gateway to the future · 2019-11-01 · **microbiologically influenced corrosion handbook...

33
Diagnosing MIC from A Failure Analysis Perspective Krista Heidersbach Gateway to the Future

Upload: others

Post on 10-Aug-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Diagnosing MIC from A Failure Analysis Perspective

Krista Heidersbach

Gateway to the Future

Page 2: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

How Bacteria Cause Corrosion?

• Varies significantly from metal to metal & type of bacteria• Aerobic acid‐producing bacteria produce organic acids• Sulfate‐reducing bacteria produce sulfuric acid• Slime producing microbes cause differential aeration cells / under deposit corrosion• Fungi, Algae, Protozoa, Bacteria• Provide microclimate for sulfate reducing bacteria

• Aerobic bacteria may oxidize iron or manganese• Depolarization of the cathode by hydrogen‐utilizing bacteria

Page 3: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Life Cycle of Bacteria / Biofilm

Metal Surface

Planktonic Bacteria

Step 1

Metal Surface

Extracellular Polymeric Substance (EPS) development

Step 3

Metal Surface

Sessile BacteriaStep 2

Metal Surface

Growth & DiversificationStep 4

Metal Surface

Mature Colony

Step 5

Metal Surface

Repeat

Step 6

Page 4: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Life Cycle of Bacteria / Biofilm Takeaways

• EPS  / biofilm thickness limits access of chemicals to interior bacteria • Need to understand penetration power of biocides• Chemical vendor selling you a treatment package instead of single component is pairing chemicals which penetrate the biofilm with things that kill the bacteria

• Traditional monitoring is typically focused on Planktonic levels• Can be misleading

Page 5: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Primary Standard Associated with Bacterial Testing

NACE TM 0194 ‐2014 ‐ Field Monitoring of Bacterial Growth in Oil and Gas Systems• Sampling Procedures for Planktonic Bacteria• Assessment and Sampling of Sessile Bacteria• Culture Techniques• Evaluation of Chemicals for Control of Bacteria• Non‐Media‐Based Field Methods• Select Appendixes

• Alternative Methods for Assessing Bacterial Populations• Growth Media Formulations

Page 6: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Serial Dilution

Remove 1 ml of fluid  & Inject

1 ml of fluid to be sampled

9 ml of growth media

9 ml of growth media

9 ml of growth media

9 ml of growth media

9 ml of growth media

9 ml of growth media

Remove 1 ml of fluid  & Inject

Remove 1 ml of fluid  & Inject

Remove 1 ml of fluid  & Inject

Remove 1 ml of fluid  & Inject

Growth Media will change color to signal bacteria viability

# of Bottles Turned

Range of Viable Bacteria per mL of Sample

1 1 to 10

2 10 to 100

3 100 to 1000

4 1,000 to 10,000

5 10,000 to 100,000

6 100,000 to 1,000,000

General Rule of Thumb for a “Bad 

Level”

Page 7: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Serial Dilution Test Kits

• Common “Flavors” of Tests• Low Nutrient Bacteria• Iron Related Bacteria• Anaerobic Bacteria• Acid Producing Bacteria• Sulfate Reducing Bacteria

• What’s in the jar?• Sugar• Water• Salt• Indicator

Sulfate Reducing Bacteria

Acid Producing Bacteria

Page 8: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Problems with Serial Dilution• Samples degrade over time• Often measuring planktonic but corrosion is caused by sessile bacteria• Takes 30 days for reliable SRB results• Culturing should occur at temperature & salinity of process• Contamination• “While great advances have been made in cultivation techniques, it is now accepted that only 0.001‐15% of the viable bacteria are culturable by these classical microbiological methods.”• Corrosion 08652 Molecular Identification of MIC Bacteria from Scale and Produced Water: Similarities and Differences, Jan Larsen et al

Page 9: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

An Easy fix! Use Bio‐studs or Side Stream

Page 10: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

ATP Adenosine Triphosphate Photometry

• “ATP is a molecule found in and around living cells, and as such it gives a direct measure of biological concentration and health. ATP is quantified by measuring the light produced through its reaction with the naturally occurring firefly enzyme luciferase using a luminometer. The amount of light produced is directly proportional to the amount of ATP present in the sample.”• https://en.wiipedia.org/wiki/ATP_test

• Produced by all living cells – degrades quickly upon death• Can be measured with light• Does not distinguish between types of bacteria, or other living cells• No direct conversion of ATP concentrations to microbial concentrations• Used for trending, measuring biocide efficacy

Page 11: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

APS Adenosine 5 Phosphosulfate Reductase Measurement

• SRB’s possess a unique enzyme, APS • Adenosine 5 Phosphosulfate reductase measurement

• No growth media• Independent of salinity, temperature, and redox condition• Color change proportional to concentration of APS‐reductase present• Testing takes minutes• Brand names include: RapidChek, QuickChek

Page 12: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

qPCRQuantitative Polymérase Chain Reaction

• Amplifies specific gene sequences from target organisms• Genetic material is extracted from a sample• Quantify the copies of a specific gene • Does not distinguish between live, inactive or dead cells• Quantify the total amount of bacteria and subspecies against a known sample

• Cost $375 / sample at Lab #1• Total Bacteria, SRB, APB, Archaea

• Cost $900 / sample at Lab #2• SRB, APB, Methanogens, IRB, Metal Oxidizing, SOB, Denitrification, Nitrification, Nitrogen Fixing, Slime Producing, Total Bacteria

Page 13: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

NGSNext Generation Sequencing

• “DNA sequencing of bacterial 16S rRNA gene fragments”• Compared to a standard database to identify bacteria present

• Ballpark Costs • Houston Lab #1 ~$4000, or $1000/sample with a minimum of 5 samples• Baltimore Lab ~$1000 per sample

• Great for determining effect of biocide treatments

Page 14: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #1

• New 316 stainless steel piping installed in 2019• Shop hydrotested using clean water (~21 ppm Cl‐)• Re‐tested in field. Waiting for water quality data• Failure occurred before start up

Page 15: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #1

Inside Surface

Outside Surface

Page 16: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #1

Next Slide

Page 17: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #1 Energy Dispersive Spectroscopy

Big Picture Weld

Big Picture Dendrites

Dendrites

Element

Big Picture Weld (wt%)

Big Picture Dendrites (wt%)

Dendrites (wt%)

C 7.87 2.04 45.1N 10.13O 2.92 2.58 24.73Na 3.39 1.78Mg 0.21Al 0.4 3.94Si 2.72 2.02 0.22Mo 2.72 2.33P 0.1S 0.16 1.61Cl 2.53 2.66Pd 1.71K 0.18 0.16Ca 0.28 1.43Cr 24.7 28.26 0.77Mn 1.38 2.53Fe 53.61 51.18 2.15Ni 3.92 1.96 0.3Cu 0.31 3.02

Page 18: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #1 – qPCR Results

Total Bacteria 

(Cells/cm3)

Sulfate Reducing Bacteria (Cells/cm3)

Acid Producing Bacteria (Cells/cm3)

Archaea(Cells/cm3)

Uncorroded <103 <103 <103 <103

Corroded <103 <103 <103 <103

Page 19: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #1

• Diagnosis• Probably not MIC• More likely fabrication issues

• Feedback from client• Welders have been out there removing heat tint on the OD

• Suggests that there are heat tint issues on the ID / Iron contamination concerns• Shop hydrotested with clean water• Field hydrotested with unknown water source

Page 20: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #2 ‐ Background

• 304 SS Potable water plant designed in 2017• Well water is removed from the ground, and treated to potable water quality• Treatment consists of filtration and injection of hypochlorite chemical• Supplies potable water to lab building near process unit• Supplies water to safety showers and eye wash stations within the process unit

• Header carrying water is 4” diameter and 100s of feet in length

Page 21: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #2 ‐ History

• Plant started up in 2017• First failure March 2018, within 6 months of startup• Formal investigation began in May 2018• Sample removed from system in August 2018• Chloride content of water <100 ppm

Page 22: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #2

Weld #1

Weld #2

Weld #4Weld #3

Inlet from main header

Weld at Pipe Support

Sample Connection Welds

Page 23: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Tubercle #4

Tubercle #3

Tubercle #2

Tubercle #5

Field Example #2

Page 24: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #2

Tubercle #2

Tubercle #3

Tubercle #4

Tubercle #5

Additional Areas with Stains

Page 25: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #2Area under Tubercle #4 –Through Wall 

Leak

Cross Section View Showing Pit Cavity ‐Tubercle #4

Page 26: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #2Metallography of Through Wall Pit Under Tubercle 

#4

Page 27: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #2 – Energy Dispersive Spectroscopy

Element Tubercle #3

Tubercle #4 Element Tubercle 

#3Tubercle 

#4

C 4.87 20.51 Ca 0.43 2.12

O 39.9 40.42 Ba 0.38Na 0.03 Cr 12.09 5.21Mg 0.16 Mn 0.06 4.84Al 0.27 0.33 Fe 38.15 21.65Si 1.19 1.83 Ni 0.56 0.44P 0.15 Cu 0.28S 0.95 0.14 Zn 0.27 1.71Cl 0.98 0.07

Page 28: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #2 ‐ X‐Ray Diffraction Results 

Compound Chemical Formula Tubercle #3 Tubercle #4Goethite FeO(OH) 30 55

Tongbaite, syn Cr3C2 3

Hematite, syn Fe2O3 8

Magnetite Fe3O4 8 26

Ferrihydrite, syn Fe1.44O0.32(OH)3.68 51

Calcite, syn Ca(CO3) 9

Todorokite Mn6O12(H2O)3 10

Page 29: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Field Example #2 ‐ DNA Sequencing ResultsGenus Tubercle Sample

#1 #2 #3 #4 #5

Desulfovibrio 29.66% 27.14% 11.07% 5.37% 3.97%

Unclassified at Genus Level 9.94% 8.85% 9.06% 14.01% 10.99%

Dethiosulfovibrio 7.39% 7.30% 2.65%Ochrobactrum 6.18% 2.76%Marinobacter 4.65% 4.57%Halanaerobium 4.52% 5.46%

Pseudomonas 2.96% 7.97% 25.33% 35.84%

Bradyrhizobium 2.07% 7.60% 15.55% 4.63%

Chitinophaga 2.10% 2.47%

Phenylobacterium 8.40% 6.55%

Rubrivivax 3.38%

Novosphingobium 3.14%

Rhodospirillum 3.04% 2.16%Blastomonas 2.64% 5.97%Brevundimonas 5.10%Bdellovibrio 4.25%Arenimonas 2.01%

Total 67.37% 70.99% 55.34% 64.71% 70.29%

Page 30: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Importance of the Type of Bacteria Present• Sulfate Reducing Bacteria

• Desulfovibrio – Found in all five samples• Generate H2SO4• Capable of oxidizing iron• Initial levels of iron and manganese in water were beyond the safe levels for human consumption and special filters were added to remove manganese

• Significant levels of manganese oxide were found in copper piping within the lab facility

• Bdellovibrio exovorus – Known to eat SRBs

Page 31: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Importance of the Type of Bacteria Present

• Sulfate Reducing Bacteria (also thiosulfate reducing)• Dethiosulfovibrio• Halanaerobium

• Reduce thiosulfate to sulfite and elemental sulfur*• S2O3

2‐ SO32‐ + S0

• Reduce sulfite to sulfide*• SO3

2‐ + NADH H2S + NAD+ + 3H2O*July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org

Page 32: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Importance of the Type of Bacteria Present• Iron Reducing Bacteria

• Responsible for tubercle formation• Pseudomonas**

• Manganese Reducing Bacteria (MnRB)• Primary MnRB / IRB strains not present

• Gallionella, Sphaerotilus, Leptothrix and Crenothrix• Brevundimonas* may reduce manganese

**Microbiologically Influenced Corrosion Handbook*July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org

Page 33: Gateway to the Future · 2019-11-01 · **Microbiologically Influenced Corrosion Handbook *July/August 2017 Volume 2 Issue 4 e00257‐17 msphere.asm.org. Takeaways •Stainless steel

Takeaways• Stainless steel is susceptible to MIC, Heat Tint Corrosion and Chloride Pitting• May be synergistic • May be independent• All should be considered during the failure analysis

• Cannot / should not diagnose MIC from morphology• Should not diagnose MIC without additional information

• Consider your water sources, oxygenation, solids, chlorides• Sulfur concentration• Chloride presence