genes, physical activity and obesity actions and … physical activity and obesity actions and...

49
Genes, physical activity and obesity actions and interactions Ruth Loos Professor and Program Director Genetics of Obesity and Related Metabolic Traits Program The Charles Bronfman Institute of Personalized Medicine The Mindich Child Health and Development Institute Department of Preventive Medicine Icahn School of Medicine at Mount Sinai New York [email protected] ISBNPA - 2013 Annual Meeting, Ghent, Belgium, 22-25 May, 2013

Upload: trancong

Post on 31-Mar-2019

222 views

Category:

Documents


0 download

TRANSCRIPT

Genes, physical activity and obesity actions and interactions

Ruth Loos

Professor and Program Director

Genetics of Obesity and Related Metabolic Traits Program The Charles Bronfman Institute of Personalized Medicine

The Mindich Child Health and Development Institute Department of Preventive Medicine

Icahn School of Medicine at Mount Sinai New York

[email protected] ISBNPA - 2013 Annual Meeting, Ghent, Belgium, 22-25 May, 2013

Overview

•  Where do genes fit in ?

•  Genetics epidemiology of physical activity

•  Heritability

•  Candidate gene approach

•  Genome-wide scans

•  Gene-physical activity interaction

•  Summary & conclusions

Genes & physical activity

Physical activity as an outcome

Genes & physical activity

Physical activity as an intermediate factor

Genes & physical activity

Physical activity as an interactor

Genes & physical activity

Physical activity as a effector

Genes & physical activity

Physical activity as an outcome

Physical activity as an interactor

Overview

•  Where  do  genes  fit  in  ?  

•  Gene1cs  epidemiology  of  physical  ac1vity  

•  Heritability  

•  Candidate  gene  approach  

•  Genome-­‐wide  scans  

•  Gene-­‐physical  ac1vity  interac1on  

•  Summary  &  conclusions  

Is physical activity heritable ?

Heritability  studies  

Twin  studies  Iden,cal  /  MZ  

Fraternal  /  DZ  

Family  studies  

Mul,-­‐genera,onal  

Is physical activity heritable ?

Heritability  studies  

Twin  studies   Family  studies  

h2  =    0  -­‐  78%   h2  =    0  –  57%  

Reasons  for  the  wide  range  -­‐  Difference  in  assessing  physical  ac1vity  -­‐  Age  of  study  popula1on  -­‐  Methods  for  es1ma1ng  heritability  -­‐  Sample  size,  and  thus  sta1s1cal  power  for  analyses  

The classical twin study design to assess heritability

Basic  sta,s,c  Intra-­‐pair  correla1ons  

1.6  1.6  

1.7  

1.8  

1.9  

2  

1.7   1.8   1.9   2  Twin  1  –  height  (m)  

Twin  2  –  height  (m)  

r  MZ=  1.0  

r  DZ=  0.50  

Basic  assump,ons  MZ  twins:  100%  genes  in  common    100%  shared  environment  in  common  DZ  twins:  50%  genes  in  common    100%  shared  environment  in  common  

More  refined:    structural  equa1on  modeling:    V  =  Va  +  Vc  +  Ve

Quick  and  simple:      Falconer’s  formula:      h2 = 2[rMZ – rDZ]

A large twin study with objectively assessed physical activity

TwinsUK  •  419  pairs  of  MZ  twins  •  352  pairs  of  DZ  twins    Physical  ac,vity  assessment  •  7-­‐day  monitoring  (96%  had  >4  days)  •  Heart  rate  monitors  •  accelerometer  

Marcel  den  Hoed  

PA 82%  adhere  to  the  physical  ac1vity  guidelines  

A large twin study with objectively assessed physical activity

Descrip,ves  

Residuals  PAEE  twin  1  

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-­‐1.5   -­‐1.0   -­‐0.5   0.0   0.5   1.0   1.5  

Residuals  PAEE  twin  2  

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-­‐1.5   -­‐1.0   -­‐0.5   0.0   0.5   1.0   1.5  

MZICC  =  0.47  DZICC  =  0.22  

A large twin study with objectively assessed physical activity Intra-­‐pair  correla,ons  

Explaine

d  varia

nce  

0.00  

0.20  

0.40  

0.60  

0.80  

1.00  

1.20  

PAEE   Sedentary   Light   MVPA  

gene1c  factors   unique  environmental  factors  

A large twin study with objectively assessed physical activity

Structural  equa,on  modeling  

Heritability  of  daily  physical  ac,vity  43-­‐49%  

Overview

•  Where  do  genes  fit  in  ?  

•  Gene1cs  epidemiology  of  physical  ac1vity  

•  Heritability  

•  Candidate  gene  approach  

•  Genome-­‐wide  scans  

•  Gene-­‐physical  ac1vity  interac1on  

•  Summary  &  conclusions  

Candidate gene approach

=   hypothesis-­‐driven,   based   on   the   current   understanding   of   the   biology   and  pathophysiology  of  the  trait/disease  

 

 

 

 

 

 

 

Epidemiology Physiology/Biology

Animal  studies    

Butler et al. Nature Neuroscience 2001

High Fat diet

Kelly et al. J. Neurosci 1998

-/-

-/-

+/-

+/-

+/+

+/+

Candidate gene approach

DRD2  (dopamine  receptor  D2)  

MC4R  (melanocor@n  4  receptor)  

Reward  and  aversion   Craving  and  need  

Animal  studies    

Candidate gene approach

Home  cage  ac,vity  

Effect  on  ability,  pain  

Common genetic variation - SNPs

 

 GGC GCC GGA CGC TCC ATC TCC TGG GCC TGG TGG GCA TGT GTG  Gly  Ala  Gly  Arg  Ser  Ile  Ser  Trp  Ala  Trp  Trp  Ala  Cys  Val    

GGC GCC GGA CGC TCC ATC TCC TGG GCC TGG TGG GCA TGT GTG

GGC GCC GGA CGC ACC ATC TCC TGG GCC TGG TGG GCA TGT GTG GGC GCC GGA CGC TCC ATC TCC TGG GCC TGG TGG GCA TGT GTG

GGC GCC GGA CGC TCC ATC TCC TGG GCC TGG TGG GCA TGT GTG GGC GCC GGA CGC TCC ATC TCC TGG GCC TGG TGG GCA TGT GTG

GGC GCC GGA CGC ACC ATC TCC TGG GCC TGG TGG GCA TGT GTG GGC GCC GGA CGC ACC ATC TCC TGG GCC TGG TGG GCA TGT GTG

GGC GCC GGA CGC TCC ATC TCC TGG GCC TGG TGG GCA TGT GTG GGC GCC GGA CGC ACC ATC TCC TGG GCC TGG TGG GCA TGT GTG

A

A A

A

T

T T

T T

T

 Gly  Ala  Gly  Arg  Thr  Ile  Ser  Trp  Ala  Trp  Trp  Ala  Cys  Val    

T/T  

A/T  

A/A  

T/T  

A/T  

SNP  à  Single  Nucleo,de  Polymorphism  

Genetic associations

The  ‘addi,ve’  model  tests  whether  the  A-­‐allele  increases  PAEE  significantly.  

25.2  

26.6  

27.9  

24  

25  

26  

27  

28  

29  

T/T   A/T   A/A  Genotype  

PAEE(kJ/kg/day)  

Human  studies    

Candidate gene approach

MC4R

•  669 individuals of the Québec Family Study •  Physical activity assessed by 3-day diary, every 15min

Human  studies    

Candidate gene approach

MC4R

100

200

300

400 500

600 700

800

Total Moderate-to- strenuous Inactivity

Ph

ysic

al A

ctiv

ity

Cou

nts

C/C C/T T/T p = 0.08

p = 0.005

p = 0.01

Human  studies    

Candidate gene approach

PCK1

*sex,  age,  age-­‐group,  standardised  height,  maturity  and  country    

•  2,101  boys  and  girls  from  European  Youth  Hearth  Study  

•  1,255  9-­‐y  olds    

•  846  15-­‐y  olds    

•  Denmark  and  Estonia  

•  Physical  ac,vity  -­‐  MTI  accelerometer    

Human  studies    

Candidate gene approach

PCK1

•  669 individuals of the Québec Family Study •  Physical activity assessed by 3-day diary, every 15min

0  

540  

580  

620  

660  

PCK1  SNPs  

Physical  Ac,vity  cou

nts  

0  1  2  

p  =  0.87   p  =  0.57   p  =  0.68   p  =  0.65   p  =  0.67   p  =  0.33  p  =  0.87  

p  =  0.95   p  =  0.63   p  =  0.07  

*sex,  age,  age-­‐group,  standardised  height,  maturity  and  country    

Candidate gene approach – literature overview

Reward  and  aversion  

Craving  and  need  

Effect  on  ability,  pain  

•  Melanocor1n  4  receptor  (MC4R)    •  Lep1n  receptor  (LEPR)  

•  Dopamine  2  receptor  (DRD2)  

Genes,  exercise,  and  physiological  factors,  Eco  J.C.  de  Geus  &  Marleen  H.M.  de  Moor,  in  GeneAc  and  Molecular  Aspects  of  Sport  Performance,  Claude  Bouchard  and  Eric  P.  Hoffman  (eds),  2011  

Human  studies    

•  Loos  et  al.  (IJO,  2005):  Associa1on  with  moderate-­‐to-­‐strenuous  PA  (p=0.005)  in  the  QFS.  

•  Stefan  et  al.  (IJO,  2002):  Associa1on  with  total  PA  in  Pima  Indians  (p=0.007)    •  de  Moor  et  al.  (MSSE,  2009)  Associa1on  with  leisure  1me  PA  in  Americans  (p=0.0005)  

   

•  Simonen  et  al.  (Physiology  &  Behavior,  2009):  Associa1on  with  physical  ac1vity,  sports  par1cipa1on,  and  occupa1onal  ac1vity  (p=0.05)  in  the  QFS  and  HERITAGE.  

•  Calcium  sensing  receptor  (CASR)  

•  Angiotensin-­‐conver1ng  enzyme  (ACE)    

•  Lorentzon  et  al.  (EJE,  2009):  Associa1on  with  hours  spent  on  physical  ac1vity  per  week  in  adolescent  girls  (p=0.01)  

•  Winnicki  et  al.  (AJMG,  2004):  Associa1on  with  leisure  1me  physical  ac1vity  per  week  in  hypertensives  (p=0.001)  

 

Overview

•  Where  do  genes  fit  in  ?  

•  Gene1cs  epidemiology  of  physical  ac1vity  

•  Heritability  

•  Candidate  gene  approach  

•  Genome-­‐wide  scans  

•  Gene-­‐physical  ac1vity  interac1on  

•  Summary  &  conclusions  

Genome-wide scans

=  hypothesis-­‐genera1ng,  to  iden1fy  new,  unan1cipated,  genes  and  thus  expand  view  of  biology  and  physiology  of  disease/trait  

   

 

 

 

 

 

Epidemiology Physiology/Biology

Genome-­‐wide  analyses  

Genome-­‐wide  linkage  analyses  aim  to  iden@fy  a  crude  chromosomal  loca@on  of  the  gene  or  genes  associated  with  a  phenotype  of  interest    

Genome-­‐wide  associa,on  analyses  aim  to  iden@fy  an  exact  chromosomal  loca@on  of  the  gene@c  variant  associated  with  a  phenotype  of  

interest  

Genome-wide scans

Genome-wide linkage studies

•  1,030  sibling  of  319  Hispanic  families  

•  Physical  ac,vity  -­‐  accelerometer    

Genome-wide linkage studies

MC4R

Genome-wide association studies

STAGE  1  -­‐  Discovery  stage  

•  Determine  genotype  of  up  to  2,500,000  gene1c  variants  (SNPs)  

•  Case-­‐control  or  cohort  studies  

•  Large  amount  of  tests  à  significance  threshold  p  <  0.000001  

STAGE 2 - Replication/follow-up stage •  1-­‐100  SNPs  that  represent  top  loci  

•  Case-­‐control  or  cohort  studies  –  at  least  equal  size  of  discovery  panel  

•  Meta-­‐analysis  of  stage  1  &  2  results  

Published  Genome-­‐wide  Associa,ons  

06/2006  06/2007 06/2008 06/2009 06/2010 06/2011 06/2012

NHGRI GWA Catalog www.genome.gov/GWAStudies

>1,700  published  GWA  at  p<5x10-­‐8  

Genome-wide association for physical activity

Aim:  Large-­‐scale  genome-­‐wide  meta-­‐analysis  on  five  physical  ac,vity  traits  

  Outcomes  of  interest:    1.  Moderate-­‐to-­‐vigorous  intensity  leisure  1me  ac1vi1es    2.  Sedentary  behavior  during  commu1ng  3.  Sedentary  behavior  at  work  4.  TV  viewing  5.  Other  sedentary  behavior  at  home  

Genome-­‐wide  genotypes:    2,5  million  gene1c  varia1ons  across  the  autosomal  genome  

Study  design  Stage  1  (discovery):    33  studies  with  required  data  were  invited,  up  to  82,000  individuals  Study-­‐specific  analyses  plans  sent  out  (customized  by  ques1onnaire)  Meta-­‐analyses  of  summary  sta1s1cs  (for  each  of  the  2,5  million  variants)      

N  stage  1    82,231  15,076  61,612  28,695  27,627  

 

Study  design  Stage  2  (follow-­‐up):    >40  studies  with  required  data  have  been  invited,  expect  data  from  up  to  80,000  individuals  Follow-­‐up  of  56  gene1c  variants  with  promising  associa1on  (p  <  10-­‐6)  in  stage  1        

Loci  with  p<10-­‐6  

6  6  15  17  12  

Marcel  den  Hoed  

Genome-wide association for physical activity

Sedentary  commu,ng  to  work  (vs  ac,ve  commu,ng  to  work)  

 

Genome-wide association for physical activity

TV  viewing  

 

Genes for physical activity

Candidate  gene  studies  Even   though   animal   studies   have   iden1fied   credible   proteins   that   affect   physical   ac1vity,   gene1c  variants  in  the  encoding  genes  are  not  (yet)  convincingly  associated  with  daily  physical  ac1vity  levels  in  humans  .  

 

Genome-­‐wide  linkage  studies  Even   though  one   study  provided   sugges1ve   confirma1on   for   the  MC4R   locus,   results  have  not  been  firmly  confirmed.  

 

Genome-­‐wide  associa,on  studies  Large-­‐scale  meta-­‐analysis  is  on-­‐going;    

 -­‐  stage  1  results  are  promising  

 -­‐  stage  2  results  will  soon  be  available  !    

 

à  First  results  are  emerging,  but  much  more  work  is  needed  !  

 

 

Overview

•  Where  do  genes  fit  in  ?  

•  Gene1cs  epidemiology  of  physical  ac1vity  

•  Heritability  

•  Candidate  gene  approach  

•  Genome-­‐wide  scans  

•  Gene-­‐physical  ac1vity  interac1on  

•  Summary  &  conclusions  

Genes & physical activity

Does  physical  ac,vity  anenuate  the  associa,on  between  gene  and  outcome  ?  Does  genotype  anenuate  the  associa,on  between  physical  ac,vity  and  outcome  ?  

Physical activity, FTO and obesity-susceptibility

•  17,619  men  and  women  of  the  EPIC-­‐Norfolk  study  (40-­‐75y),  with  self-­‐reported  physical  ac1vity  levels.  

25  

25.5  

26  

26.5  

27  

27.5  

28  

All   Inac1ve   Ac1ve  

BMI  (kg/m

2 )  

CC        CT      TT                              CC      CT        TT                              CC      CT        TT  

P  =  3.1  x  10-­‐20  

P  =  1.5  x  10-­‐13  

P  =  8.5  x  10-­‐13  

EPIC-­‐Norfolk  (n=20,374)  

Vimaleswaran  KS,  et  al.  Am  J  Clin  Nutr  2009;90:425-­‐8  

Overview of the literature on FTOxPA interaction and BMI

Greek  adol.  (n=499)  

Scon  RA,  et  al.  Eur  J  Hum  Genet  2010  Aug  18  

Inter  99  (n=5,922)  

Interac,on   No  interac,on  

HAPI  Heart  (n=702)  

DPS  (n=479)  

NHS98  (n=4,210)  

Malmö  PP    (n=15,925)  

Botnia  PP  (n=2,511)  

HELENA  (n=752)  

NFBC86  (n=4,780)  

KSNP  (n=8,842)  

TRAILS  (n=1,230)  

LACHY  &  APEX  (n=744)  

ULSAM  (n=1,115)  

NFBC66  (n=4,022)  

BCAMS  (n=3,503)  

MDC  (n=4,810)  

Andreasen  CH,  et  al.  Diabetes  2008;57:95-­‐101  

Rampersaud  E,  et  al.    Arch  Intern  Med  2008;168:1791-­‐7    

DESIR  (n=4,640)  

Cauchi  S,  et  al.  J  Mol  Med  2009;87:537-­‐46    

Cauchi  S,  et  al.  J  Mol  Med  2009;87:537-­‐46    

Jonsson  A,  et  al.  Diabetologia  2009;52:1334-­‐8  

Jonsson  A,  et  al.  Diabetologia  2009;52:1334-­‐8  

Kaakinen  M,  et  al.  Am  J  Epidemiol  2010;172:653-­‐65  

Ruiz  JR,  et  al.  Arch  Pediatr  Adolesc  Med  2010;164:328-­‐33    

Tan  JT,  et  al.  Diabetes  2008;57:2851-­‐7    

Sonestedt  E,  et  al.  Am  J  Clin  Nutr  2009;90:1418-­‐25  

Jacobsson  JA,  et  al.  BMC  Med  Genet  2009;10:131  

Lee  HJ,  et  al.  Clin  Chim  Acta  2010;11:1716-­‐22  

Xi  B,  et  al.  BMC  Med  Genet  2010;11:107  

Liem  ET,  et  al.  Am  J  Clin  Nutr  2010;91:321-­‐8  

Liu  G,  et  al.    BMC  Med  Genet  2010;11:57  

Lappalainen  TJ,  et  al.    Obesity  2009;17:832-­‐6  

Study  design  

•  Contact  all  cohorts  that  have  published  on  the  FTO  locus  (and  that  are  known  to  have  physical  

ac1vity  data).  

•  ‘Harmonise’  physical  ac1vity  data  across  cohorts  (i.e.  ques1onnaire,  diary,  accelerometry,  …).  

à  Dichotomise:  ac1ve  vs  sedentary  –  custom  defini1on  for  each  cohort  

•  Ask  cohorts  to  (re-­‐)analyse  data  according  to  detailed  analysis  plan.  

 

Data  collec,on  &  analysis  

•  45  studies  –  218,166  individuals  

•  Meta-­‐analyses  of  the  interac1on  term    

•  Stra1fied  meta-­‐analyses  of  ac1ve  and  sedentary  individuals  

Kilpeläinen et al (PLoS Medicine 2011)

De novo meta-analysis of all available data

Tuomas  Kilpeläinen  

Results        

FTO  influences  BMI  in  inac1ve  people  only  

Results        

FTO  influences  BMI  in  inac1ve  people  only  

Overall interaction term:

b3 = - 0.14 kg/m2 [95%CI -0.23 to -0.04]

P = 0.005

à The BMI-increasing effect of FTO is less pronounced in active individuals than in sedentary individuals; i.e. for each additional risk allele the increase is 0.14kg/m2 less.

0

1000

2000

3000

4000

≤6 7 8 9 10 11 12 13 14 15 16 ≥17 Genetic predisposition score

N

24.5

25.5

26.5

27.5

28.5

BM

I (k

g/

m2)

0.15 kg/m2/allele or 444 g/allele p = 1.54x10-22

Gene1c  predisposi1on  score  on  BMI  in  20,000  individuals  of  the  EPIC-­‐Norfolk  study  

Li et al AJCN 2010 & PLoS Medicine 2010

Twelve obesity-susceptibility loci – interaction with physical activity

0

1000

2000

3000

4000

≤6 7 8 9 10 11 12 13 14 15 16 ≥17 Genetic predisposition score

N

24.5

25.5

26.5

27.5

28.5

BM

I (k

g/

m2)

0.21 kg/m2/allele or 592 g/allele p = 3.62x10-18

0.13 kg/m2/allele or 378 g/allele p = 7.8x10-21

Active

Inactive

Gene1c  predisposi1on  score  on  BMI  in  20,000  individuals  of  the  EPIC-­‐Norfolk  study  

Li et al AJCN 2010 & PLoS Medicine 2010

Twelve obesity-susceptibility loci – interaction with physical activity

Overview

•  Where  do  genes  fit  in  ?  

•  Gene1cs  epidemiology  of  physical  ac1vity  

•  Heritability  

•  Candidate  gene  approach  

•  Genome-­‐wide  scans  

•  Gene-­‐physical  ac1vity  interac1on  

•  Summary  &  conclusions  

Summary

Heritability  Based   on   a   large-­‐scale   twin   study   with   objec1ve   PA   measurements,   43-­‐49%   of   the   inter-­‐individual  varia1on  can  be  explained  by  gene1c  difference.  

Candidate  gene  approach  Animal   studies   have   iden1fied   genes   that   play   a   role   in   PA   (reward,   craving,   ability).   However,   these  varia1on  in  these  candidate  genes  does  not  (yet)  associate  with  PA  in  humans.  à  Study  more  variants,  in  larger  studies  

Genome-­‐wide  scans  On-­‐going   large   scale   genome-­‐wide   associa1on   studies   have   iden1fied   loci   that   show   promising  associa1on  with  PA  (in  par1cular  sedentary  behavior).  These  results  need  to  be  confirmed.  

Gene-­‐physical  ac@vity  interac@on  Physical  ac1vity  atenuates  the  BMI-­‐increasing  effects  of  obesity-­‐suscep1bility  loci  by  30-­‐40%  à  Even  those  gene1cally  predisposed  to  obesity  benefit  from  physical  ac1vity.  

Collaborators  and  acknowledgements  

[email protected]  

Tuomas  Kilpeläinen,  PhD  Assistant  professor  Novo  Nordisk  Founda1on  Center  for  Basic  Metabolic  Research  Copenhagen,  Denmark  

Marcel  den  Hoed,  PhD  Researcher  Department  of  Medical  Sciences,  Molecular  Epidemiology  and  Science  for  Life  Laboratory  Uppsala  University  Uppsala,  Sweden  

Marilyn  Cornelis,  PhD  Research  Associate  in  Nutri1on  Harvard  School  of  Public  Health  Boston,  MA,  USA