general papers arkivoc 2017, v, s1-s15 supplementary

15
General Papers Arkivoc 2017, v, S1-S15 Page S1 © ARKAT USA, Inc Supplementary Material New "turn-off" fluorescence sensors to detect vapors of nitro-explosives on the basis of 4,6-bis[5-(heteroaryl)thiophen-2-yl] substituted 5-(4-tert- butylphenyl)pyrimidines Egor V. Verbitskiy, a,b Anna A. Baranova, b Yuliya A. Yakovleva, b Roman D. Chuvashov, b Konstantin O. Khokhlov, b Ekaterina M. Dinastiya, a Gennady L. Rusinov, a,b leg N. Chupakhin, a,b Valery N. Charushin a,b a Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoy Str., 22, Ekaterinburg, 620990, Russia b Ural Federal University, Mira St. 19, Ekaterinburg, 620002, Russia E-mail: [email protected] 500 550 600 650 700 750 800 60 80 100 120 140 Fluorescence Intensity (a.u.) wavelength (nm) 7c Figure S1. Solid-state fluorescence spectra of compound 7c.

Upload: others

Post on 17-Oct-2021

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S1 ©ARKAT USA, Inc

Supplementary Material

New "turn-off" fluorescence sensors to detect vapors of nitro-explosives on the basis of 4,6-bis[5-(heteroaryl)thiophen-2-yl] substituted 5-(4-tert-

butylphenyl)pyrimidines

Egor V. Verbitskiy,a,b Anna A. Baranova,b Yuliya A. Yakovleva,b Roman D. Chuvashov,b Konstantin O. Khokhlov,b Ekaterina M. Dinastiya,a Gennady L. Rusinov,a,b leg N. Chupakhin,a,b

Valery N. Charushina,b

a Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskoy Str., 22, Ekaterinburg, 620990, Russia

bUral Federal University, Mira St. 19, Ekaterinburg, 620002, Russia E-mail: [email protected]

500 550 600 650 700 750 800

60

80

100

120

140

Fluo

resc

ence

Inte

nsity

(a.u

.)

wavelength (nm)

7c

Figure S1. Solid-state fluorescence spectra of compound 7c.

Page 2: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S2 ©ARKAT USA, Inc

(a)

480 500 520 540 560 580 600 620 640 6600

2

4

6

8

10

12

14co

unts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(b)

475 500 525 550 575 600 6250

5

10

15

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(c)

500 550 6000

2

4

6

8

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(d)

500 550 6000

2

4

6

8

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/ 1x10-6 mol/ 2x10-6 mol/ 4x10-6 mol/ 6x10-6 mol/ 8x10-6 mol/ 1x10-5 mol/

(e)

500 550 6000

2

4

6

8

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(f)

500 550 6000

2

4

6

8

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(g)

500 550 6000

2

4

6

8

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(h)

500 550 6000

5

10

15

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(i)

500 550 6000

2

4

6

8

10

12

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(j)

475 500 525 550 575 6000

5

10

15

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(k)

480 500 520 540 560 580 600 620 640 6600

2

4

6

8

10

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(l)

480 500 520 540 560 580 600 620 640 6600

1

2

3

4

5

6

7

8

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(m)

475 500 525 550 575 600 625 6500

2

4

6

8

10

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(n)

500 550 6000

5

10

15

20

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(o)

500 550 600 6500

2

4

6

8

10

12

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

Figure S2. Fluorescence quenching studies of 7a (1.0 × 10−6 mol/L) recorded in the presence of various amounts of NB (a), 1,3-DNB (b), 1,3,5-TNB (c), 2-NP (d), 4-NP (e), 2,4-DNP (f), PA (g),

SA (h), 4-NT (i), 2,4-DNT (j), TNT (k), DNAN (l), TNAN (m), TATB (n) and DDBu (o) for which 433 nm was taken as the excitation wavelength.

Page 3: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S3 ©ARKAT USA, Inc

(a)

400 450 500 550 600

0

20

40

60

80

100co

unts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(b)

400 450 500 550 600

0

20

40

60

80

100

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(c)

400 450 500 550 600

0

10

20

30

40

50

60

70

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(d)

400 450 500 550 600

0

10

20

30

40

50

60

70

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(e)

400 450 500 550 600

0

10

20

30

40

50

60

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(f)

400 450 500 550 600

0

20

40

60

80

100

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(g)

400 450 500 550 600

0

10

20

30

40

50

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(h)

400 450 500 550 600

0

10

20

30

40

50

60

70

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(i)

400 450 500 550 600

0

10

20

30

40

50

60

70

80

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(j)

400 450 500 550 600

0

10

20

30

40

50

60

70

80

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(k)

400 450 500 550 600

0

20

40

60

80

100

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(l)

400 450 500 550 600

0

10

20

30

40

50

60

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(m)

400 450 500 550 600

0

10

20

30

40

50

60

70

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(n)

400 450 500 550 600

0

20

40

60

80

100

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

(o)

400 450 500 550 600

0

10

20

30

40

50

60

70

coun

ts

wagelength (nm)

0 mol/L 5x10-7 mol/L 1x10-6 mol/L 2x10-6 mol/L 4x10-6 mol/L 6x10-6 mol/L 8x10-6 mol/L 1x10-5 mol/L

Figure S3. Fluorescence quenching studies of 7b (1.0 × 10−6 mol/L) recorded in the presence of various amounts of NB (a), 1,3-DNB (b), 1,3,5-TNB (c), 2-NP (d), 4-NP (e), 2,4-DNP (f), PA (g),

SA (h), 4-NT (i), 2,4-DNT (j), TNT (k), DNAN (l), TNAN (m), TATB (n) and DDBu (o) for which 412 nm was taken as the excitation wavelength.

Page 4: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S4 ©ARKAT USA, Inc

Figure S4. Photographs of solution 7a (c = 1.0×10-6 M) with the presence of solution TNT (c = 1.0×10-6 M) in acetonitrile (1), solution 7a with the presence of solution 4-NT (c = 1.0×10-6 M) in acetonitrile (2), solution 7a with the presence of solution 2-NP (c = 1.0×10-6 M) in acetonitrile (3), solution 7a with the presence of solution NB (c = 1.0×10-6 M) in acetonitrile (4), solution 7a with the presence of solution PA (c = 1.0×10-6 M) in acetonitrile (5), solution 7a with the presence of solution DDBu (c = 1.0×10-6 M) in acetonitrile (6), solution 7a with the presence of solution DNAN (c = 1.0×10-6 M) in acetonitrile (7), solution 7a with the presence of solution 1,3-DNB (c = 1.0×10-6 M) in acetonitrile (8), solution 7a with the presence of solution TATB (c = 1.0×10-6 M) in acetonitrile (9), solution 7a with the presence of solution 4-NP (c = 1.0×10-6 M) in acetonitrile (10), solution 7a with the presence of solution TNAN (c = 1.0×10-6 M) in acetonitrile (11), solution 7a with the presence of solution 1,3,5-TNB (c = 1.0×10-6 M) in acetonitrile (12), solution 7a with the presence of solution 2,4-DNP (c = 1.0×10-6 M) in acetonitrile (13), solution 7a with the presence of solution 2,4-DNT (c = 1.0×10-6 M) in acetonitrile (14), solution 7a with the presence of solution SA (c = 1.0×10-6 M) in acetonitrile (15): before radiation (a – no emission) and during radiation (b – emission, λex= 400 nm) at room temperature.

Page 5: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S5 ©ARKAT USA, Inc

Figure S5. Photographs of solution 7b (c = 1.0×10-6 M) with the presence of solution TNT (c = 1.0×10-6 M) in acetonitrile (1), solution 7b with the presence of solution 4-NT (c = 1.0×10-6 M) in acetonitrile (2), solution 7b with the presence of solution 2-NP (c = 1.0×10-6 M) in acetonitrile (3), solution 7b with the presence of solution NB (c = 1.0×10-6 M) in acetonitrile (4), solution 7b with the presence of solution PA (c = 1.0×10-6 M) in acetonitrile (5), solution 7b with the presence of solution DDBu (c = 1.0×10-6 M) in acetonitrile (6), solution 7b with the presence of solution DNAN (c = 1.0×10-6 M) in acetonitrile (7), solution 7b with the presence of solution 1,3-DNB (c = 1.0×10-6 M) in acetonitrile (8), solution 7b with the presence of solution TATB (c = 1.0×10-6 M) in acetonitrile (9), solution 7b with the presence of solution 4-NP (c = 1.0×10-6 M) in acetonitrile (10), solution 7b with the presence of solution TNAN (c = 1.0×10-6 M) in acetonitrile (11), solution 7b with the presence of solution 1,3,5-TNB (c = 1.0×10-6 M) in acetonitrile (12), solution 7b with the presence of solution 2,4-DNP (c = 1.0×10-6 M) in acetonitrile (13), solution 7b with the presence of solution 2,4-DNT (c = 1.0×10-6 M) in acetonitrile (14), solution 7b with the presence of solution SA (c = 1.0×10-6 M) in acetonitrile (15): before radiation (a – no emission) and during radiation (b – emission, λex= 400 nm) at room temperature.

Page 6: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S6 ©ARKAT USA, Inc

Details for the determination and calculation of the detection limits of the fluorophore to nitro compounds in acetonitrile solution.

Detection limit of the fluorophore to the analyte in acetonitrile solution was determined and

calculated according to the following functions:

1

)(1

2

−=∑=

n

xxs

n

ii

b (1)

cIS

∆∆

= (2)

SsDL b3

= (3)

Firstly, the standard deviation (Sb) was calculated by measuring the intensity of the fluorophore

in blank solution for more than 10 times and then got the average intensity ( x ). By fitting the data

into Function 1, the value of standard deviation (Sb) was obtained. Secondly, a certain amount of

analyte such as NB, 1,3-DNB, 1,3,5-TNB, 2-NP, 4-NP, 2,4-DNP, PA, SA, 4-NT, DNT, TNT,

DNAN, TNAN, TATB or DDBu was added into the blank solution and the resulting variation of the

intensity ( c∆ ) was recorded. By fitting the data into Function 2, where I∆ is the variation of

intensity, and c∆ is the variation of quencher concentration, the value of precision S was

calculated. Finally the detection limit, DL, was calculated according to Function 3.

Page 7: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S7 ©ARKAT USA, Inc

0,0000000 0,0000005 0,0000010 0,0000015 0,00000200,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

0,016

0,018

0,020

(I0/I)

-1

Concentrations (mM)

PA TNT DNT SA NB DNAN TATB TETNB

y = 239,23xR2 = 0,971

y = 416,11xR2 = 0,9663

y = 1361,7xR2 = 0,6916

0,0000000 0,0000005 0,0000010 0,0000015 0,00000200,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

0,016

0,018

0,020

(I0/I)

-1

Concentrations (mM)

PA TNT DNT SA NB DNAN TATB TETNB

y = 239,23xR2 = 0,971

y = 416,11xR2 = 0,9663

y = 1361,7xR2 = 0,6916

Figure S6. The Stern–Volmer plots as function of NB, 1,3-DNB, 1,3,5-TNB, 2-NP, 4-NP, 2,4-

DNP, PA, SA, 4-NT, 2,4-DNT, TNT, DNAN, TNAN, TATB and DDBu concentration in CH3CN, with an excitation wavelength of 433 nm for 7a solution.

0,0000000 0,0000005 0,0000010 0,0000015 0,00000200,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

0,016

0,018

0,020

(I0/I)

-1

Concentrations (mM)

PA TNT DNT SA NB DNAN TATB TETNB

y = 239,23xR2 = 0,971

y = 416,11xR2 = 0,9663

y = 1361,7xR2 = 0,6916

0,0000000 0,0000005 0,0000010 0,0000015 0,00000200,000

0,002

0,004

0,006

0,008

0,010

0,012

0,014

0,016

0,018

0,020

(I0/I)

-1

Concentrations (mM)

PA TNT DNT SA NB DNAN TATB TETNB

y = 239,23xR2 = 0,971

y = 416,11xR2 = 0,9663

y = 1361,7xR2 = 0,6916

Figure S7. The Stern–Volmer plots as function of NB, 1,3-DNB, 1,3,5-TNB, 2-NP, 4-NP, 2,4-

DNP, PA, SA, 4-NT, 2,4-DNT, TNT, DNAN, TNAN, TATB and DDBu concentration in CH3CN, with an excitation wavelength of 412 nm for 7b solution.

Page 8: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S8 ©ARKAT USA, Inc

Figure S8. Photograph (from the website http://nitroscan.pro.) of the portable sniffer «Nitroscan» for detecting of nitroaromatic explosives in vapor phase (Plant «Promautomatika», Ekaterinburg,

Russia).

Page 9: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S9 ©ARKAT USA, Inc

1H NMR (500 MHz, CDCl3) spectrum of 5.

Page 10: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S10 ©ARKAT USA, Inc

0102030405060708090100110120130140150160170180ppm

-500

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500HEM467cmik: A*14433; ~11 mg

31.4

4

34.9

9

76.7

577

.00

77.2

5

118.

98

125.

0712

7.40

129.

1413

0.95

131.

3713

2.25

144.

08

153.

6315

6.63

156.

97

13C NMR (126 MHz, CDCl3) spectrum of 5.

Page 11: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S11 ©ARKAT USA, Inc

1H NMR (500 MHz, CDCl3) spectrum of 7a.

Page 12: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S12 ©ARKAT USA, Inc

0102030405060708090100110120130140150160170180ppm

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

20000

21000

22000

23000HEM474ema: A*15706; 7 mg

31.5

1

34.9

6

76.7

477

.00

77.2

5

123.

0312

3.07

123.

3712

4.79

126.

6212

7.21

127.

4412

8.44

128.

5312

9.35

131.

9013

1.93

132.

0513

2.13

132.

2713

3.47

140.

87

147.

2714

7.97

148.

62

156.

6415

7.45

13C NMR (126 MHz, CDCl3) spectrum of 7a.

Page 13: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S13 ©ARKAT USA, Inc

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.0ppm

0

5000

10000

15000

20000

25000

30000

HEM4682bema: A*14009

6.03

9.06

4.00

2.02

2.01

2.11

4.01

2.03

2.03

3.03

1.01

2.01

2.01

1.00

-0.0

0

1.42

1.44

1.45

1.52

4.34

4.35

4.37

4.38

6.44

6.45

7.09

7.10

7.25

7.36

7.38

7.41

7.48

7.68

7.70

7.70

8.06

8.08

8.32

8.32

9.10

1H NMR (500 MHz, CDCl3) spectrum of 7b.

Page 14: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S14 ©ARKAT USA, Inc

0102030405060708090100110120130140150160170ppm

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000HEM4682bema: A*14010

-0.0

2

13.8

1

31.6

135

.03

37.6

9

76.7

577

.00

77.2

077

.25

108.

7210

8.78

118.

0011

9.28

120.

5312

2.88

122.

8912

3.42

124.

0112

6.12

127.

2512

9.56

132.

40

139.

9314

0.46

140.

57

150.

3715

3.02

156.

7115

7.58

13C NMR (126 MHz, CDCl3) spectrum of 7b.

Page 15: General Papers Arkivoc 2017, v, S1-S15 Supplementary

General Papers Arkivoc 2017, v, S1-S15

Page S15 ©ARKAT USA, Inc

1H NMR (500 MHz, CDCl3) spectrum of 7c.