : 3 7 2 - 3 7 8 .

Reddy, L.J., Nigam, S.N., D w i v e d i , S.L., and G i b b o n s , R.W. 1 9 8 7 . B r e e d i n g g r o u n d n u t c u l t i v a r s for r e s i s t a n t t o r u s t . P a g e s 17-25 i n G r o u n d n u t rust d i s e a s e . P r o c e e d i n g s of a D i s c u s s i o n G r o u p M e e t i n g , 24-28 Sep 1 9 8 4 , I C R I S A T C e n t e r , I n d i a . P a t a n c h e r u , A . P . 502 3 2 4 , I n d i a : I n t e r n a t i o n a l C r o p s R e s e a r c h I n s t i t u t e for t h e S e m i - A r i d T r o p i c s .

R a d d y , T.V., R e d d i , N . S . , S u b r a h m a n y a m , D . , and R a d d i , M . V . 1 9 8 6 . C o m b i n i n g a b i l i t y s t u d i e s in g r o u n d n u t (Arachis h v p o q a e a L.) by line x t e s t e r a n a l y s i s . A n d h r a A g r i c u l t u r a l J o u r n a l 3 3 ( 3 ) : 2 5 4 - 2 6 2 .

R e d e i , G.P. 1 9 7 4 . E c o n o m y i n m u t a t i o n e x p e r i m e n t s . Z e i t s c h r i f t fuer P f l a n z e n z u e c h t u n g 7 3 : 8 7 - 9 6 .

R e d o n a , E . D . , and L a n t i c a n , R.M. 1 9 8 6 . G e n e t i c a n a l y s i s for some q u a n t i t a t i v e t r a i t s in p e a n u t (Arachis h v p o q a e a L.) 2: e s t i m a t i o n of h e t e r o s i s g e n e t i c c o r r e l a t i o n s . P h i l i p p i n e s J o u r n a l o f C r o p S c i e n c e l l ( l ) : 2 1 - 2 5 .

Sandhu, B . S . , and K h e r a , A . S . 1 9 7 6 . The role o f e p i s t a s i s i n the i n h e r i t a n c e o f y i e l d a n d its c o m p o n e n t s i n g r o u n d n u t . C r o p I m p r o v e m e n t 3 : 9 - 1 7 .

S a n d h u , B . S . , a n d K h e r a , A . S . 1 9 7 7 . I n t e r - r e l a t i o n s h i p s on s e m i - s p r e a d i n g x b u n c h a n d s e m i - s p r e a d i n g x s e m i - s p r e a d i n g c r o s s e s of g r o u n d n u t . I n d i a n J o u r n a l o f G e n e t i c s a n d P l a n t B r e e d i n g 3 7 : 2 2 - 2 6 .

S a n g h a , A . S . 1 9 7 3 a . G e n e t i c d i v e r s i t y i n s p r e a d i n g g r o u n d n u t . M a d r a s A g r i c u l t u r a l J o u r n a l 6 0 : 1 3 8 0 - 1 3 8 7 .

S a n g h a , A . S . 1 9 7 3 b . G e n e t i c v a r i a b i l i t y and c o r r e l a t i o n s t u d i e s i n s p r e a d i n g g r o u n d n u t v a r i e t i e s (Arachis h y p o q a e a L . ) . M a d r a s A g r i c u l t u r a l J o u r n a l 6 0 : 1 4 4 6 - 1 4 5 2 .

S a n g h a , A . S . , a n d J a s w a l , S.V. 1 9 7 5 . G e n o t y p e x e n v i r o n m e n t i n t e r a c t i o n s in s p r e a d i n g g r o u n d n u t . I . E l i t e s t r a i n s . O i l s e e d s J o u r n a l 5 : 9 - 1 2 .

S a s t r i , D . C . , a n d M o s s , J.P. 1 9 8 2 . E f f e c t s o f g r o w t h r e g u l a t o r s o n i n c o m p a t i b l e c r o s s e s i n t h e g e n u s A r a c h i s L . J o u r n a l o f E x p e r i m e n t a l B i o l o g y 3 3 ( 1 3 7 ) : 1 2 9 3 - 1 3 0 1 .

S c h i l l i n g , T . T . 1 9 8 6 . B r e e d i n g s t u d i e s u t i l i z i n g e l i t e p e a n u t g e r m p l a s m . P h . D . t h e s i s , N o r t h C a r o l i n a S t a t e U n i v e r s i t y , R a l e i g h , N C , U S A . 7 3 p p .

S c h i l l i n g , T.T., M o z i n g o , R.W., W y n n e , J.C., and Isleib, T.G. 1983. A c o m p a r i s o n o f p e a n u t m u l t i l i n e s a n d c o m p o n e n t lines a c r o s s e n v i r o n m e n t s . C r o p S c i e n c e 2 3 : 1 0 1 - 1 0 5 .

46 SDS no. 4 HPDP

Page 49: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

S e s h a d r i , C.R. 1 9 6 2 . G r o u n d n u t . Indian C e n t r a l O i l s e e d s C o m m i t t e e , H y d e r a b a d , A . P . , I n d i a . 274 p p .

Shany, G. 1 9 7 7 . P r o t e i n and oil in seeds of p e a n u t (Arachis h y p o g a e a L.) c u l t i v a r s and h y b r i d s ; c o n t e n t , h e r i t a b i l i t y and c o r r e l a t i o n s with some y i e l d c h a r a c t e r s . M . S . t h e s i s , H e b r e w U n i v e r s i t y , J e r u s a l e m , I s r a e l .

S h a r i e f , Y. 1 9 7 2 . The i n h e r i t a n c e of c e r c o s p o r a leafspot r e s i s t a n c e in A r a c h i s s p e c i e s . P h . D . t h e s i s , N o r t h C a r o l i n a State U n i v e r s i t y , R a l e i g h , N C , U S A .

S h a r i e f , Y., R a w l i n g s , R.O., and Gregory, W . C . 1978. E s t i m a t e s of leafspot r e s i s t a n c e i n t h r e e i n t e r s p e c i f i c h y b r i d s o f A r a c h i s . E u p h y t i c a 2 7 : 7 4 1 - 7 5 1 .

S h o r t e r , R., and N o r m a n , R.J. 1983. C u l t i v a r x e n v i r o n m e n t i n t e r a c t i o n s for k e r n e l y i e l d in V i r g i n i a t y p e p e a n u t s (Arachis hypogaea L.) in Q u e e n s l a n d . A u s t r a l i a n J o u r n a l o f A g r i c u l t u r a l R e s e a r c h 3 4 : 4 1 5 - 4 2 6 .

S i b a l e , P.K. 1 9 8 5 . I n h e r i t a n c e of seed s h a p e , h e r i t a b i l i t i e s and c o r r e l a t i o n a m o n g r e l a t e d t r a i t s i n peanut (Arachis h y p o g a e a L . ) . D i s s e r t a t i o n A b s t r a c t s B 4 5 : 1 9 7 5 B .

S i g u r b j o r n s s o n , B. 1 9 8 3 . Induced m u t a t i o n s . P a g e s 153-176 in C r o p b r e e d i n g (Wood, D.R., R a w a l , K.M., and Wood, M . N . , e d s . ) . M a d i s o n , W I , USA: A m e r i c a n S o c i e t y of A g r o n o m y , and C r o p S c i e n c e Society of A m e r i c a .

Singh, A . K . 1 9 8 6 . A l i e n g e n e t r a n s f e r i n g r o u n d n u t b y p l o i d y and g e n o m e m a n i p u l a t i o n s . P a g e s 2 0 7 - 2 0 9 in G e n e t i c m a n i p u l a t i o n s in p l a n t b r e e d i n g (Horn, W., J e n s e n , C.J., O d e n b a c h , W., and S c h i e d e r , 0., e d s . ) . West B e r l i n , F e d e r a l R e p u b l i c of G e r m a n y : W a t e r de G r u y t e r and C o .

Singh, A . K . , and M o s s , J.P. 1 9 8 2 . U t i l i z a t i o n of w i l d r e l a t i v e s in g e n e t i c i m p r o v e m e n t of A r a c h i s h y p o g a e a L. T h e o r e t i c a l and A p p l i e d G e n e t i c s 6 1 : 3 0 5 -3 1 4 .

Singh, A . K . , and M o s s , J.P. 1 9 8 4 . U t i l i z a t i o n of wild r e l a t i v e s in g e n e t i c improvement of A r a c h i s h y p o g a e a L. V I . F e r t i l i t y in t r i p l o i d s : c y t o l o g i c a l b a s i s and b r e e d i n g i m p l i c a t i o n s . Peanut Science 1 1 : 1 7 - 2 1 .

Singh, A . K , M o s s , J.P., and Sastry, D . C . 1983. U t i l i z a t i o n of w i l d r e l a t i v e s in g e n e t i c i m p r o v e m e n t of A r a c h i s h y p o g a e a L. I. T e c h n i q u e s . P a g e s 1 5 1 - 1 5 7 in A l l India S e m i n a r on C u r r e n t A p p r o a c h e s in C y t o g e n e t i c s (Sinha, R.P., and S i n h a , U., e d s . ) . D e l h i , I n d i a : S p e c t r u m P u b l i s h i n g H o u s e .

Singh, B . D . 1 9 8 3 . P l a n t b r e e d i n g - p r i n c i p l e s and m e t h o d s . N e w D e l h i , I n d i a : K a l y a n i P u b l i s h e r s . 516 p p .

Singh, R . K . 1 9 7 2 . S e l e c t i o n index - yes or no? V i s t a s in Plant S c i e n c e s 2 : 1 1 1 - 1 4 0 .

Sivaram, M . R . , R a t h i n a s w a m y , R., A p p a d u r a i , R., and S i v a s u b r a m a n i a m , S. 1 9 8 9 . C o 2 a h i g h y i e l d i n g m u t a n t b u n c h g r o u n d n u t . M a d r a s A g r i c u l t u r a l J o u r n a l 7 6 ( 8 ) : 4 2 4 - 4 2 6 .

S i v a s u b r a m a n i a n , P., R a m a n a t h a n , T., Mahalingam, R., Prasad, K . N . S . , and A d h i v a r a h a m , D . 1 9 7 7 . G e n e t i c v a r i a b i l i t y i n c e r t a i n m e t r i c t r a i t s o f A r a c h i s h y p o g a e a L . M a d r a s A g r i c u l t u r a l J o u r n a l 6 4 : 4 4 7 - 4 5 0 .

Smartt, J. 1 9 6 4 . C r o s s c o m p a t i b i l i t y r e l a t i o n s h i p s b e t w e e n the c u l t i v a t e d p e a n u t , A r a c h i s h y p o g a e a L . and other species o f the g e n u s A r a c h i s . P h . D . t h e s i s , N o r t h C a r o l i n a State U n i v e r s i t y , R a l e i g h , N C , U S A . 8 3 p p .

S p i e l m a n , I.V., and M o s s , J.P. 1 9 7 6 . T e c h n i q u e s of c h r o m o s o m e d o u b l i n g in i n t e r s p e c i f i c h y b r i d s o f A r a c h i s . O l e a g i n e u x 3 1 : 4 9 1 - 4 9 4 .

47 SDS no. 4 HRDP

Page 50: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

S r i d h a r a n , C . S . , and M a r a p p a n , P.V. 1 9 8 0 . B i o m e t r i c a l s t u d i e s o n t h e h y b r i d s o f b u n c h g r o u n d n u t (Arachis h y p o q a e a L . ) . P a g e s 3 9 - 4 2 i n N a t i o n a l S e m i n a r o n t h e A p p l i c a t i o n o f G e n e t i c s t o I m p r o v e m e n t o f G r o u n d n u t , 16-17 Jul 1 9 8 0 , C o i m b a t o r e , T a m i l N a d u , I n d i a : T a m i l N a d u A g r i c u l t u r a l U n i v e r s i t y .

S r i v a s t a v a , A . N . 1 9 6 8 . C l a s s i f i c a t i o n a n d i n h e r i t a n c e s t u d i e s i n g r o u n d n u t (Arachis h y p o q a e a L i n n . ) . P h . D . t h e s i s , A g r a U n i v e r s i t y , A g r a , U t t a r P r a d e s h , I n d i a . 242 p p .

S t a l k e r , H . T . , W y n n e , J.C., and C o m p a n y , M. 1979. V a r i a t i o n in p r o g e n i e s of an A r a c h i s h y p o q a e a x d i p l o i d w i l d s p e c i e s h y b r i d . E u p h y t i c a 2 8 : 6 7 5 - 6 8 4 .

S t o k e s , W . E . , and H u l l , F . H . 1 9 3 0 . P e a n u t b r e e d i n g . J o u r n a l o f the A m e r i c a n S o c i e t y o f A g r o n o m y 2 2 : 1 0 0 4 - 1 0 1 9 .

S u b r a h m a n y a m , P., G i b b o n s , R.N., Nigam, S.N., and R a o , V . R . 1 9 8 0 . S c r e e n i n g m e t h o d s a n d f u r t h e r s o u r c e s o f r e s i s t a n c e t o p e a n u t r u s t . Peanut S c i e n c e 7 : 1 0 - 1 2 .

Syakcudo, K., and K a w a b a t a , S. 1 9 6 3 . S t u d i e s on p e a n u t b r e e d i n g w i t h r e f e r e n c e t o c o m b i n a t i o n s o f some m a i n c h a r a c t e r s . I . O n p o d setting p e r c e n t a g e i n c r o s s i n g a m o n g v a r i e t i e s a n d c h a r a c t e r i s t i c s o f F 1 p l a n t s . J a p a n e s e J o u r n a l o f B r e e d i n g 1 5 : 1 6 7 - 1 7 0 .

T a i , P.Y.T., and H a m m o n s , R . O . 1 9 7 8 . G e n o t y p e - e n v i r o n m e n t i n t e r a c t i o n e f f e c t s i n p e a n u t v a r i e t y e v a l u a t i o n . P e a n u t S c i e n c e 5 : 7 2 - 7 4 .

Tai, P.Y.T., and Young, C . T . 1 9 7 5 . G e n e t i c s t u d i e s o f p e a n u t p r o t e i n s and o i l s . J o u r n a l o f the A m e r i c a n O i l C h e m i s t s ' S o c i e t y 5 2 : 3 7 7 - 3 8 5 .

T i w a r i , S.P., G h e w a n d e , M . P . , and M i s r a , D . P . 1 9 8 4 . I n h e r i t a n c e o f r e s i s t a n c e t o rust and late l e a f s p o t i n g r o u n d n u t (Arachis h y p o g a e a L . ) . J o u r n a l o f C y t o l o g y a n d G e n e t i c s 1 9 : 9 7 - 1 0 1 .

V a l e n t i n e , J. 1 9 8 4 . A c c e l e r a t e d p e d i g r e e s e l e c t i o n : an a l t e r n a t i v e to i n d i v i d u a l p l a n t s e l e c t i o n i n t h e n o r m a l p e d i g r e e b r e e d i n g m e t h o d i n s e l f - p o l l i n a t e d c e r e a l s . E u p h y t i c a 3 3 : 9 4 3 - 9 5 1 .

W y n n e , J.C. 1 9 7 5 . I n h e r i t a n c e of b r a n c h i n g p a t t e r n in A r a c h i s h y p o q a e a L. P e a n u t S c i e n c e 2 : 1 - 5 .

W y n n e , J.C. 1 9 7 6 . E v a l u a t i o n o f e a r l y g e n e r a t i o n t e s t i n g i n p e a n u t s . P e a n u t S c i e n c e 3 : 6 2 - 6 6 .

W y n n e , J.C., a n d C o f f e l t , T.A. 1 9 8 0 . T h e e f f e c t of g e n o t y p e x e n v i r o n m e n t i n t e r a c t i o n s o n v a r i e t a l d e v e l o p m e n t i n N o r t h C a r o l i n a a n d V i r g i n i a . P r o c e e d i n g s o f A m e r i c a n P e a n u t R e s e a r c h and E d u c a t i o n A s s o c i a t i o n 1 2 : 7 5 .

W y n n e , J.C., and C o f f e l t , T.A. 1 9 8 2 . G e n e t i c s of A r a c h i s h y p o q a e a L. P a g e s 50-94 in P e a n u t s c i e n c e and t e c h n o l o g y (Pattee, H . E . , and Y o u n g , C . T . , eds.) . Y o a k u m , T X , U S A : A m e r i c a n P e a n u t R e s e a r c h and E d u c a t i o n S o c i e t y .

W y n n e , J.C., E m e r y , D.A., and R i c e , P.W. 1 9 7 0 . C o m b i n i n g a b i l i t y e s t i m a t e s in A r a c h i s h y p o q a e a L. I I . F i e l d p e r f o r m a n c e of F 1 h y b r i d s . C r o p S c i e n c e 1 0 : 7 1 3 - 7 1 5 .

W y n n e , J.C., and G r e g o r y , W . C . 1 9 8 1 . P e a n u t b r e e d i n g . A d v a n c e s i n A g r o n o m y 3 4 : 3 9 - 7 2 .

W y n n e , J.C., a n d H a l w a r d , T . 1 9 8 9 . G e n e t i c s and c y t o g e n e t i c s o f A r a c h i s . The C r i t i c a l R e v i e w s in P l a n t S c i e n c e s 8 ( 3 ) : 1 8 9 - 2 2 0 .

W y n n e , J.C., a n d X s l e i b , T.G. 1 9 7 8 . C u l t i v a r x e n v i r o n m e n t i n t e r a c t i o n s in p e a n u t y i e l d t e s t s . P e a n u t S c i e n c e 5 : 1 0 2 - 1 0 5 .

W y n n e , J . C , and R a w l i n g , J . O . 1 9 7 8 . G e n e t i c v a r i a b i l i t y a n d h e r i t a b i l i t y for a n inter c u l t i v a r c r o s s o f p e a n u t . P e a n u t S c i e n c e 5 : 2 3 - 2 6 .

48 SDS no. 4 HRDP

Page 51: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

X i a n g , R . Y . , L i , X . Y . , Ling, S.X., and Zheng, G.Y. 1984. P r e l i m i n a r y a n a l y s i s of t h e F 1 s o f h i g h y i e l d i n g S p a n i s h - t y p e g r o u n d n u t c u l t i v a r s c r o s s e d w i t h rust r e s i s t a n t V a l e n c i a - t y p e s . G u a n g d o n g N o n g y e K e x u e 2 : 1 8 - 2 2 .

Y a d a v a , T.P., and K u m a r , P. 1978a. P h e n o t y p i c s t a b i l i t y of yield and its c o m p o n e n t s i n s e m i - s p r e a d i n g g r o u p o f g r o u n d n u t (Arachis h y p o q a e a L . ) . C r o p I m p r o v e m e n t 5 : 4 5 - 4 9 .

Y a d a v a , T.P., and K u m a r , P. 1978b. Stability a n a l y s i s for p o d yield and m a t u r i t y in b u n c h g r o u p of g r o u n d n u t , A r a c h i s h y p o q a e a L. Indian J o u r n a l of A g r i c u l t u r a l R e s e a r c h 1 2 : 1 - 4 .

Y a d a v a , T.P., and K u m a r , P. 1979. Studies on g e n o t y p e - e n v i r o n m e n t i n t e r a c t i o n for p o d y i e l d and m a t u r i t y i n g r o u n d n u t (Arachis h y p o q a e a L . ) . J o u r n a l o f R e s e a r c h , H a r y a n a A g r i c u l t u r a l U n i v e r s i t y 9:226-230.

Y a d a v a , T.P., K u m a r , P., and T h a k r a l , S.K. 1 9 8 4 . A s s o c i a t i o n of p o d y i e l d w i t h some q u a n t i t a t i v e t r a i t s in b u n c h g r o u p of g r o u n d n u t (Arachis h y p o q a e a L . ) . J o u r n a l o f R e s e a r c h , H a r y a n a A g r i c u l t u r a l U n i v e r s i t y 1 4 : 8 5 - 8 8 .

Y a d a v a , T.P., K u m a r , P., and Yadav, A . K . 1 9 8 1 . C o r r e l a t i o n and p a t h a n a l y s i s i n g r o u n d n u t . J o u r n a l o f R e s e a r c h , H a r y a n a A g r i c u l t u r a l U n i v e r s i t y 1 1 : 1 6 9 - 1 7 1 .

SDS no. 4 49 HRDP

Page 52: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

Evaluation

Select the most appropriate answer and check the correct answer at the end of the booklet.

1. In groundnut the spreading growth habit is dominant over a) bunch. b) open habit. c) semispreading. d) all the above.

2. Dwarfism is a character. a) dominant b) complementary c) additive d) recessive

3. The erect growth habit in groundnut is a character. a) dominant b) epistatic c) recessive d) complementary

4. Dark or purple pigmentation of groundnut stems is a) dominant. b) recessive. c) additive. d) polygenic.

5. Albinism in groundnut ranges from yellow to white. Albinism is inherited due to

a) a single recessive gene. b) triplicate recessive genes. c) triplicate dominant genes. d) duplicate genes.

6. The character light green foliage on groundnut is a) dominant. b) recessive. c) epistatic. d) polygenic.

7. The dark green foliage character of groundnut is a) monogenic. b) digenic. c) trigenic dominant. d) trigenic recessive.

8. The elliptical-oblong and narrow leaf shape is governed by a) recessive genes. b) dominant genes. c) complementary genes. d) duplicate genes.

9. Inflorescence on the main axis of groundnut is governed by a) a single gene. b) two duplicate genes with epistatic action. c) complementary genes. d) three genes.

10. The dark corolla color character is due to a gene. a) recessive b) dominant c) epistatic d) complementary

11. The boat shaped wing petal is a character. a) digenic b) monogenic dominant c) trigenic d) polygenic

12. The large pod is a character. a) recessive b) dominant c) epistatic d) complementary

13. Yellow and white corolla colors in groundnut are inherited due to a) dominance. b) duplicate epistasis. c) incomplete dominance. d) cytoplasmic factors.

14. The number of flowers plant-1 is inherited due to a) epistatic genes. b) complementary genes. c) additive dominant genes. d) duplicate genes.

50 SDS no. 4 HRDP

Page 53: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

15. The chlorophyll deficiency in groundnut is governed by a) a single gene. b) two genes. c) three genes. d) cytoplasmic factors.

16. The presence of pod constrictions in groundnut is a character. a) dominant b) recessive c) epistatic d) complementary

17. The large seed size in groundnut is a character. a) recessive b) dominant c) additive d) polymorphic

18. Long seed shape and flat ends of seed are a) recessive characters. b) dominant characters. c) quantitative characters. d) complementary characters.

19. The red testa color in groundnut is governed by a a) dominant gene. b) recessive gene. c) epistatic gene. d) complementary gene.

20. The characters of flesh, white, pink, and purple testa colors are a) monogenic. b) digenic. c) trigenic. d) tetra genic.

21. The presence of seed dormancy is a) recessive to nondormancy. b) dominant to nondormancy. c) partially dorminant to nondormancy. d) none of the above.

22. The high protein content in groundnut is a character. a) recessive b) dominant c) epistatic d) duplicate

23. High oil percentage in groundnut is a a) recessive character. b) dominant character. c) digenic character. d) epistatic character.

24. Violet color and stem hardiness in groundnut are linked with a a) thick pericarp and bold seed size. b) thick seed coat and pod constriction. c) white seed color. d) thin pericarp and small seed size.

25. The characters late maturity, small seed size, separate pod cells and low yield in groundnut showed linkages with resistance to

a) rust. b) bud necrosis. c) collar rot. d) late leaf spot.

26. The Spanish plant type in groundnut is controlled by duplicate genes a) Va1 Va1, va2 va2. b) va1 va1, Va2 Va2. c) va1 va1, va2 va2. d) Va1 Va1, Va3 Va3.

27. The Virginia (runners)-plant type of groundnut is controlled by duplicate genes

a) Va1 Va1, Va2 Va2. b) Va1 Va1, va2 va2. c) va1 va1, Va2 Va2. d) Va1 Va1, Va3 Va3.

28. The heritability of pod yield plant-1 in groundnut is a) low. b) high. c) moderate to high. d) varies from high to low.

29. The heritability estimated in groundnut for mature pods plant-1 is a) high. b) low. c) moderate. d) varies from high to low.

SDS no. 4 51 HRDP

Page 54: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

30. Characters that have high heritability in groundnut are a) pod yield, pod mass, pod length, and seeds pod-1. b) 100 seed mass, pod breadth, days to flowering,

plant height, and primary branches. c) days to maturity and seeds pod-1. d) none of the above.

31. Pod characters in groundnut include size and constriction The one that is dominant is

a) small pod size. b) large pod size. c) absence of pod constriction. d) none of the above.

32. Seeds pod-1 in groundnut may be one or more than three and they are small to large in size. Which one is dominant?

a) A few seeds pod-1. b) Small seed size. c) Three or more seeds pod-1. d) None of the above.

33. The characters dwarfism, yellow corolla, and spanish-plant type of groundnut are controlled by

a) dominant genes. b) recessive genes. c) epistasis. d) complementary genes.

34. Resistance to groundnut rosette virus is controlled by a) complementary genes. b) dominant genes. c) recessive genes. d) duplicate genes.

35. Resistance to cercospora leafspot in groundnut is reported to be controlled by

a) recessive genes. b) two or more nuclear genes. c) additive genes. d) all the above.

36. Rust resistance in groundnut is a) dominant to susceptibility. b) recessive and controlled by duplicate genes. c) controlled by cytoplasmic genes. d) none of the above.

37. Resistance to Necrotic-etch in groundnut is a) recessive to normal. b) dominant to normal with digenic ratio; 15 nondisease:l disease. c) complementary. d) cytoplasmic in nature.

38. Sclerotinia blight resistance in groundnut is controlled by a) dominant genes. b) recessive genes. c) epistatic genes. d) cytoplasmic factors.

39. The primary branches, pods plant-1, 100 seed mass, and oil contents are important components of groundnut yield. The character negatively correlated with yield is

a) number of pods plant-1. b) 100 seed mass. c) primary branches plant-1. d) oil content.

40. In groundnut, the correlation of protein to oil content is a) negative. b) positive. c) positive low. d) not known.

41. High heterosis for vegetative characters and pod yield have been reported in groundnut involving crosses.

a) Virginia x Spanish b) Spanish x Virginia c) Spanish x Valencia d) none of the above

52 HRDP SDS no. 4

Page 55: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

42. High heterosis for pod yield and fruit characters in groundnut have been reported involving crosses.

a) Spanish x Virginia b) Virginia x Spanish c) Spanish x Valencia d) Valencia x Spanish and Virginia x Spanish

43. High general combining ability (GCA) is indicative of additive genes where as specific combining ability (SCA) indicates nonadditive genes. Studies on groundnut indicate most quantitative characters are governed

a) by additive genes. b) by nonadditive genes. c) by additive and nonadditive genes. d) monogenically.

44. When additive genetic variance is high and breeders want to develop homozygous lines, the appropriate breeding method is

a) multiline breeding. b) backcross breeding. c) mass selection. d) pedigree and modified pedigree selection.

45. The important characters directly influencing groundnut yield are a) oil content and shelling percentage. b) plant height and days to flowering. c) 100 seed mass and mature pods plant-1. d) secondary branches and early maturity.

46. Two characters having a negative effect on pod yield in groundnut are a) 100 seed mass and mature pods plant-1. b) plant height and days to 50% flowering. c) oil content and protein content. d) primary and secondary branches.

47. Protein and oil contents are inherited a) quantitatively. b) cytoplasmically. c) qualitatively. d) due to interaction of nuclear and cytoplasmic genes.

48. The main objectives of groundnut breeding at ICRISAT are for high a) yield and oil content. b) resistance to insect pests and diseases. c) resistance to drought and adaptation to specific

environment with early, medium, and late maturity. d) all the three above.

49. ICRISAT maintains a world collection of groundnut germplasm of over accessions.

a) 5 000 b) 10 000 c) 12 000 d) 15 000

50. In groundnut, negative correlations were reported between a) pod numbers and mass of pods plant-1. b) number of pods and 100 seed mass. c) size of pod and size of seed. d) number of seeds and seed mass plant-1.

51. The correlation of large pod size with yield was reported to be a) negative. b) positive and low. c) positive and high. d) no correlation,

52. Multiline varieties of groundnut are useful in obtaining a) homozygosity. b) heterosis. c) stability and adaptation. d) none of the above.

53 SDS no. 4 HRDP

Page 56: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

53. Early generation testing in groundnut is useful to a) incorporate one or two genes. b) obtain homozygous lines. c) develop multilines. d) eliminate undesirable crosses.

54. Days to maturity and fruit size in groundnut are controlled by a) duplicate genes. b) additive genes. c) complementary genes. d) none of the above.

55. Two most important wild species of Arachis with pest resistant characters used at ICRISAT in interspecific hybridization are

a) Arachis qlabrata and A. appressipila. b) Arachis duranensis and A. villosa. C) Arachis correntina and A. stenosperma. d) Arachis chacoense and A. cardenasii.

56. Groundnut varieties developed by mutation breeding are a) ICGS 11 and ICGS 44. b) TMV 2 and J 11. c) TG 1 and TG 18A. d) CS9 and CS 30.

57. After germination, flowering in groundnut starts in a) 10-15 days. b) 15-25 days. c) 25-35 days. d) 35-45 days.

58. In groundnut after emasculation, pollination is carried out a) immediately. b) the next morning at 0600-0800. c) the next morning at 1000-1200. d) after 2 days.

59. The maximum physiological development of pollen in groundnut takes place between

a) 0300-0500. b) 0500-0700. c) 0700-0900. d) 0900-1100.

60. A criteria for selecting groundnut for earliness is a) minimum flowering in short span of time. b) maximum flowering in short span of time. c) continuous flowering till maturity. d) none of the above.

61. Selection for drought resistance under stress conditions should be based on

a) total biomass production unit-1 area. b) least difference in yield under stress and irrigated conditions. c) high pod yield under stress condition. d) all the three above.

62. For higher adaptation it is better to select a genotype that performs well under a

a) rich environment. b) poor environment. c) poor environment and well responsive to rich environment. d) poor environment and nonresponsive to rich environment.

63. Large seeded, well shaped, uniform seed size groundnut are selected for a) oil purpose. b) confectionery purpose. c) oil and confectionery purpose. d) none of the above.

64. For nutritional and food quality purposes selection of groundnut should be based on

a) high protein content. b) high oil content. c) high oleic by linoleic acid ratio. d) none of the above.

65. The most common selection procedure used at ICRISAT for handling segregating generations is

a) pedigree selection. b) bulk selection. c) modified-bulk selection. d) single pod descent.

54 SDS no. 4 HRDP

Page 57: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

66. Preliminary yield trials start in the a) F4 generation. b) F5 generation. c) F6 generation.

67. Before giving material for national programs and release, it is necessary to test in multi-location international trials for

a) 1 year. b) 2 years. c) 3 years. d) 4 years.

68. The chemical useful to induce fertility in triploids of interspecific hybrids is

a) indole acetic acid. b) EMS. c) colchicine. d) alcohol.

69. To restore fertility in triploid hybrids of interspecific crosses, besides colchicine treatment another way is to cross with

a) a wild diploid. b) a haploid. c) a back cross with tetraploid cultivated. d) none of the above.

70. Treating a biological material (seed, bud, or vegetative part) with a mutagenic agent to induce mutation is

a) breeding. b) hybridization. c) mutagenesis. d) polyploidization.

71. The most common physical mutagens are a) EMS, DES and EI. b) gamma rays, x-rays and UV rays. c) acetocarmin, indole acetic acid. d) sun rays, hot water.

72. The highest numbers of induced mutation results when the number of a) sterile M,s are maximum. b) fertile M,s are maximum. c) sterile M2s are maximum. d) fertile M2s are maximum.

73. An optimum dose of mutagenic agent reduces seedling height by a) 5-10%. b) 10-20%. c) 15-30%. d) more than 50%.

74. To ensure maximum mutations, the minimum number of seeds of groundnut should be about

a) 100-200. b) 1000-2000. c) 3000-4000. d) 5000-6000.

75. To identify low frequency mutations in advanced generations it is better to use

a) the pedigree method. b) the bulk method.

c) single seed descent. d) recurrent selection.

76. In mutation breeding material, the preliminary trial is conducted in the

a) M2 generation. b) M5 generation. c) M7 generation. d) M8 generation.

SDS no. 4 55 HRDP

d) F8 generation.

Page 58: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod

SDS no. 4 HRDP 56

Correct responses to the questions.

1. d ) ; 2. d ) ; 3 . c ) , 4 . a ) ; 5 . b ) ; 6. b ) ; 7. c ) ; 8. b ) ; 9 . b ) ;

10. b ) ; 11. b ) ; 12. b ) ; 13. b ) ; 14. b ) ; 15. d ) ; 16. b ) ; 17. b ) ;

18. b ) ; 19. a ) ; 20. b ) ; 21. c ) ; 22. b ) ; 23. a ) ; 24. d ) ; 25. d) ;

26. a ) ; 27. c ) ; 28. d ) ; 29. d ) ; 30. b ) ; 31. b ) ; 32. c ) ; 33. c ) ;

34. d ) ; 35. a ) ; 36. b ) ; 37. b ) ; 38. d ) ; 39. d ) ; 40. a ) ; 41. b) ;

42. d ) ; 43. c ) ; 44. d ) ; 45. c ) ; 46. c ) ; 47. c ) ; 48. d ) ; 49. c ) ;

50. b ) ; 51. b ) ; 52. c ) ; 53. d ) ; 54. b ) ; 55. d ) ; 56. c ) ; 57. c ) ;

58. b ) ; 59. b ) ; 60. d ) ; 61. c ) ; 62. c ) ; 63. c ) ; 64. c ) ; 65. c ) ;

66. b ) ; 67. c ) ; 68. c ) ; 69. c ) ; 70. b ) ; 71. b ) ; 72. c ) ; 73. d ) ;

74. c ) ; 75. b ) ; 76. b) .

Page 59: Genetics and Breeding of Groundnut - ICRISAToar.icrisat.org/2754/1/Genetics-and-Breeding-of-Groundnut.pdf · Seed number Fewer than three seeds pod-1 dominant to three or more seeds/pod