garch processes { probabilistic properties (part...

22
GARCH processes – probabilistic properties (Part 1) Alexander Lindner Centre of Mathematical Sciences Technical University of Munich D–85747 Garching Germany [email protected] http://www-m1.ma.tum.de/m4/pers/lindner/ Maphysto Workshop Non-Linear Time Series Modeling Copenhagen September 27 – 30, 2004 1

Upload: others

Post on 28-Jan-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

GARCH processes – probabilistic properties(Part 1)

Alexander Lindner

Centre of Mathematical SciencesTechnical University of Munich

D–85747 GarchingGermany

[email protected]://www-m1.ma.tum.de/m4/pers/lindner/

Maphysto WorkshopNon-Linear Time Series Modeling

CopenhagenSeptember 27 – 30, 2004

1

Page 2: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Contents

1. Definition of GARCH(p,q) processes

2. Markov property

3. Strict stationarity of GARCH(1,1)

4. Existence of 2nd moment of stationary solution

5. Tail behaviour, extremal behaviour

6. What can be done for the GARCH(p,q)?

7. GARCH is White Noise

8. ARMA representation of squared GARCH process

9. The EGARCH process and further processes

2

Page 3: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

GARCH(p,q) on N0

(εt)t∈N0 i.i.d., P (ε0 = 0) = 0 (1)

α0 > 0, α1, . . . , αp ≥ 0, β1, . . . , βq ≥ 0.

(σ20, . . . , σ

2max(p,q)−1) independent of {εt : t ≥ max(p, q)− 1}

Yt = σtεt, (2)

σ2t = α0 +

p∑i=1

αiY2t−i︸ ︷︷ ︸

ARCH

+

q∑j=1

βjσ2t−j

︸ ︷︷ ︸GARCH

, t ≥ max(p, q). (3)

(Yt)t∈N0 GARCH(p,q) process

3

Page 4: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

GARCH(p,q) on Z

(1), (2) and (3) for t ∈ Z, and

εt independent of

Yt−1 := {Ys : s ≤ t− 1}.

ARCH(p): Engle (1981)

GARCH(p,q): Bollerslev (1986)

Generalized AutoRegressive Conditional Heteroscedasticity

4

Page 5: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Why conditional volatility?

Suppose σ2t ∈ Yt−1,

or equivalently σ2t ∈ εt−1, ∀ t ∈ Z

(the process is “causal”)

Suppose Eεt = 0, Eε2t = 1, EYt <∞. Then

E(Yt|Yt−1) = E(σtεt|Yt−1) = σtE(εt|Yt−1) = 0,

V (Yt|Yt−1) = E(σ2t ε

2t |Yt−1) = σ2

tE(ε2t |Yt−1) = σ2

t

Hence σ2t is the conditional variance

5

Page 6: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Markov property

(a) GARCH(1,1):

(σ2t )t∈Z is a Markov process, since

σ2t = α0 + (α1ε

2t−1 + β1)σ2

t−1

(σ2t , Yt)t∈Z is Markov process, but (Yt)t∈Z is not.

(b) GARCH(p,q), max(p, q) > 1

(σ2t )t∈Z is not Markov process

(σ2t , . . . , σ

2t−max(p,q)+1)t∈Z is Markov process.

6

Page 7: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Strict stationarity - GARCH(1,1)

σ2t = α0 + α1σ

2t−1ε

2t−1 + β1σ

2t−1

= (α1ε2t−1 + β1)σ2

t−1 + α0

=: Atσ2t−1 + Bt (4)

(At, Bt)t∈Z is i.i.d. sequence.

(4) is called a random recurrence equation.

σ2t = Atσ

2t−1 + Bt

= AtAt−1σ2t−1 + AtBt−1 + Bt

...

= At · · ·At−kσ2t−k−1 +

k∑i=0

At · · ·At−i+1Bt−i︸︷︷︸=α0

. (5)

Let k →∞ and hope that (5) converges.

7

Page 8: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Strict stationarity - continued

Suppose γ := E logA1 < 0

1

k(logAt + logAt−1 + . . . + logAt−k+1)︸ ︷︷ ︸

random walk!

k→∞−→ E logA1 a.s.

=⇒ a.s.∀ ω ∃n0(ω) :1

klog (At · · ·At−k+1) ≤ γ/2 < 0 ∀k ≥ n0(ω)

=⇒ |At · · ·At−k+1| ≤ ekγ/2 ∀k ≥ n0(ω)

Hence (5) converges almost surely.

8

Page 9: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Theorem: (Nelson, 1990)If

E log(α1ε21 + β1) < 0, (6)

then GARCH(1,1) has a strictly stationary solution.Its marginal distribution is given by

α0

∞∑i=0

(α1ε2−1 + β1) · · · (α1ε

2−i + β1) (7)

If β1 > 0 (i.e. GARCH but not ARCH) and a strictly stationarysolution exists, then (6) holds.

Remark:If E log+ |A1| <∞, then

γ = inf

{E

(1

n + 1log |A0A−1 · · ·A−n|

): n ∈ N

}is called the Lyapunov exponent of the sequence (An)n∈Z.

9

Page 10: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

When is EY 2t <∞?

σ20 = α0

∞∑i=0

(α1ε2−1 + β1) · · · (α1ε

2−i + β1)

Eσ20 = α0

∞∑i=0

(E(α1ε

21 + β1)

)i<∞

⇐⇒ α1Eε21 + β1 < 1

EY 2t = Eσ2

t Eε2t

So stationary solution (Yt)t∈Z has finite variance iff

α1Eε21 + β1 < 1

10

Page 11: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Tail behaviour of stochastic recurrence equations

Theorem (Goldie 1991, Kesten 1973, Vervaat 1979)Suppose (Zt)t∈N satisfies the stochastic recurrence equation

Zt = AtZt−1 + Bt, t ∈ N,

where ((At, Bt))t∈N, (A,B) i.i.d. sequences. Suppose ∃κ > 0such that(i) The law of log |A|, given |A| 6= 0, is not concentrated on rZfor any r > 0(ii) E|A|κ = 1(iii) E|A|κ log+ |A| <∞(iv) E|B|κ <∞Then Z

d= AZ+B, where Z independent of (A,B), has a unique

solution in distribution which satisfies

limx→∞

xκP (Z > x) =E[((AZ + B)+)κ − ((AZ)+)κ]

κE|A|κ log+ |A|=: C ≥ 0

(8)

11

Page 12: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Tail behaviour of GARCH(1,1)

Corollary: Suppose ε1 is continuous, P (ε1 > 0) > 0 and all ofits moments exist.Further, suppose that

E log(α1ε21 + β1) < 0.

Then ∃κ > 0 and C1 > 0, C2 > 0 such that for the stationarysolutions of (σ2

t ) and (Yt):

limx→∞

xκP (σ20 > x) = C1

limx→∞

x2κP (Y0 > x) = C2

Mikosch, Starica (2000): GARCH(1,1)

de Haan, Resnick, Rootzen, de Vries: ARCH(1)

12

Page 13: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Extremal behaviour of GARCH(1,1)

Mikosch and Starica (2000) and de Haan et al. (1989) gave ex-treme value theory for GARCH(1,1) and ARCH(1).

Suppose a stationary solution (Yt)t∈N0 exists.

Let (Yt)t∈N0 be an i.i.d. sequence with Y0d= Y0.

Then under the previous assumptions, ∃ θ ∈ (0, 1) such that fora certain sequence ct > 0, t ∈ N:

limt→∞

P

(maxi=1,...,t

Yi ≥ ctx

)= exp(−θx−2κ), x ∈ R

limt→∞

P

(maxi=1,...,t

Yi ≥ ctx

)= exp(−x−2κ), x ∈ R.

The GARCH(1,1) process has an extremal index θ, i.e. ex-ceedances over large thresholds occur in clusters, with an averagecluster length of 1/θ

13

Page 14: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

What can be done for GARCH(p,q)?

τt := (β1 + α1ε2t , β2, . . . , βp−1) ∈ Rp−1

ξt := (ε2t , 0, . . . , 0) ∈ Rp−1

α := (α2, . . . , αq−1) ∈ Rq−2

Ip−1: (p− 1)× (p− 1) identity matrixMt: (p + q − 1)× (p + q − 1) matrix

Mt :=

τt βp α αqIp−1 0 0 0ξt 0 0 00 0 Iq−2 0

N := (α0, 0, . . . , 0)′ ∈ Rp+q−1

Xt := (σ2t+1, . . . , σ

2t−p+2, Y

2t , . . . , Y

2t−q+2)′

Then (Yt)t∈Z solves the GARCH(p,q) equation if and only if

Xt+1 = Mt+1Xt + N, t ∈ Z (9)

14

Page 15: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

GARCH(p,q) - continued

(9) is a random recurrence equation. Theory for existence ofstationary solutions can be applied.

For example, if Eε1 = 0, Eε21 = 1, then a necessary and sufficient

condition for existence of a strictly stationary solution with finitesecond moments is

p∑i=1

αi +

q∑j=1

βj < 1. (10)

(Bougerol and Picard (1992), Bollerslev (1986))

But stationary solutions can exist also ifp∑i=1

α1 +

q∑j=1

βj = 1.

A characterization for the existence of stationary solutions isachieved via the Lyapunov exponent (whether it is strictly nega-tive or not).

15

Page 16: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

GARCH(p,q) is White Noise

Suppose Eεt = 0, Eε2t = 1 and (10). Then for h ≥ 1,

EYt = E(σtεt) = E(σtE(εt|Yt−1)) = 0

E(YtYt+h) = E(σtσt+hεt E(εt+h|Yt+h−1)︸ ︷︷ ︸=0

) = 0

But (Y 2t )t∈Z is not White Noise.

ut := Y 2t − σ2

t = σ2t (ε

2t − 1)

Suppose Eu2t <∞ and let h ≥ 1:

Eut = 0

E(utut+h) = E(σ2t (ε

2t − 1)σ2

t+h) E(ε2t+h − 1) = 0

Hence (ut)t∈Z is White Noise

16

Page 17: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

The ARMA representation of Y 2t

σ2t = α0 +

p∑i=1

αiY2t−i +

q∑j=1

βjσ2t−j

Substitute σ2t = Y 2

t − ut. Then

Y 2t −

p∑i=1

αiY2t−i −

q∑j=1

βjY2t−j = α0 + ut −

q∑j=1

βjut−j

Hence (Y 2t )t∈Z satisfies an ARMA(max(p, q), q) equation.

Hence autocorrelation function and spectral density of (Y 2t )t∈Z is

that of ARMA(max(p, q), q) process with the given parameters.

17

Page 18: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Drawbacks of GARCH

• Black (1976): Volatility tends to rise in response to “badnews” and to fall in response to “good news”

• The volatility in the GARCH process is determined only bythe magnitude of the previous return and shock, not by itssign.

• The parameters in GARCH are restricted to be positive toensure positivity of σ2

t . When estimating, however, sometimesbest fits are achieved for negative parameters.

18

Page 19: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Exponential GARCH (EGARCH) (Nelson, 1991)

(εt)t∈Z i.i.d.(0, 1)

Yt = σtεt

log(σ2t ) = α0 +

p∑i=1

αig(εt−i) +

q∑j=1

βj log(σ2t−j)

g(εt) = θεt + γ(|εt| − E|εt|), θ2 + γ2 6= 0

Most often, εt i.i.d. normal.

EGARCH models often fit the data nicely, but

• log(σ2t ) has tails not much heavier than Gaussian tails (like

xce−dx2, x→∞, c, d > 0)

• tails of Yt are approximately like

P (Y0 > x) ≈ e−(log x)2= x− log x, x→∞

• Neither (log σ2t )t∈Z nor (Yt)t∈Z show cluster behaviour.

(Lindner, Meyer (2001))

Similar results for stochastic volatility models by Breidt andDavis (1998)

19

Page 20: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Other GARCH type models

Many many other GARCH type models exist, like

• MGARCH (multiplicative GARCH)

• NGARCH (non-linear asymmetric GARCH)

• TGARCH (threshold GARCH)

• FIGARCH (fractional integrated GARCH)

• · · ·• · · ·

See Gourieroux (1997) or Duan (1997) for some of them.

20

Page 21: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

ReferencesBollerslev, T. (1986) Generalized autoregressive conditional heteroskedasticity.

Journal of Econometrics 31, 307-327.

Bougerol, P. and Picard, N. (1992) Stationarity of GARCH processes and of

some nonnegative time series. Journal of Econometrics 52, 115-127.

Brandt, A. (1986) The stochastic equation Yn+1 = AnYn+Bn with stationary

coefficients. Adv. Appl. Probab. 18, 211-220.

Breidt, F. and Davis, R (1998) Extremes of stochastic volatility models. Ann.

Appl. Probab. 8, 664-675.

de Haan, L., Resnick, S., Rootzen, H. and de Vries, C. (1989) Extremal be-

haviour of solutions to a stochastic differnce equation with applications to

ARCH processes. Stoch. Proc. Appl. 32, 213-224.

Duan, J.-C. (1997) Augmented GARCH(p, q) process and its diffusion limit.

Journal of Econometrics 79, 97-127.

Engle, R. (1982) Autoregressive conditional heteroskedasticity with estimates

of the variance of the United Kingdom inflation. Econometrica 50, 987-1007.

Goldie, C. (1991) Implicit renewal theory and tails of solutions of random

equations. Ann. Appl. Probab. 1, 126-166.

Gourieroux, C. (1997) ARCH Models and Financial Applications. Springer,

New York.

Kesten, H. (1973) Random difference equations and renewal theory for prod-

ucts of random matrices. Acta Math. 131, 207-248.

21

Page 22: GARCH processes { probabilistic properties (Part 1)web.math.ku.dk/~mikosch/maphysto_richard/copenhagen1.pdf · 2004-09-17 · GARCH(p,q) - continued (9) is a random recurrence equation

Lindner, A. and Meyer, K. (2001) Extremal behavior of finite EGARCH pro-

cesses. Preprint.

Mikosch, T. and Starica, C (2000) Limit theory for the sample autocorrelations

and extremes of a GARCH(1,1) process. Ann. Statist. 28, 1427-1451.

Vervaat, W. (1979) On a stochastic difference equation and a representation

of non-negative infinitely divisible random variables. Adv. Appl. Probab.

11, 750-783.

22