genetics

41
GENETICS GENETICS

Upload: olesia

Post on 06-Jan-2016

67 views

Category:

Documents


0 download

DESCRIPTION

GENETICS. Genetics. The study of heredity . Gregor Mendel (1860’s) discovered the fundamental principles of genetics by breeding garden peas. Genetics. Alleles 1.Alternative forms of genes. 2.Units that determine heritable traits. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: GENETICS

GENETICSGENETICS

Page 2: GENETICS

GeneticsGenetics

• The study of heredityheredity.

• Gregor Mendel (1860’s)Gregor Mendel (1860’s) discovered the fundamental principles principles of genetics genetics by breedingbreeding garden peasgarden peas.

Page 3: GENETICS

GeneticsGenetics• AllelesAlleles

1. Alternative forms of genes.genes.

2. Units that determine heritable traits.

3. Dominant alleles Dominant alleles (TTTT - tall pea plantstall pea plants)

a. homozygous dominanta. homozygous dominant

4. Recessive alleles Recessive alleles (tt tt - dwarf pea plantsdwarf pea plants)

a. homozygous recessivea. homozygous recessive

5. HeterozygousHeterozygous (TtTt - tall pea plantstall pea plants)

Page 4: GENETICS

PhenotypePhenotype

• Outward appearanceOutward appearance• Physical characteristicsPhysical characteristics

• Examples:Examples:

1.1. tall pea planttall pea plant

2.2. dwarf pea plantdwarf pea plant

Page 5: GENETICS

GenotypeGenotype• Arrangement of genes that produces the Arrangement of genes that produces the

phenotypephenotype• Example:Example:

1.1. tall pea planttall pea plant

TT = tall (homozygous dominant)(homozygous dominant)

2.2. dwarf pea plantdwarf pea plant

tt = dwarf (homozygous recessive)(homozygous recessive)

3.3. tall pea planttall pea plant

Tt = tall (heterozygous)(heterozygous)

Page 6: GENETICS

Punnett squarePunnett square

• A Punnett square Punnett square is used to show the possible combinationscombinations of gametesgametes.

Page 7: GENETICS

Breed the P generationP generation

• tall (TT) vs. dwarf (tt) pea plantstall (TT) vs. dwarf (tt) pea plants

t

t

T T

Page 8: GENETICS

tall (TT) vs. dwarf (tt) pea plantstall (TT) vs. dwarf (tt) pea plants

t

t

T T

Tt

Tt

Tt

Tt All Tt = tall(heterozygous tall)

produces theFF11 generation generation

Page 9: GENETICS

Breed the FF11 generation generation

• tall (Tt) vs. tall (Tt) pea plantstall (Tt) vs. tall (Tt) pea plants

T

t

T t

Page 10: GENETICS

tall (Tt) vs. tall (Tt) pea plantstall (Tt) vs. tall (Tt) pea plants

TT

Tt

Tt

tt

T

t

T t

produces theFF22 generation generation

1/4 (25%) = TT1/2 (50%) = Tt1/4 (25%) = tt

1:2:1 genotype1:2:1 genotype 3:1 phenotype3:1 phenotype

Page 11: GENETICS

Monohybrid CrossMonohybrid Cross

• A breeding experiment that tracks the inheritance of a single trait.single trait.

• Mendel’s “principle of segregation”Mendel’s “principle of segregation”

a. pairs of genes separate during gamete gamete formation (meiosis).(meiosis).

b. the fusion of gametesgametes at fertilization pairs genes once again.

Page 12: GENETICS

Homologous ChromosomesHomologous Chromosomes

eye color locusb = blue eyes

eye color locusB = brown eyes

Paternal Maternal

This person would have brown eyes (Bb)

Page 13: GENETICS

Meiosis - eye colorMeiosis - eye color

Bb

diploid (2n)

B

b

meiosis I

B

B

b

b

sperm

haploid (n)

meiosis II

Page 14: GENETICS

Monohybrid CrossMonohybrid Cross

• ExampleExample: Cross between two heterozygotesheterozygotes for brown eyes (Bb)

BB = brown eyes

Bb = brown eyes

bb = blue eyesB

b

B b

Bb x Bb

malegametes

female gametes

Page 15: GENETICS

Monohybrid CrossMonohybrid Cross

BB

Bb

Bb

bb

B

b

B b

Bb x Bb

1/4 = BB - brown eyed1/2 = Bb - brown eyed1/4 = bb - blue eyed

1:2:1 genotype 3:1 phenotype

Page 16: GENETICS

Dihybrid CrossDihybrid Cross

• A breeding experiment that tracks the inheritance of two traits.two traits.

• Mendel’s “principle of independent assortment”Mendel’s “principle of independent assortment”

a. each pair of alleles segregates independently during gamete formation (metaphase I)(metaphase I)

b. formula: 2 2nn (n = # of heterozygotes) (n = # of heterozygotes)

Page 17: GENETICS

Independent AssortmentIndependent Assortment

• Question: Question: How many gametes will be produced for the following allele arrangements?

• Remember: 22nn (n = # of heterozygotes) (n = # of heterozygotes)

1.1. RrYyRrYy

2.2. AaBbCCDdAaBbCCDd

3.3. MmNnOoPPQQRrssTtQqMmNnOoPPQQRrssTtQq

Page 18: GENETICS

Answer:Answer:

1. RrYy: 21. RrYy: 2nn = 2 = 222 = = 4 gametes4 gametes

RY Ry rY ryRY Ry rY ry

2. AaBbCCDd: 22. AaBbCCDd: 2nn = 2 = 233 = = 8 gametes8 gametes

ABCD ABCd AbCD AbCdABCD ABCd AbCD AbCd

aBCD aBCd abCD abCD aBCD aBCd abCD abCD

3. MmNnOoPPQQRrssTtQq: 23. MmNnOoPPQQRrssTtQq: 2nn = 2 = 266 = = 64 gametes64 gametes

Page 19: GENETICS

Dihybrid CrossDihybrid Cross

• Example:Example: cross between roundround and yellowyellow heterozygous pea seeds.

RR = round= round

rr = wrinkled= wrinkled

YY = yellow= yellow

yy = green= greenRY Ry rY ry RY Ry rY ry x RY Ry rY ryRY Ry rY ry possible gametes produced

RrYyRrYy x RrYyRrYy

Page 20: GENETICS

Dihybrid CrossDihybrid Cross

RYRY RyRy rYrY ryry

RYRY

RyRy

rYrY

ryry

Page 21: GENETICS

Dihybrid CrossDihybrid Cross

RRYY

RRYy

RrYY

RrYy

RRYy

RRyy

RrYy

Rryy

RrYY

RrYy

rrYY

rrYy

RrYy

Rryy

rrYy

rryy

Round/Yellow: 9

Round/green: 3

wrinkled/Yellow: 3

wrinkled/green: 1

9:3:3:1 phenotypic ratio

RYRY RyRy rYrY ryry

RYRY

RyRy

rYrY

ryry

Page 22: GENETICS

Test CrossTest Cross

• A mating between an individual of unknown genotypeunknown genotype and a homozygous recessivehomozygous recessive individual.

• Example:Example: bbC__ bbC__ x bbccbbcc

BB = brown eyes

Bb = brown eyes

bb = blue eyes

CC = curly hair

Cc = curly hair

cc = straight hair

bCbC b___b___

bcbc

Page 23: GENETICS

Test CrossTest Cross

• Possible results:Possible results:

bCbC b___b___

bcbc bbCc bbCc

C bCbC b___b___

bcbc bbCc bbccor

c

Page 24: GENETICS

Incomplete DominanceIncomplete Dominance• F1 hybrids F1 hybrids have an appearance somewhat in in

betweenbetween the phenotypes phenotypes of the two parental varieties.

• Example:Example: snapdragons (flower)snapdragons (flower)• red (RR) x white (rr)

RR = red flowerRR = red flower

rr = white flower

r

r

R R

Page 25: GENETICS

Incomplete DominanceIncomplete Dominance

Rr

Rr

Rr

Rr

r

r

R R

All Rr = pink(heterozygous pink)

produces theFF11 generation generation

Page 26: GENETICS

CodominanceCodominance

• Two allelesTwo alleles are expressed (multiple allelesmultiple alleles) in heterozygous individualsheterozygous individuals.

• Example:Example: blood blood

1. type A = IAIA or IAi

2. type B = IBIB or IBi

3. type AB = IAIB

4. type O = ii

Page 27: GENETICS

CodominanceCodominance

• Example:Example: homozygous male B (IBIB)

x heterozygous female

A (IAi)

IAIB IAIB

IBi IBi

1/2 = IAIB

1/2 = IBi

IA

IB IB

i

Page 28: GENETICS

CodominanceCodominance

• Example:Example: male O (ii) x female AB (IAIB)

IAi IBi

IAi IBi

1/2 = IAi1/2 = IBi

i

IA IB

i

Page 29: GENETICS

CodominanceCodominance

• QuestionQuestion: If a boy has a blood type O and his sister has blood type AB, what are the genotypes and phenotypes of their parents.

• boy - type O (ii) X girl - type AB (IAIB)

Page 30: GENETICS

CodominanceCodominance

• Answer:Answer:

IAIB

ii

Parents:Parents:genotypesgenotypes = IAi and IBiphenotypesphenotypes = A and B

IB

IA i

i

Page 31: GENETICS

Sex-linked TraitsSex-linked Traits

• Traits (genes) located on the sex sex chromosomeschromosomes

• Example:Example: fruit fliesfruit flies

(redred-eyed male) X (whitewhite-eyed female)

Page 32: GENETICS

Sex-linked TraitsSex-linked Traits

Sex ChromosomesSex Chromosomes

XX chromosome - female Xy chromosome - male

fruit flyeye color

Page 33: GENETICS

Sex-linked TraitsSex-linked Traits• Example:Example: fruit fliesfruit flies

(red-eyed male) X (white-eyed female)• Remember:Remember: the Y chromosomeY chromosome in males does not

carry traits.

RR = red eyed

Rr = red eyed

rr = white eyed

Xy = male

XX = female

Xr

XR y

Xr

Page 34: GENETICS

Sex-linked TraitsSex-linked Traits

XR Xr

XR Xr

Xr y

Xr y

1/2 red eyed and female1/2 white eyed and male

Xr

XR y

Xr

Page 35: GENETICS

Population GeneticsPopulation Genetics

• The study of genetic changesgenetic changes in populationspopulations.

• The science of microevolutionary changesmicroevolutionary changes in populationspopulations.

• Hardy-Weinberg equilibrium:Hardy-Weinberg equilibrium:

the principle that shuffling of genes that occurs during sexual reproduction, by itself, cannot change the overall genetic makeup of a population.

• Hardy-Wienberg equation:Hardy-Wienberg equation: 1 = p1 = p22 + 2pq + q + 2pq + q22

Page 36: GENETICS

Question:Question:

• How do we get this equation?How do we get this equation?

Answer:Answer: “Square”“Square” 1 = p + q1 = p + q

1122 = (p + q) = (p + q)22

1 = p1 = p22 + 2pq + q + 2pq + q22

Page 37: GENETICS

Hardy-Wienberg equationHardy-Wienberg equation

• Five conditions Five conditions are required for Hardy-Wienberg equilibrium.

1.1. large populationlarge population

2.2. isolated populationisolated population

3.3. no net mutationsno net mutations

4.4. random matingrandom mating

5.5. no natural selectionno natural selection

Page 38: GENETICS

• Need to remember the following:Need to remember the following:

pp2 2 = homozygous dominant= homozygous dominant

2pq = heterozygous2pq = heterozygous

qq22 = homozygous recessive = homozygous recessive

ImportantImportant

Page 39: GENETICS

• Iguanas with webbed feet (recessive trait) (recessive trait) make up 4% of the population. What in the population is heterozygousheterozygous and homozygoushomozygous dominantdominant.

Question:Question:

Page 40: GENETICS

Answer:Answer:

1. q1. q2 2 = 4% or .04= 4% or .04 qq22 = .04 = .04 q = .2q = .2

2. then use 1 = p + q2. then use 1 = p + q1 = p + .21 = p + .2 1 - .2 = p1 - .2 = p .8 = p.8 = p

3. for heterozygous use 2pq3. for heterozygous use 2pq

2(.8)(.2) = .32 or 32%2(.8)(.2) = .32 or 32%

4. For homozygous dominant use p4. For homozygous dominant use p22

.8.822 = .64 or 64% = .64 or 64%

Page 41: GENETICS

Hardy-Wienberg equationHardy-Wienberg equation

1 = p1 = p22 + 2pq + q + 2pq + q22

• 64% = p64% = p2 2 = homozygous dominant= homozygous dominant• 32% = 2pq32% = 2pq = heterozygous= heterozygous• 04% 04% = q= q22 = homozygous recessive= homozygous recessive• 100%100%