genetic principles for captive breeding · 4 x n m x n f n m +n f 1 male 99 females n=100, ne =...

27
Genetic principles for captive breeding

Upload: others

Post on 28-Oct-2019

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Genetic principles for captive breeding

Page 2: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Zoos now and then

Page 3: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Success stories ex‐situ conservation?

Seed bank on Svalbard

Page 4: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Success stories ex‐situ conservation?

Arabian oryx

First species to reach Vulnerable conservation status (2011)after being extinct in the wild (1972)

Wild popualation: c. 1000Captive population: c. 6000

Page 5: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Breeding endangered animals

• Maximize the number of founders (unrelated animals).

• The population should as soon as possible reach the largest possible population size.

• The genetic contribution should be equal between the founders.

• Avoid inbreeding (maximize Ne)

• Maximize generation time.

• Do not mix populations of different genetic origin.

• Avoid selection.

Page 6: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Effective population size Ne

The size of an ideal population with the same rate ofinbreeding and/or genetic drift as the actualpopulation

Ne typically much smaller than N

Page 7: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Ne =4 x Nm x Nf

Nm + Nf

1 male99 femalesN=100, Ne = 3.96

2 males2 femalesN=4, Ne=4

Ne = 4

Page 8: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Ne =4N

Vk + 2

Ne decreases with increased variance in offspring

Page 9: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Ne

1= Ne1

1t1

Ne2

1Ne3

1( )* + + Net

1...

Ne over several generations are calculated by the harmonic mean.

Page 10: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

The size of an ideal population with the same rate ofinbreeding and/or genetic drift as the actualpopulation

Ne typically much smaller than N

2Ne

1=ΔF

Page 11: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Pedigreesandinbreedingcalculations

Page 12: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Inbreeding

Matingofrelatedindividualsresultinginincreasedhomozygosityinprogeny(alleles

IdenticalByDescent‐ IBD).

Page 13: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Inbreedingdepression

Homozygosityofdeleteriousrecessiveallelesincreases.

Increasedoccurrenceofhereditarydisordersanddiseases.

Anoveralllossoffitness– survival,fertility,reproduction,productivity,performance,etc.

Page 14: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Inbreeding

Matingofrelatedindividualsresultinginincreasedhomozygosityinprogeny(AllelesIBD).

Inbreedingcoefficient(F):• Theprobabilitythattwoallelesatalocusareidenticalbydescent(IBD)

• Proportionoflociintheindividual’sgenomethathaveallelesidenticalbydescent(IBD)

Page 15: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Captivepopulationsarepedigreed

Name Dam Sire

BellaBaileyMollyMaxRoxie Bella BaileyCharlie Molly MaxGinger Roxie Charlie

Studbook

Bella Bailey Molly Max

Roxie Charlie

Ginger

Pedigree

Page 16: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

female maledead

unknownsex

P‐generation(parental)

F1‐generation

F2‐generation

Page 17: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Glossary

Founders: individualsthathaveestablishedthepopulation(unrelatedindividualsinthepedigree)

Commonancestor:theancestorofbothmotherandfatheroftheindividualofinterest

Calculation

Page 18: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

F=Σ (1/2)n *(1+Fca)

Calculation

Theprobabilitythatanalleleispassedontotheoffspring

numberofancestorsinthepedigree

Theinbreedingcoefficientofthecommonancestor

Page 19: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Coefficient of kinship (k)

• Degree of relatedness between two individuals. 

• The inbreeding coefficient of a hypothetic offspring.

Page 20: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Kinship coefficients

• Self 0,5• Full sib  0,25• Parent‐offspring 0,25• Half sib 0,125• Uncle‐nephew 0,125• Cousin 0,0625

The inbreeding coefficient of a hypothetic offspring

Page 21: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Mean Kinship• Mean Kinship of an individual is the average of the kinship coefficient between that individual and all other living individuals in the populaiton (including itself).

• Low MK=few relatives=unique animal.

Page 22: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

A B

C D

Mean Kinship

Mean kinship of C

Coefficient of kinship: Inbreeding coefficient of hypothetic offspring

Page 23: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

A B

C D

Mean Kinship

Mean kinship of C

•C-A 0,25•C-B 0,25•C-D 0,25•C-C 0,5

0,5+3(0,25)

4=0,3125

Coefficient of kinship: Inbreeding coefficient of hypothetic offspring

Page 24: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Which golden lion tamarin is most valuable?

Page 25: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Thelma Louise Rita Robert Meankinship

Thelma 0.625 0.3125 0.125 0 0,27Louise 0.3125 0.625 0.125 0 0,27Rita 0.125 0.125 0.5 0 0,19Robert 0 0 0 0.625 0,16

Which golden lion tamarin is most valuable?

Page 26: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

• Random loss of founder alleles because of limitednumber of offspring.

• Genetic variation smaller because of unequal foundercontribution.

Captive populations: Conserve genetic variation in founder

population.

Page 27: Genetic principles for captive breeding · 4 x N m x N f N m +N f 1 male 99 females N=100, Ne = 3.96 2 males 2 females N=4, Ne=4 N e = 4. N e = 4N V k +2 N e decreases with increased

Retention• The probability that a founder allele is still present in the populaiton.

Or…• The proportion of a founder´s genome that is still present in the population

ri = 1-p(loss)Calculations